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Universal 1yyyf Noise from Dissipative Self-Organized Criticality Models
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We introduce a model able to reproduce the main features of1yf noise: hyperuniversality (the power-
law exponents are independent on the dimension of the system; we show here results ind  1, 2) and
apparent lack of a low-frequency cutoff in the power spectrum. Essential ingredients of this mode
an activation-deactivation process and dissipation. [S0031-9007(98)08193-9]

PACS numbers: 05.40.Ca, 05.65.+b, 64.60.Ak, 87.10.+e
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The voltage dropV on a resistor of resistanceR through
which a currentI is flowing obeys the well-known Ohmic
law V  RI. Yet, when we look carefully, we discover
that such a voltage is not perfectly constant through tim
Indeed there are noise fluctuations aroundV . The spectral
density of these fluctuations clearly shows a1yf behav-
ior on many decades in the frequency domain. This is
well-known example of1yf noise, one of the most com-
mon and widespread features in nature. It appears in
variety of systems ranging from the light of quasars [1] t
water flows in rivers [2], music and speech [3], and th
already mentioned electrical measurements [4,5]. Desp
its ubiquity and universality, a clear and simple explanatio
for such a behavior is still lacking. Indeed, it is possibl
to find in the literature somead hocformulas and theories,
but most of them are based on unverified assumptions,
they catch a glimpse of the physics only of some parti
ular system, therefore missing to address the widespre
occurrence of the phenomenon [5].

In the search for a universal mechanism of1yf noise,
Bak, Tang, and Wiesenfeld (BTW) proposed the ne
concept of self-organized critical (SOC) systems [6
These are systems driven by their own dynamics to a st
characterized by power-law time and space correlation
and therefore also by power-law (1yfa) power spectra.
Yet, a number of features of SOC systems do not sho
agreement with the features of1yf noise: the exponent
a is seldom close to1, and it depends strongly on
the dimensionality of the system (at least below th
upper critical dimension, which is in general high [7–9])
moreover, in SOC systems power-law time correlation
are always found in the presence of power-law (long
range) space correlations, for which there is no eviden
in most systems exhibiting1yf noise [10].

In this Letter, we propose a simple model, inspired b
a SOC model originally introduced by one of us [11]
able to implement some of the current and most accep
ideas on1yf noise and to show a clear1yf behavior
independent on the dimension of the system (therefo
“hyperuniversal”).

The basic model is a continuous version of the BTW
sandpile. Given a lattice, to every sitei is associated a
continuous variablexi (representing, say, energy). The
0031-9007y99y82(3)y472(4)$15.00
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basic time step of the dynamics consists in changing
value of an energyxi of a positive random quantitye
[taken from some probability distributionPsed],

xist 1 1d  xistd 1 estd , (1)

with the estd variables uncorrelated in time. Wheneve
this addition step makes an energyxi greater than a certain
value xc, then the quantityxi is redistributed to the2d
nearest neighbors of sitei,

xjst, t 1 1d  xjst, td 1
xist, td

2d
, (2)

and the energyxi is reset to0. The time variablet

is used to describe the redistribution process, which
considered to be much faster than the process of addi
(1). It is possible that this redistribution drives some oth
energies to exceedxc, triggering new redistributions. This
process (anavalanchein the jargon) goes on as long a
there are no more energies greater thanxc. Then a new
quantity is added, as in (1), and timet is increased by
1. It is important to remind the presence of two differe
time scales: a slow one, corresponding to the addition
energy, and a fast one, corresponding to the redistribu
of energies which are abovexc. The statistical properties
of this model after a transient time are very interestin
The distribution of the energies on the lattice clear
shows a quantization, with peaks at about0, xcy2d,
2xcy2d, . . . , s2d 2 1dxcy2d. Moreover, the distribution
of avalanches with respect to their duration (measu
on the internal time variablet) obeys a power law. In
general it is possible to show that there are long-ran
(power-law) space and time correlations. Indeed, this
a SOC model. A further quantity that is interesting
look at is the total lattice energy contentXstd 

P
i xistd.

