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First Order Transitions and Multicritical Points in Weak Itinerant Ferromagnets
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It is shown that the phase transition in low-Tc clean itinerant ferromagnets is generically of first order,
due to correlation effects that lead to a nonanalytic term in the free energy. A tricritical point separates
the line of first order transitions from Heisenberg critical behavior at higher temperatures. Sufficiently
strong quenched disorder suppresses the first order transition via the appearance of a critical end poi
A semiquantitative discussion is given in terms of recent experiments on MnSi, and predictions for
other experiments are made. [S0031-9007(99)09305-9]
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The thermal paramagnet-to-ferromagnet transition
the Curie temperatureTC is usually regarded as a prime
example of a second order phase transition. For mater
with high TC this is well established both experimentall
and theoretically. Recently there has been a considera
interest in the correspondingquantumphase transition of
itinerant electrons at zero temperature (T  0), and in the
related finiteT properties of weak itinerant ferromagnets
i.e., systems with a very lowTC. Experimentally, the
transition in the weak ferromagnet MnSi has been tun
to different TC by applying hydrostatic pressure [1]
Interestingly, the transition at lowT was found to be
of first order, while at higher transition temperatures
is of second order [2]. The tricritical temperature tha
separates the two types of transitions was found to roug
coincide with the location of a maximum in the magnet
susceptibility in the paramagnetic phase. Theoretically
has been shown [3,4] that in aT  0 itinerant electron
system, soft modes that are unrelated to the critical ord
parameter (OP) or magnetization fluctuations couple
the latter. This leads to an effective long-range interacti
between the OP fluctuations. In disordered systems,
additional soft modes are the same “diffusons” that cau
the so-called weak-localization effects in paramagne
metals [5]. In clean systems there are analogous, alb
weaker, effects that manifest themselves as corrections
Fermi liquid theory [6]. A Gaussian theory is sufficien
to obtain the exact quantum critical behavior in the mo
interesting dimension,d  3, for clean as well as for
disordered systems (apart from logarithmic corrections
the clean case) [3,4].

In this Letter, we show that at sufficiently low tem
peratures the phase transition in itinerant ferromagnets
genericallyof first order. This surprising result is shown
to be rooted in fundamental and universal many-bo
physics underlying the transition, viz. long-wavelengt
correlation effects, and, hence to be independent of
band structure. This suggests that the behavior obser
in MnSi is generic, and should also be present in oth
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weak itinerant ferromagnets. We also make detailed p
dictions about how quenched disorder suppresses the
order transition, which allows for decisive experiment
checks of our theory.

Let us start by deriving the functional form of the fre
energy of a bulk itinerant ferromagnet at finiteT , and in
the presence of quenched disorder that we parametrize
G  1yeFt, whereeF is the Fermi energy, andt is the
elastic mean-free time. The general Landau expansion
the free energyF as a function of the magnetic momentm
in an approximation that neglects OP fluctuations is

F  tm2 1 u4m4 1 u6m6 1 . . . . (1a)

The coefficientst, u4, u6, etc. in this expansion can hav
nontrivial properties and contain important physics.
derivation from a microscopic theory shows that they a
given as frequency-momentum integrals over correlati
functions in a “reference system” that depends on t
nature of the underlying microscopic model [7]. If th
critical magnetization fluctuations are the only soft mod
in the system, then they are simply numbers. However
in the process of deriving the Landau functional some oth
soft modes have been integrated out, then the coefficie
will, in general, not exist, since they are represented
diverging integrals over the soft modes. In Refs. [3,
it was shown that in an itinerant electron system atT 
0 there are indeed such soft modes. In the disorde
case, these are the diffusons mentioned above, wit
dispersion relationv , k2, and they lead to coefficients
whose divergent parts have the form

u2m ~
Z L

0
dk k2

Z
dv

1
sv 1 k2d2m

. (1b)

HereL is a momentum cutoff, and all prefactors in the inte
grals have been omitted. In the clean case, the relevant
modes are particle-hole excitations in the spin-triplet cha
nel with a ballistic dispersion relation,v , k. The result-
ing integrals are still divergent, although not as strongly
in the disordered case. It was shown in Refs. [3,4] th
© 1999 The American Physical Society 4707
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these divergent terms in the Landau expansion can be
derstood as an illegal expansion of a nonanalytic term
the free energy of the form

fsmd  m4
Z L

0
dk k2

Z `

0
dv

s21dx

fsv 1 kxd2 1 m2g2 .

