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Variability of Firing of Hodgkin-Huxley and FitzHugh-Nagumo Neurons
with Stochastic Synaptic Input

David Brown, Jianfeng Feng, and Stuart Feerick
Laboratory of Computational Neuroscience, The Babraham Institute, Cambridge CB2 4AT, United Kingd

(Received 2 October 1998)

The variability and mean of the firing rate of Hodgkin-Huxley and FitzHugh-Nagumo neurons
subjected to random synaptic input are only weakly dependent on the level of inhibitory input, unlike
integrate-and-fire neurons. For the latter model, substantial inhibitory input is essential to ensu
output variability close to Poissonian firing. It cannot therefore be used routinely in stochastic networ
modeling in place of biophysical models without first checking that the network behavior is not seriousl
compromised. [S0031-9007(99)09338-2]

PACS numbers: 87.19.La, 87.10.+e
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All neurons fire irregularly when subjected to suffi-
ciently low intensity Poissonian synaptic input, and almo
all neurons fire regularly if driven very hard [1]. In be-
tween these two extremes, neurons vary in their respon
to stochastic input, although there has been little conse
sus in the literature about which key properties determin
the nature of the response.

For example, there has been much discussion abo
the properties of leaky integrate-and-fire (IF) models i
response to random synaptic input [2–5]. It has bee
claimed that—at realistic levels of random synaptic in
put—such neurons effectively integrate a large number
random inputs to produce an output which itself is of low
variability [2,6,7] as measured by the coefficient of vari
ation of the interspike interval [CV(ISI)]. However, other
studies have shown the IF neuron to be capable of ne
Poisson firing at realistic levels of excitatory input over
significant range ofr, the ratio of the number of inhibitory
to excitatory inputs [8–10]. For convenience, we here u
the term “near-Poisson firing” as a shorthand for the o
currence of firing patterns with0.5 , CVsISId , 1.

It has frequently been proposed [11,12] that, for ne
work modeling purposes, IF neurons capture the essenti
of the interneuronal behavior which more biophysicall
based models display. Of course, biophysical models a
as threshold devices just like IF models, but some su
models also show important differences in behavior.
first difference concerns the firing rate at different leve
of constant applied current: Hodgkin [14] classified mem
branes as type I if they can show an arbitrarily low firing
rate and long spike latency in response to a continuo
current, or type II if they exhibit a narrow range of re-
sponse firing rates (not close to zero) and virtually ze
spike latency. A basic biophysical model—the Hodgkin
Huxley (HH) model of SQUID giant axon [13]—is clas-
sified as type II [15,16]. In a sense, the IF model can b
classified as type I, since arbitrarily low firing rates ar
possible for just suprathreshold currents. Also, the H
model shows a complexity not shared with the IF mode
When subjected to levels of constant continuous curre
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which are close to the level required to induce continuou
firing, it exhibits a bistability in which a stable rest state
is coexistent with a continuously firing state [17,18].

The previous paragraph has discussed the response
the neurons to constant current input, whereas in this pap
our concern is with their response to random synaptic i
put. More specifically, we ask the question: Do biophys
cal models respond to random synaptic input in broadly th
same manner as leaky integrator models? We consider
examples, well studied in other contexts, the HH model an
a simplification often taken as the generic case of excitab
ity, the FitzHugh-Nagumo (FHN) model [19,20]. We find
that the IF model responds to synaptic input quite diffe
ently from the biophysical models, particularly in the rela
tionship between the rate and variability of firing and th
degree of balance between inhibition and excitation,r. For
some levels of excitatory input, the HH and FHN model
fire in the near-Poisson range independently of the val
of r, whereas the spiking of the IF model becomes regul
when r ! 0. We confirm these findings using a differ-
ent model for excitatory postsynaptic potential / inhibitor
postsynaptic potential (EPSP/IPSP) action and using d
ferent simulation software.

Many studies of single neurons and networks have be
made using IF models, with a view to clarifying how in-
formation is encoded and transmitted in neuronal system
Providing an answer to the question whether IF mode
provide an adequate simplification of biophysically base
models is therefore important in the quest for a better u
derstanding of the nature of the neural code.

