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in a d-Wave Superconductor
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In the presence of an external magnetic field, the low lying elementary excitations of ad-wave
superconductor have quantized energy and their momenta are locked near the node direction. It is
argued that these discrete states can most likely be detected by a local probe, such as a scanning
tunneling microscope. The low temperaturelocal tunneling conductance on the Wigner-Seitz cell
boundaries of the vortex lattice is predicted to show peaks spaced as6

p
n, n ­ h0, 1, 2, . . .j. Away

from the cell boundary, where the superfluid velocity is nonzero, each peak splits, in general, into four
peaks, corresponding to the number of nodes in the order parameter. [S0031-9007(99)09303-5]

PACS numbers: 74.25.Jb, 61.16.Ch, 74.60.Ec, 74.72.Hs
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The nature of the quasiparticle spectrum in th
Abrikosov vortex state of the cuprate superconducto
has attracted strong continuing interest in recent ye
[1]. There are two main reasons why this spectru
is expected to be unconventional. First, the pair si
j0 seems to be comparable to the interparticle distan
1ykF . Indeed, angle-resolved photoemission experime
[2] on Bi2Sr2CaCu2O81x give kF , 0.7 Å21, while
magnetization studies [3] indicate thatj0 , 10 15 Å.
Second, there is by now substantial experimental evide
[4] for nodes in the cuprate superconducting gap.
contrast to conventional superconductors, where the m
source of low lying excitations in the mixed state a
the bound vortex core states [5], the above mention
reasons turn the bound core states into a delicate fea
[6–8] of cuprate superconductors. Experiments se
to mirror this uncertainty: while bound core states we
observed in YBa2Cu3O62d by far-infrared spectroscopy
[9] and scanning tunneling spectroscopy (STS) [10], th
presence in Bi2Sr2CaCu2O81x is controversial [11].

The aim of the present paper is to point out that a d
crete spectrum should nevertheless be observable in
local density of states of the mixed state of all cuprate
It is somewhat unexpected, however, that such a spect
is more likely to be observable close to the Wigner-Se
cell boundaries of the Abrikosov lattice, where the supe
fluid velocity is small. This is in contrast to conventiona
Caroli–de Gennes–Matricon bound states [5], which a
pear in the vortex core, in the region of singular superflo
STS is an ideal probe [12] to detect these low lying discre
states, provided that the intervortex region is studied, a
not the core region, where the recent STS studies [10,
were focused so far. The existence of field-induced d
crete quasiparticle states in a superfluid with gap nod
was suggested by Volovik [13] for theA phase of super-
fluid 3He, where an effective magnetic field is supplied b
a static order parameter texture. The analog of these no
states in cuprate superconductors was recently propose
Gor’kov and Schrieffer [14], as the appropriate basis sta
for discussing the de Haas–van Alphen oscillations in t
0031-9007y99y82(23)y4703(4)$15.00
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mixed state of ad-wave superconductor. Quite recentl
Anderson [15] attributed the anomalous magnetotherm
conductivity of Bi2Sr2CaCu2O81x [16] to the appearance
of the magnetic-field-induced discrete spectrum at the g
nodes. These global probes, however, cannot provide
rect spectroscopic evidence for such a fine structure in
electron spectrum: spatial averaging results in averag
over large Doppler shifts [17] due to the supercurrents s
rounding the vortices, which in turn act to smear out t
discrete level spectrum [18]. One can anticipate the ex
tence of such a discrete spectrum by the following qua
classical argument. Let us take a two-dimensional circu
Fermi surface for the quasiparticles in the (a, b) plane and
orient the magnetic fieldB along thec axis [see Fig. 1(a)].
The quasiparticle equation of motion in the normal state

≠tk ­
e

c h̄
vk 3 B 2

k
t

, (1)

where vk ­ h̄21≠keskd is the quasiparticle velocity.
While the normal state quasiparticles are strongly damp
the quasiparticle lifetimet increases rapidly below the
superconducting transition [19]. If that would be th
only change for temperatures belowTc, the solution to
the above equation could be given in terms of a pha