(2)

In the disordered case, wherex  2, this follows explicitly
from Eq. (3.6’) of Ref. [3]. In the clean case, an analogo
treatment yields the same expression withx  1. Notice
the different sign of the dirty case compared to the cle
one, which we will come back to below. Equation (2
yieldsfsmd ~ m5y2 andfsmd ~ m4 lnm in the disordered
and clean cases, respectively. In either case, the resul
singularity is protected by the magnetization, which give
the soft modes a mass. The leading effect ofT fi 0 is
adequately represented by replacingv ! v 1 T . In ad-
dition, in the presence of disorder the ballistic modes in t
clean case obtain a mass proportional to1yt, so the appro-
priate generalization of Eq. (2) for the clean case (x  1)
to finite temperature and disorder is obtained by the r
placementv ! v 1 T 1 1yt. Doing the integrals, and
adding the usual terms of orderm2 and m4, we obtain a
free energy of the form

F  tm2 1 GsNFGtdm4fm2 1 saT d2g23y4

1 ym4 lnfm2 1 sT 1 bGd2g 1 um4 1 Osm6d ,
(3)

whereGt is an effective spin-triplet interaction amplitude
[3] made dimensionless by means of a density of sta
at the Fermi level,NF . If we measureF, m, and T in
terms of a microscopic energy, e.g.,eF , then t, y, and
u are all dimensionless.y is quadratic inGt [4]. t 
1 2 NFU is the dimensionless distance from the critica
point. It depends on the physical spin-triplet interactio
amplitudeU, with NFU ø 1 in a ferromagnetic or nearly
ferromagnetic system, whileGt above is an effective
interaction amplitude withNFGt , 1. Gt is expected to be
relatively larger in strongly correlated systems. Finally,a

andb are parameters that measure the relative strength
the temperature and the disorder dependence, respectiv
in the two nonanalytic terms. They are numbers of ord
unity, and likeu andy they are nonuniversal. Equation (3
provides a functional form of the free energy that correct
describes the leading nonanalyticm-dependence for both
clean and disordered systems, as well as the lead
temperature cutoff for either term and the leading disord
cutoff for the clean nonanalyticity.

The sign ofy merits some attention. Perturbation theor
to second order inGt yields y . 0 [4,8]. Further,y .

0 indicates a decrease of the effective Stoner coupli
constantI due to correlation effects:I is a homogeneous
spin susceptibility,y . 0 means that this susceptibility
increases as the wave number increases from zero
and correlation effects decrease with increasing wa
number. It is well known that correlation effects, in
general, decreaseI [9], andy . 0 is consistent with that.
4708
un-
in

us

an
)

ting
s

he

e-

tes

l
n

s of
ely,
er
)
ly

ing
er

y

ng

[8],
ve

Reference [4] has given some possible mechanisms fory

to be negative at least in some materials, and shown that
this case the ferromagnetic transition is always of secon
order. However, the generic case isy . 0, which we will
now discuss.

We first consider the caseT  0. The transition in
the clean system,G  0, is then of first order, since
m4 lnm , 0 for small m. Upon disordering the system,
G . 0, the negative term is no longer the leading one a
t  0. For small values ofG, the transition remains first
order. However, forG exceeding a valueGce the first
order transition occurs only att , 0, and it is preempted
by a second order transition. Since the negative term
only the third term in anm expansion ofF, the multicritical
point where the nature of the transition changes is a critic
end point (CEP) [10]. The phase diagram in theG-t plane
is shown in Fig. 1. ForGce , G , Gc, the second order
transition att  0 is followed by a second transition, the
second one being of first order, to a state with a large
magnetization. The line of first order transitions ends i
a critical point (CP) at a disorder valueGc, where the two
minima in the free energy merge.