Models and methods.—The HH model is

C
dV
dt

­ Isyn 1 gKn4sV 2 VK d

1 gNa m3hsV 2 VNa d 1 gLsV 2 VLd , (1)
whereIsyn is the synaptic current. The model paramete
and remaining three equations are as in [13]. The FH
model we used is a scaled version:

dV
dt

­ Isyn 1 gf2V sV 2 ad sV 2 1d 2 Wg , (2)
© 1999 The American Physical Society 4731
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dt

­ dfV 2 bW g , (3)

where a ­ 0.2, b ­ 2.5, g ­ 100, and d ­ 0.25. For
comparison we simulate an IF model:

dV
dt

­ 2
V
g

1 Isyn ; (4)

g, the membrane decay time, equals 20.2 ms, a va
appropriate for neurons in the visual cortex [21], althoug
the exact value is not critical. In this model, whenV
reaches the threshold (20 mV above resting potenti
taken here as zero), the neuron fires andV is reset to the
resting potential.

Isyn is modeled as instantaneous perturbations of me
brane potential. Thus, for the HH and IF model simu
lations, the effect of an EPSP/IPSP is an instantaneo
perturbation of membrane potential of magnitudea ­
0.5 mV. We confirmed that these results were not crit
cally dependent on the specific value ofa by also using a
value ofa of 2 mV. We also tried a different EPSP/IPSP
model, in which the effect of an EPSP/IPSP is a squa
wave current of duration 0.1 ms of such a magnitude
to induce a change of 0.5 mV when close to the restin
potential. Since the scaling of the FHN model was diffe
ent, these were subject to EPSPs and IPSPs of the sa
frequency but of magnitude 0.06 to achieve mean firin
rates within a similar range to the HH model.

The model neurons received input fromNE excitatory
synapses, each following a Poisson process of ratelE ,
and NI inhibitory synapses, each with Poisson ratelI .
For all three models, simulations were carried out wit
lE ­ lI ­ 100 Hz with NE varying between 25 and 200
(HH and FHN models) or 20 and 100 (IF model) andr ­
NIyNE varying between 0 and 1.0 for each value ofNE.

Results.—For all models, very few or no spikes were
obtained with the lowest numbers of excitatory synaps
(NE ­ 25, 50 for the HH and FHN models, andNE ­
20 for the IF model, except whenr ­ 0.1 and 0.2, as
discussed in the legend to Fig. 4 below). Therefore on
those results for higher values ofNE, for which reliable
statistics could be obtained, are presented in the remain
of this section.

Hodgkin-Huxley model: Mean ISI for75 # NE #

200 varies between 17 and 110 ms (see Fig. 1B), a
physiologically plausible values. ForNE ­ 75 and 100,
CV(ISI) is approximately independent ofr, taking values
of about 0.8 and 0.7, respectively (Fig. 1A). For highe
values of NE , CV(ISI) is positively correlated withr,
taking values as low as 0.1 forNE ­ 300 and r ­ 0.
This correlation can be accounted for by the effects
the neuron’s refractory period, as we now show. Whe
standard deviation of output ISI,s, is plotted against mean
ISI, m, we obtain an approximate straight line with fitted
equation,

s ­ 1.008s60.015dm 2 12.26s60.77d , (5)
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FIG. 1. Response of a HH neuron subject toNE excitatory
Poisson inputs, each of 100 Hz, andNI ­ rNE inhibitory
inputs with EPSP size­ IPSP size­ 0.5 mV. (A) CV(ISI) vs
r for each value ofNE . (B) Mean ISI vsr for each value
of NE .

