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Variability of Firing of Hodgkin-Huxley and FitzHugh-Nagumo Neurons
with Stochastic Synaptic Input
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The variability and mean of the firing rate of Hodgkin-Huxley and FitzHugh-Nagumo neurons
subjected to random synaptic input are only weakly dependent on the level of inhibitory input, unlike
integrate-and-fire neurons. For the latter model, substantial inhibitory input is essential to ensure
output variability close to Poissonian firing. It cannot therefore be used routinely in stochastic network
modeling in place of biophysical models without first checking that the network behavior is not seriously
compromised. [S0031-9007(99)09338-2]

PACS numbers: 87.19.La, 87.10.+e

All neurons fire irregularly when subjected to suffi- which are close to the level required to induce continuous
ciently low intensity Poissonian synaptic input, and almosfiring, it exhibits a bistability in which a stable rest state
all neurons fire regularly if driven very hard [1]. In be- is coexistent with a continuously firing state [17,18].
tween these two extremes, neurons vary in their response The previous paragraph has discussed the responses of
to stochastic input, although there has been little conserthe neurons to constant current input, whereas in this paper
sus in the literature about which key properties determineur concern is with their response to random synaptic in-
the nature of the response. put. More specifically, we ask the question: Do biophysi-

For example, there has been much discussion abogtal models respond to random synaptic input in broadly the
the properties of leaky integrate-and-fire (IF) models insame manner as leaky integrator models? We consider as
response to random synaptic input [2-5]. It has beemxamples, well studied in other contexts, the HH model and
claimed that—at realistic levels of random synaptic in-a simplification often taken as the generic case of excitabil-
put—such neurons effectively integrate a large number oity, the FitzHugh-Nagumo (FHN) model [19,20]. We find
random inputs to produce an output which itself is of lowthat the IF model responds to synaptic input quite differ-
variability [2,6,7] as measured by the coefficient of vari-ently from the biophysical models, particularly in the rela-
ation of the interspike interval [CV(ISI)]. However, other tionship between the rate and variability of firing and the
studies have shown the IF neuron to be capable of neadegree of balance between inhibition and excitationf-or
Poisson firing at realistic levels of excitatory input over asome levels of excitatory input, the HH and FHN models
significant range of, the ratio of the number of inhibitory fire in the near-Poisson range independently of the value
to excitatory inputs [8—10]. For convenience, we here usef r, whereas the spiking of the IF model becomes regular
the term “near-Poisson firing” as a shorthand for the ocwhenr — 0. We confirm these findings using a differ-
currence of firing patterns with.5 < CV(ISI) < 1. ent model for excitatory postsynaptic potential/inhibitory

It has frequently been proposed [11,12] that, for netpostsynaptic potential (EPSP/IPSP) action and using dif-
work modeling purposes, IF neurons capture the essentialerent simulation software.
of the interneuronal behavior which more biophysically Many studies of single neurons and networks have been
based models display. Of course, biophysical models achade using IF models, with a view to clarifying how in-
as threshold devices just like IF models, but some sucformation is encoded and transmitted in neuronal systems.
models also show important differences in behavior. AProviding an answer to the question whether IF models
first difference concerns the firing rate at different levelsprovide an adequate simplification of biophysically based
of constant applied current: Hodgkin [14] classified mem-models is therefore important in the quest for a better un-
branes as type | if they can show an arbitrarily low firing derstanding of the nature of the neural code.
rate and long spike latency in response to a continuous Models and methods-The HH model is
current, or type Il if they exhibit a narrow range of re- dv
sponse firing rates (not close to zero) and virtually zero ¢ dr
spike latency. A basic biophysical model—the Hodgkin- 3
Huxley (HH) model of SQUID giant axon [13]—is clas- ~Tenm h(‘_/ — V) eV -ve), ()
sified as type Il [15,16]. In a sense, the IF model can bavherely, is the synaptic current. The model parameters
classified as type I, since arbitrarily low firing rates are@nd remaining three equations are as in [13]. The FHN
possible for just suprathreshold currents. Also, the HI—FnOde!lwe used is a scaled version:
model shows a complexity not shared with the IF model. av. _ _ oy
When subjected to levels of constant continuous current  dr lon Y=V =) (V=D = W] (2)

= Isyn + gKn4(V - Vk)
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wherea = 0.2, B =25, y = 100, and 8 = 0.25. For K e 3
comparison we simulate an IF model: _0PlpasRe Sy I 0 E