Before we considerT . 0, let us discuss this result
and the validity of our conclusions. To facilitate an ana
lytic discussion, we putb  0. We then haveF 
tm2 1 GsNFGtdm5y2 1 2ym4 lnm 1 um4. At G  0,
there is a first order transition att  y expf2s1 1 uyydg,
and the magnetization at the transition has a valuem 
expf2s1 1 uyydy2g. Notice that the nonanalytic term is
the leading one in F after the tm2 term, and that we
know the functional form ofF exactly up to Osm4d.
As long as uyy ¿ 1, m is exponentially small at the
transition. For smally, our Landau expansion is there-
fore controlled in the sense that terms ofOsm6d and
higher would have to have exponentially large coeffi
cients in order to change our results. ForG . Gce 
s4yy3NFGtd expf2s1 1 3uy4ydg, the first order transition
is preempted by a second order one. At the CEP, the ma
netic moment has the valuem  expf2s2y3 1 uy2ydg 
e21y6 msG  0d. Allowing for b  Os1d fi 0, and re-
peating the calculation numerically, leads only to mino
quantitative changes of these results.

FIG. 1. Phase diagram atT  0 for u  1, y  0.5, NFGt 
0.5, a  b  1, showing a second order transition (dashed
line), and a first order transition (solid line).
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At T . 0, the free energy is an analytic function ofm,
but for smallT the coefficients in anm expansion become
very large. Our remarks about the validity of our truncate
Landau expansion therefore still apply; i.e., at0 , kBT ø
eF , our theory contains the most important terms to eve
order in an expansion in powers ofm2. Let us first consider
the clean system,G  0. There is a tricritical point (TCP)
at Ttc  exps2uy2yd, with a first order transition forT ,

Ttc, and a line of Heisenberg critical points forT . Ttc.
To describe the (conventional) tricritical behavior ind  3
our mean-field theory is sufficient (apart from logarithmi
corrections) [11]; for the critical behavior atT . Ttc it is
of course not.

For the suppression of the first order transition by diso
der atT . 0 we find two different possibilities, depending
on the value of the parametera. For smalla (a & 1.5
with our choice of the remaining parameters, Fig. 2), th
TCP is replaced by a CEP forG larger than someGtce ,

Gce. At G  Gce, the CEP reachesT  0, and for larger
values ofG the transition is of second order for allT . At
smallT , it is followed by a first order transition. The line
of first order transitions ends in a critical point, and disap
pears only forG  Gc. For larger values ofa (Fig. 3),
the TCP persists for a range of disorder larger thanGce.
The first order transition first gets preempted in a temper
ture window between two CEPs. AtG  Gce, the lower
CEP reachesT  0, while the TCP at higher temperature
survives. With further increasing disorder, two CPs appe
in the ordered phase, and the remaining CEP gets repla
by a TCP. Finally, the two TCPs merge, and the remainin
CP reachesT  0, eliminating the last temperature regions
with first order transitions. Notice that the interesting fea
tures of these phase diagrams do not depend on the lo
rithm in Eq. (3); similar features are obtained in standar
phenomenological Landau expansions with a negative c
efficient of the third term [12]. We stress again, howeve
that in our case the expansion is controlled, and that w
have a definite physical mechanism for the appearance
a negative term, in contrast to purely phenomenologic
theories.