It represents a signal whose power spectrum also ob
some power law in the frequency domain.

This model (as well as the original BTW sandpile
is mainly an activation/deactivation process, which
believed to be one of the main features relevant for
description of1yf noise [12]. Yet, as pointed out above
the exponents depend on the dimensionality of the latt
and are never close to1 [11]. Therefore the model, as i
stands, is not a good candidate to describe1yf noise.
© 1999 The American Physical Society
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New ingredients need to be added to the mode
the energy is added only on one side of the lattic
defining implicitly a preferred propagation direction fo
the energy; the second ingredient is dissipation. Durin
redistribution, we added some dissipation in the form,

xjst, t 1 1d  xjst, td 1
xist, td

2d
s1 2 ad . (3)

With this new rule avalanches cannot establish anymo
long-range correlations throughout the system and are
anymore power-law distributed. In a word, dissipatio
destroys the self-organized criticality of the system. Ye
some features, such as thequantization of the energy
levels, survive.

In our implementation of the model, we inject energ
on one side of the lattice according to (1), and let
propagate through the lattice following (3). We comput
the power spectrum ofXstd, finding a clear1yf behavior
both in 1 and 2d (see Fig. 1) for at least three decade
This is a signature of the desired (and observed in natu
hyperuniversality.

Of course the details of the implementation are releva
up to some level: We take the added random ener
e from a uniform distribution inf0, emaxg, with emax ¿
xc. Indeed, if emax # xc then, on the average, it takes
some steps before the energy goes above thresh
Sincekestdest0dl  dst 2 t0d, this implies that short time
fluctuations of Xstd are uncorrelated and the resulting
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FIG. 1. Log-log plot of the power spectrum ofXstd in d  1
and d  2. The straight lines are1yf power laws drawn for
reference. The system size used for thed  1 simulations
is L  100, with emax  10 and a  0.03; d  2 simulations
are performed withL  100, emax  1 (energy is added on all
the sitesx0,i , for a maximum possible energy injection of100)
anda  0.01. For comparison, we also add thed  2 power
spectrum with a much smaller dissipation (a  0.0003, but
with the same size and energy injection regime as before) t
shows crossover between clean1yf behavior, and the behavior
in the absence of dissipation (lowest curve) that clearly sho
no sign of1yf behavior.
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power spectrum has a flat tail for high frequencies
Moreover, we find that for larger systems the frequenc
range where1yf behavior emerges is broader; yet, du
to the noncriticality of the model, the transient time
to go to stationarity grows fast with the system size
forbidding us to explore systems larger than128 3 128
lattice sites in two dimensions. Also, dissipation canno
be too small: indeed, whena becomes very small, then
we approach the SOC system, which is characterized
different exponents, and crossover effects emerge.
Fig. 1 we show thed  2 power spectrum with different
dissipation regimes. In the absence of dissipation, t
power spectrum is essentially flat, with only a sma
region of power-law behavior1yf1.5. A very small
dissipation (a  0.0003) clearly gives an intermediate
behavior, with a high frequency1yf region, and a low-
frequency flat one. Of course, the larger the dissipatio
the larger the energy injection must be in order to activa
all the lattice.

We believe nonetheless that the way crossover emerg
is model dependent. Indeed we believe that the releva
features of the model are nonlinearity (in this case
activation/deactivation of sites) and dissipation.

Additionally, we investigate the power spectrum
Ss f, xd of the energy at sitex. We find that, for largex,
Ss f, xd has a scaling form,

Ss f, xd  edxhs fedxd . (4)

From this scaling form we can infer that there is
characteristic timeT sxd , edx associated with a site at
distancex from the origin of the lattice; we can build an
intuitive picture of this characteristic time thinking that in
order for the energy to propagate from sitex to sitex 1 1,
it has to overcome some barrier, with a characteristic tim
to overcome it taken as an Arrhenius lawed. Then,
in order to propagate from the origin down to sitex,
the characteristic time becomes, roughly, of the order
edx. As an alternative explanation, due to dissipation
energy has a probability to propagate to a depthx which
is exponentially decreasing withx, hence an exponential
characteristic time associated withx.