AV % £ Ne= 200 2

—_— = -+ Isyn; (4) 50.50-% §

dt 0% £
v, the membrane decay time, equals 20.2 ms, a value 0251
appropriate for neurons in the visual cortex [21], although
the exact value is not critical. In this model, whén YR S 00 05 10
reaches the threshold (20 mV above resting potential, ; r

ken her zer he neuron fir & r h . .
taken here as zero), the neuro es anis reset to the FIG. 1. Response of a HH neuron subjectNg@ excitatory

resting_ potential. ) . Poisson inputs, each of 100 Hz, amd, = rNg inhibitory
Ly is modeled as instantaneous perturbations of memMnputs with EPSP size= IPSP size= 0.5 mV. (A) CV(ISI) vs
brane potential. Thus, for the HH and IF model simu-r for each value ofN;. (B) Mean ISl vsr for each value

lations, the effect of an EPSP/IPSP is an instantaneoud Ne.

perturbation of membrane potential of magnitude=

0.5 mV. We confirmed that these results were not criti- | . . .

cally dependent on the specific valueawby also using a \1N2h'20h mte_‘rrﬁ_ects them aa):‘ff at abofut12.26/1.0(_)8d=f
value ofa of 2 mV. We also tried a different EPSP/IPSP ' = MS: IS suggests ectiverefractory period o

model, in which the effect of an EPSP/IPSP is a squar@bOUt 12.2 ms _(Fig. 2A). Standard errors O.f the_ fitted
wave current of duration 0.1 ms of such a magnitude gLarameters (estimated by least squares) are given in brack-

to induce a change of 0.5 mV when close to the restin ts. The slope is not significantly different from one, con-

potential. Since the scaling of the FHN model was differ- istent with the ISI following an exponential distribution
ent, these were subject to EPSPs and IPSPs of the sa gh a displacement from zero of 12.2 ms. This means

frequency but of magnitude 0.06 to achieve mean firingg at, once the effectiv_e refra_ctory period of 12.2_ms Is
rates within a similar range to the HH model. ubtracted from each interspike interval, CV(ISI) is ap-

The model neurons received input fraé; excitatory proximate]y one, the expectation for Poissonian output.
synapses, each following a Poisson process of Aate When adjusted values calculated on the assumption of

o : ; such a displaced exponential distribution are plotted on
and N inhibitory synapses, each with Poisson rate t the CV(ISI) vsr plot (Fig. 2B), a good fit is obtained,

For all three models, simulations were carried out with N ; - . . )
Az = A, = 100 Hz with N;; varying between 25 and 200 confirming that the output is consistent with Poissonian

(HH and FHN models) or 20 and 100 (IF model) ane- firing apart from the effects of the refractory period. This
N;/Ng varying between 0 and 1.0 for each valueNgf.
Results—For all models, very few or no spikes were
obtained with the lowest numbers of excitatory synapses
(Ng = 25,50 for the HH and FHN models, antVp =
20 for the IF model, except when = 0.1 and 0.2, as
discussed in the legend to Fig. 4 below). Therefore only
those results for higher values ofz, for which reliable =
statistics could be obtained, are presented in the remainder %’
of this section.
Hodgkin-Huxley model: Mean ISI fofl5 = Ng =

80

40

200 varies between 17 and 110 ms (see Fig. 1B), all 207 021
physiologically plausible values. Fa¥z = 75 and 100,
CV(ISI) is approximately independent of taking values i A " 0o ;

of about 0.8 and 0.7, respectively (Fig. 1A). For higher
values of Ng, CV(ISI) is positively correlated withr,

taking values as low as 0.1 favy = 300 andr = 0.  FIG. 2. Response of a HH neuron subjectNg excitatory
This correlation can be accounted for by the effects oPoisson inputs, each of 100 Hz, and, = rNg inhibitory
the neuron’s refractory period, as we now show. Whernputs with EPSP size= IPSP size= 0.5 mV. (A) s = s.d.

L . . (ISl) plotted againstm = mean (ISl), and a fitted straight
standard deviation of output IS4, is plotted against mean line, intersecting thex axis at about 12.2 ms. (B) CV(SI)