We now turn to a discussion of the available exper
mental information on this subject. MnSi has a low
TC (ø30 K) under ambient pressure, andTc can be
driven to zero by a hydrostatic pressurepc ø 15 kbar.
FIG. 2. Phase diagrams foru  b  1, y  a  NFGt  0.5 showing first (solid) and second (dashed) order transitions.
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kBTyeF ø 1 always, andT is low enough to suppress
phase breaking processes, so the quantum critical beha
is easily accessible experimentally. This system has be
studied in detail by Pfleidereret al. [1] These authors
found from susceptibility measurements that the transiti
turns first order at aTc of about 12 K. The line of second
order transitions was found to scale with pressure asTc ~

spc 2 pd3y4, while in the first order regime the transition
temperature varies asT1 ~ sp 2 pcd1y2. The scaling of
Tc with pressure was explained by a scaling analys
based on the self-consistently renormalized (SCR) theo
of Moriya and Kawabata [13], assuming a dynamic
exponentz  3. The first order transition at lowT was
attributed in Ref. [1] to a sharp structure in the density
states at the Fermi level.

Let us look at the experiment in the light of the abov
discussion. In Ref. [4] it was shown that the quantu
phase transition ind  3 is indeed correctly described
by SCR theory, apart from logarithmic corrections th
would be very difficult to detect experimentally, an
that the dynamical critical exponent ind  3 is z  3.
The analysis of Ref. [1] was therefore adequate, and,
particular, the quantum-to-classical crossover exponentf,
which determines the behavior of the critical temperatu
as a function oft through the relationTc ~ tf, has a
value f  3y4. If one makes the plausible assumptio
that t depends linearly on the hydrostatic pressure,
least for smallt, then this is in agreement with both the
experimental finding and the analysis in Ref. [1]. As fo
the pressure dependence ofT1, one of the temperature
scales in the problem is the Fermi liquid temperatu
scale [4], which arises from a quadraticT -dependence
of t. Since the first order transition is determined b
the condition tsT1d  const, we immediately getT1 ~
p

pc 2 p, where we again assume a linear relatio
betweenp andt.

We finally discuss the observation [1] that the tricritica
temperature roughly coincides with a minimum of th
inverse magnetic susceptibilityx21 in the paramagnetic
phase. Ind dimensions, the leadingT -dependence of the
paramagnetic susceptibility is of the form [8]

xy2NF  1 1 2ỹdT2Td23 2 ũdT2. (4)
4709



VOLUME 82, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 7 JUNE 1999
FIG. 3. Same as Fig. 2, but fora  2.
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In d  3, the nonanalyticity is of the formT2 lnT . A
calculation ofỹ3 to second order inGt revealed [8] that
to that orderỹ3  0, in agreement with prior results from
Fermi liquid theory [14]. Reference [8] also discusse
that there are reasons to believe that theexact value
of ỹ3  0 may be nonzero. If we assume that thi
is the case, then we obtain a minimum inx21 at
a temperatureTmin  exps2ũ3y2ỹ3 2 1y2d. Since the
nonanalyticities inF and x are manifestations of the
same singularity, one expectsũ3 ø u andỹ3 ø y, so that
Tmin ø Ttc. While this provides a possible explanation
for the observation, we stress the speculative nature
the above considerations due to the theoretical uncertai
about a nonanalyticT dependence ofx in d  3.

Our theory thus provides us with a complete explan
tion for the nature of the transitions observed in MnS
and, in particular, for the existence of a first order tran
sition at lowT , which in Ref. [1] was attributed to a band
structure feature characteristic of MnSi. While this featur
may well be sufficient to make the transition in MnSi o
first order, the present theory leads to the surprising pr
diction that the first order transition isgeneric, and thus
should be present in other weak itinerant ferromagnets
well. Our theory further predicts in detail how the firs
order transition will be suppressed by quenched disord
Observations of such a suppression, or lack thereof, wou
be very interesting for corroborating or refuting the theory
Semiquantitatively, the theory predicts that theT region
that shows a first order transition will be largest fo
strongly correlated systems. Conversely, since the d
pendence of the tricritical temperature on the system p
rameters is exponential, in some, or even many, syste
the first order transition may take place only at very low
temperatures. This may explain why in ZrZn2 no first
order transition has been observed [1], although the e
periment does not seem to rule out a weakly first ord
transition [15].
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