Because of dissipation, there are no long-range corre
tions in the system. Therefore, as a first approximatio
the energies in different sites are uncorrelated. The to
power spectrum can therefore be written as

Ss fd 
X

x
Ss f, xd ,

Z L

0
edxhs fedxd dx


1

df

Z fedL

0
dy hs yd

(5)

(indeed the power spectrum of uncorrelated signals is ju
the sum of the power spectra of the signals, a signature
linear superposition).

We see therefore that the1yf behavior of the power
spectrum emerges as the superposition of local pow
473
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spectra that have nothing to do with1yf noise. The lower
cutoff frequencyfc , e2dL vanishes extremely fast in
the thermodynamic limit, accounting for the observe
experimental absence of a lower cutoff (whose presen
is necessary to have a finite power associated w
the signal). Such a superposition mechanism to obta
a 1yf power spectrum is strongly reminiscent of the
McWhorter model [5,13]:Ss fd 

R
Ss f, fcdPs fcd dfc

with Ps fcd , 1yfc the distribution of the frequencies
fc and Ss f, fcd , fcys f2 1 f2

c d. In our model we
havedfcyfc  dx, accounting for the correct distribution
of characteristic frequencies, but we have no explic
form for Ss f, fcd (although also in our case the large
f behavior is 1yf2; see Fig. 2). The relationfc 
T21

c  e2dx can have many different underlying physica
origins, as diverse as tunneling between different trap
jumps between metastable states distributed in space,
dissipation in an activation/deactivation process (as in t
present realization). Such a variety of mechanisms givin
rise to the good scaling functions (and many others m
be conceived) strongly points to the observed widespre
occurrence of1yf noise in nature.

Actually, dissipation associated with SOC was alread
considered in [14,15] and more recently in [16]. Ther
nontrivial power laws in the power spectrum were found
strongly dependent on the dissipation coefficient. More
over, dissipation and driving were chosen in such a wa
that the SOC behavior was not destroyed. Actually, man
experiments show that there is indeed universality, that t
power spectrum is close to1yf, and that the long-range
time and space correlations typical of SOC systems a
absent [10]. All these ingredients, on the contrary, a
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FIG. 2. Log-log plot of the power spectraSs f, xd for x 
25, 35, and 45 on ad  2 lattice of L  100, emax  10, and
a  0.01. The largef behavior has a characteristic slope o
1yf2. The collapse in the inset is obtained plottinge2dxSs f, xd
vs fedx with d  1.9. Indeed the universality of the scaling
function (4) emerges.
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present in our model, where changing the parameter valu
gives rise to crossover effects but not to nonuniversality.

Our model shows, moreover, the relevance of a propa
gation direction (feeding energy from one side of the sys
tem and extracting it from the other), and the1yf power
spectrum turns out to be the superposition of power spe
tra that are far from1yf.

In conclusion, we have introduced dissipation in a well
known SOC model: As a consequence, the critical beha
ior of the system is destroyed (but not its self-organizatio
properties, such as the quantization of the energy levels
The resulting power spectrum has a clean1yf behavior
both in one and two spatial dimensions: We believe tha
our one and two dimensional results hint toward the inde
pendence of such behavior on the actual dimensionality
the system and to the desired hyperuniversality. We als
unveiled that the origin of such a behavior has to be foun
in the superposition of power spectra with characteristi
frequenciesfc suitably distributed in space. Such a dis-
tribution is not an input in the model, but emerges due t
the directedness properties of our model. The desired di
tribution of characteristic times typical of the McWhorter
model emerges spontaneously in our model. One can co
ceive many other situations where the distribution of th
characteristic frequencies is instead given, and the syste
only has to cope with it. As a consequence, the prese
model not only provides a simple and hyperuniversal ex
planation of1yf noise, but is also suggestive of a wide
variety of microscopic physical mechanisms able to give
1yf noise.

This work has been partially supported by the Europea
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