ISI, m, we obtain an approximate straight line with fitted ys - with expected CV(ISI) calculated on the assumption that

mean (IS]) r

equation, output follows a Poisson process, except for an initial refractory
period estimated as 12.2 ms [i.e., predicted (&Y = (m —
s = 1.008(*0.015)m — 12.26(*0.77), (5) 12.2)/m].
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effective refractory period is similar to the period of the Mean ISI ranges from slightly under 10 ms to about
stable limit cycle (15—-20 ms) which occurs in the absenc&0 ms, a lower and narrower range than for EPSPs of
of random synaptic input after a threshold continuous curf.5 mV, despite covering a wider range 8f values in
rent is reached. these simulations. The larger EPSP size clearly drives
FitzHugh-Nagumo Model: For5 = Ny = 200, mean the neuron much faster, and hence we would expect
ISI varies between about 8 and 100 ms (Fig. 3B), compathat the effect of the refractory period of the neuron
rable to the range obtained for the HH model at the sameould be more pronounced. Nevertheless, far = 10
stimulation frequencies, and shows no strong relationshipnd 25, CV(ISI) is independent of, as for the smaller
with . CV(ISI) is also approximately independent of EPSP size, taking values of approximately 0.65 and 0.35,
for all values ofNg used in these simulations (Fig. 3A). respectively. For higher numbers of inputs, CV(ISI) falls
Comparison with integrate-and-fire model: The detailedoff asr — 0, to values close to 0.2.
properties of IF neurons in response to stochastic synaptic In order to check that the results were not dependent
input have been described by the present authors elsewhese the exact model used for EPSPs and IPSPs, we
[8—10,22,23]. Mean ISI takes a very wide range of valuesepeated the simulations on the packag®&RON [24].
asr is varied: from 6—15 ms when = 0.1, depending We modeled EPSPs and IPSPs as currents which had
on the value ofNg, to 1 s when0.7 < r < 0.9 for Ny approximately the same effect at resting potential as an
taking values between 40 and 100 (Fig. 4B). By contrastinstantaneous voltage perturbation of 0.5 mV. The results
mean ISI for the HH and FHN models shows a much(not presented) are very similar to those for the simpler
weaker correlation withr, of lower slope. A reduction form of EPSP (Fig. 1), except that CV(ISI) and mean ISI
in the strength of the inhibitory input therefore has a muchare lower for a fixed level ofNg. As before, for some
greater impact on the firing rate of the IF neuron than thevalues of Ng, CV(ISI) is independent of-, unlike the
HH and FHN neurons. Fof0 = Ng = 100, CV(ISI) of  integrate-and-fire model.
the IF model is in the near-Poisson range for 0.5, Discussion—The results show that the response of the
falling substantially to near 0.25, as— 0 (Fig. 4A). For HH and FHN models to stochastic synaptic input is rather
a significant range of values of CV(ISI) therefore takes different from that of IF models studied previously ([8—
values more typical of regular firing. This does not occurl0,22,23]). For some intensities of stimulation, CV(ISI)
for the HH or for the FHN neuron. For the HH neuron, of the HH and FHN models is independent of the
CV(ISI) is independent of for Nz = 75 and 100, and for degree of balance between excitation and inhibition, and
higher values ofVg, CV(ISI) only falls as a result of the consistent with near-Poisson behavior over the whole
neuron’s refractory period. For the FHN neuron, CV(ISl)range of r between 0 and 1. For IF models, CV(ISI)
is high for all values ofr at the stimulation frequencies is consistent with near-Poisson behavior only for higher
used in our simulations. values ofr, falling to low values as- — 0. The results
Robustness of HH results; increasing EPSP size anfibr the IF model reported in this paper are consistent with
different EPSP model: We simulated the HH modelour earlier results [8—10,22,23]. For higher intensities of
with a greater EPSP amplitude = 2 mV), to check that stimulation, the refractory period of the HH neuron begins
the results were not specific to a particular EPSP sizéo exert its effect, and lower values of CV(ISI) occur.
The results (not shown) were similar to those obtainedHowever, when the refractory period is adjusted for, firing
for a = 0.5 mV, except that firing was attained at much
lower EPSP rates (e.gNg = 10), as might be expected.
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00 05 10 00 05 10 FIG. 4. Response of an IF neuron with = 20.2 ms sub-

ject to N excitatory Poisson inputs, each of 100 Hz, and
N; = rNg inhibitory inputs, where EPSP size IPSP size=

FIG. 3. Response of a FHN neuron subjectMp excitatory 0.5 mV. (A) CV(ISI) vs r for each value ofVz. (B) Mean ISI
Poisson inputs, each of 100 Hz, amd, = rNg inhibitory  vsr. We also display here the results 8 = 20, not dis-
inputs with EPSP size= IPSP size= 0.06 (in the scaled units cussed in the text, to demonstrate that, although higher values
of the FHN model). (A) CV(ISI) vsr for each value ofvVg. of mean and CV of ISI are obtained at lower levels of excita-
(B) Mean ISl vsr for each value oivg tory input, they still show a strong relationship with

r r
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again becomes consistent with a Poisson process. Tiveas financially supported by the BBSRC and the Royal
mean ISI of the IF model decreases much more quickly aSociety.
r — 0 than for the HH and FHN models.
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