which intersects them axis at about12.26y1.008 ­
12.2 ms. This suggests aneffectiverefractory period of
about 12.2 ms (Fig. 2A). Standard errors of the fitte
parameters (estimated by least squares) are given in bra
ets. The slope is not significantly different from one, con
sistent with the ISI following an exponential distribution
with a displacement from zero of 12.2 ms. This mea
that, once the effective refractory period of 12.2 ms
subtracted from each interspike interval, CV(ISI) is ap
proximately one, the expectation for Poissonian outp
When adjusted values calculated on the assumption
such a displaced exponential distribution are plotted
the CV(ISI) vs r plot (Fig. 2B), a good fit is obtained,
confirming that the output is consistent with Poissonia
firing apart from the effects of the refractory period. Th

FIG. 2. Response of a HH neuron subject toNE excitatory
Poisson inputs, each of 100 Hz, andNI ­ rNE inhibitory
inputs with EPSP size­ IPSP size­ 0.5 mV. (A) s ­ s.d.
(ISI) plotted againstm ­ mean (ISI), and a fitted straight
line, intersecting thex axis at about 12.2 ms. (B) CV(ISI)
vs r with expected CV(ISI) calculated on the assumption th
output follows a Poisson process, except for an initial refracto
period estimated as 12.2 ms [i.e., predicted CVsISId ­ sm 2
12.2dym].



VOLUME 82, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 7 JUNE 1999

t
of

s
ct

5,

nt
e

ad
n

lts
r
I

e
r

)

d
le

r

h
f
s
.
g

es
-

effective refractory period is similar to the period of th
stable limit cycle (15–20 ms) which occurs in the absen
of random synaptic input after a threshold continuous cu
rent is reached.

FitzHugh-Nagumo Model: For75 # NE # 200, mean
ISI varies between about 8 and 100 ms (Fig. 3B), comp
rable to the range obtained for the HH model at the sam
stimulation frequencies, and shows no strong relations
with r. CV(ISI) is also approximately independent ofr
for all values ofNE used in these simulations (Fig. 3A).

Comparison with integrate-and-fire model: The detaile
properties of IF neurons in response to stochastic synap
input have been described by the present authors elsewh
[8–10,22,23]. Mean ISI takes a very wide range of valu
as r is varied: from 6–15 ms whenr ­ 0.1, depending
on the value ofNE, to 1 s when0.7 , r , 0.9 for NE

taking values between 40 and 100 (Fig. 4B). By contra
mean ISI for the HH and FHN models shows a muc
weaker correlation withr, of lower slope. A reduction
in the strength of the inhibitory input therefore has a muc
greater impact on the firing rate of the IF neuron than t
HH and FHN neurons. For40 # NE # 100, CV(ISI) of
the IF model is in the near-Poisson range forr . 0.5,
falling substantially to near 0.25, asr ! 0 (Fig. 4A). For
a significant range of values ofr, CV(ISI) therefore takes
values more typical of regular firing. This does not occ
for the HH or for the FHN neuron. For the HH neuron
CV(ISI) is independent ofr for NE ­ 75 and 100, and for
higher values ofNE, CV(ISI) only falls as a result of the
neuron’s refractory period. For the FHN neuron, CV(IS
is high for all values ofr at the stimulation frequencies
used in our simulations.

Robustness of HH results; increasing EPSP size a
different EPSP model: We simulated the HH mod
with a greater EPSP amplitudesa ­ 2 mVd, to check that
the results were not specific to a particular EPSP si
The results (not shown) were similar to those obtain
for a ­ 0.5 mV, except that firing was attained at muc
lower EPSP rates (e.g.,NE ­ 10), as might be expected.

FIG. 3. Response of a FHN neuron subject toNE excitatory
Poisson inputs, each of 100 Hz, andNI ­ rNE inhibitory
inputs with EPSP size­ IPSP size­ 0.06 (in the scaled units
of the FHN model). (A) CV(ISI) vsr for each value ofNE .
(B) Mean ISI vsr for each value ofNE
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Mean ISI ranges from slightly under 10 ms to abou
40 ms, a lower and narrower range than for EPSPs
0.5 mV, despite covering a wider range ofNE values in
these simulations. The larger EPSP size clearly drive
the neuron much faster, and hence we would expe
that the effect of the refractory period of the neuron
would be more pronounced. Nevertheless, forNE ­ 10
and 25, CV(ISI) is independent ofr, as for the smaller
EPSP size, taking values of approximately 0.65 and 0.3
respectively. For higher numbers of inputs, CV(ISI) falls
off asr ! 0, to values close to 0.2.

In order to check that the results were not depende
on the exact model used for EPSPs and IPSPs, w
repeated the simulations on the packageNEURON [24].
We modeled EPSPs and IPSPs as currents which h
approximately the same effect at resting potential as a
instantaneous voltage perturbation of 0.5 mV. The resu
(not presented) are very similar to those for the simple
form of EPSP (Fig. 1), except that CV(ISI) and mean IS
are lower for a fixed level ofNE . As before, for some
values of NE, CV(ISI) is independent ofr, unlike the
integrate-and-fire model.

Discussion.—The results show that the response of th
HH and FHN models to stochastic synaptic input is rathe
different from that of IF models studied previously ([8–
10,22,23]). For some intensities of stimulation, CV(ISI
of the HH and FHN models is independent of the
degree of balance between excitation and inhibition, an
consistent with near-Poisson behavior over the who
range of r between 0 and 1. For IF models, CV(ISI)
is consistent with near-Poisson behavior only for highe
values ofr, falling to low values asr ! 0. The results
for the IF model reported in this paper are consistent wit
our earlier results [8–10,22,23]. For higher intensities o
stimulation, the refractory period of the HH neuron begin
to exert its effect, and lower values of CV(ISI) occur
However, when the refractory period is adjusted for, firin

FIG. 4. Response of an IF neuron withg ­ 20.2 ms sub-
ject to NE excitatory Poisson inputs, each of 100 Hz, and
NI ­ rNE inhibitory inputs, where EPSP size­ IPSP size­
0.5 mV. (A) CV(ISI) vs r for each value ofNE . (B) Mean ISI
vs r. We also display here the results forNE ­ 20, not dis-
cussed in the text, to demonstrate that, although higher valu
of mean and CV of ISI are obtained at lower levels of excita
tory input, they still show a strong relationship withr.
4733
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again becomes consistent with a Poisson process. T
mean ISI of the IF model decreases much more quickly
r ! 0 than for the HH and FHN models.

Biophysical models differ from IF models in a number
of ways. They generally exhibit an absolute and relativ
refractory period. To reflect this, we could simply adjus
the output of the IF model to include an absolute
refractory period. However, that would further depres
CV(ISI) for values ofr close to zero even farther, and
increase the disparity between the results for the IF an
the HH and FHN neurons.

It was recently proposed that the nature of the mem
brane dynamics might be an important determinant of th
response of neurons to random synaptic stimulation [25
As described in the introduction, membranes were class
fied by Hodgkin [14] as of type I or type II, depending
on their firing rate and current strength relationship. Th
HH and FHN models are both of type II [16,25]. Our re-
sults therefore do not agree with the predictions in [25
based on a study of the Morris-LeCar model, that type
neurons would display a low CV(ISI) in contrast to type
neurons with a high CV(ISI). Troyer and Miller [5] sug-
gested that resetting the membrane potential after a sp
to a level higher than the resting potential would promot
more variable firing. This is not necessary for the HH
model at moderate intensities of synaptic input. A numbe
of authors [3,4] have asserted the need for exact balance
the inputs in order that0.5 # CVsISId # 1, as observed
in neurons in the visual cortex and elsewhere. The resu
in [10,22,23] demonstrate that substantial departures fro
exact balance could be tolerated with IF models while sti
preserving a CVsISId $ 0.5. The present study carries
this a stage further in that, for the HH and FHN models
no inhibitory input is necessary at all at some input inten
sities in order that CVsISId $ 0.5. Whether this property
will hold for other biophysical models is currently the sub
ject of another study and will be reported elsewhere.

The present results, however, are sufficient to demo
strate that, when building network models, IF neuron
cannot in general be substituted for biophysical model
For some parameter ranges their responses to rand
synaptic input are very different. This could be expecte
to have a substantial impact on the network behavior.
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ments on earlier versions of this manuscript. This wor
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