FIG. 1. (a) Schematic picture of a normal state quasiparti
momentum precessing according tofstd ­ vct; (b) in the
presence of an anisotropic order parameter, the quasipar
momenta of the low-lying excitations are bound to the no
regionfj ­ s2j 1 1dpy4, j ­ h0, 1, 2, 3j.
© 1999 The American Physical Society 4703
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variablek ­ ksss cosfstd, sinfstdddd,

fstd ­ vc
c h̄
eB

Z
FS

dk
yk

­ vct , (2)

where vc ­ eBympc. More importantly, however, the
onset of superconductivity generates the appearance o
gap tied to the entire Fermi circle [see Fig. 1(b)]. IfDsfd
is anisotropic, such as in the case of ad-wave supercon-
ductor withDsfd ­ D0 coss2fd, the order parameter will
provide an off-diagonal confining potential in the angula
coordinate space, for the Bogoliubov quasiparticles pr
cessing around the Fermi surface.

In order to provide a more detailed discussion of the
phenomena, it is necessary to obtain the quasiparti
amplitudesunsfd, ynsfd. Let us focus on the interme-
diate field regimeBc1 ø B ø Bc2 when the field in the
sample is fairly uniform, and address the effect of supe
flow later. It is most convenient to use the Bogoliubov
de Gennes equations for the angular amplitudes
quasiparticles near the Fermi surfacek , kF , in the form
given by Gor’kov and Schrieffer [14,20],

sEn 2 i h̄vc≠f 1 m̄dunsfd 1 Dsfdynsfd ­ 0 ,

sEn 1 i h̄vc≠f 2 m̄dynsfd 1 Dsfdunsfd ­ 0 ,
(3)

wherem̄ is defined bym 2 m̄ ­ vcN0 (N0 is a large in-
teger). In this approximation, the dependence of the g
and the amplitudes on the radial component of the m
mentum is neglected, and the anglef remains the only
dynamic variable. The amplitudes obey periodic boun
ary conditionssssunsfd, ynsfdddd ­ sssunsf 1 2pd, ynsf 1

2pdddd. The normalization conditions areZ p

2p

df

2p
fjunsfdj2 1 jynsfdj2g ­ 1 . (4)
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As will soon become evident [cf. Eq. (11)],En ¿ m̄, and
thereforem̄ will be neglected in the following calcula
tions. Using the observation of Bar-Sagi and Kuper [2
and Kosztin and co-workers [22] for the Andreev Ham
tonian, thesquare of the Hamilton operator acting on
sssunsfd, ynsfdddd in (3) can be diagonalized with the help o
a unitary transformation. The eigenvalues and the eig
functions of eigenvalue problems obtained in this way,

f2h̄2v2
c≠2

f 1 D2sfd 6 h̄vcsss≠fDsfddddgF6,nsfd

­ lnF6,nsfd , (5)

are simply related to the eigenvalues and eigenfunctio
En, sssunsfd, ynsfdddd, of the original problem (3),

En ­ 6
p

ln

unsfd ­
1
2

fF2,nsfd 1 iF1,nsfdg , (6)

ynsfd ­
1
2i

fF2,nsfd 2 iF1,nsfdg .

Furthermore, the eigenfunctions of the two branches
interrelated forjEnj . 0,

F2,n ­
1

jEnj
QF1,n, F1,n ­

1
jEnj

QyF2,n . (7)

Here the following notation was used:Q ; 2h̄vc≠f 1

D, Qy ; h̄vc≠f 1 D. In the intermediate field regime
the excitations of interest lie deep in the node regi
u ­ f 2 fj ø fj, for which the d-wave potential is
linearDsfd . 2D0u. Thus, near the nodes, Eq. (5) tak
a particularly simple form
C00
2,nsud 1

"
E2

n 1 2 h̄vcD0

sh̄vcd2 2 2
D0

h̄vc
u2

#
C2,nsud ­ 0 , (8)
nt

n
e

ger

to
a

which can be recognized as the Schrödinger equation o
simple harmonic oscillator, with solutions proportional t
expf2sD0yh̄vcdu2g. For typical fieldsB ­ 9 T, and gap
values [2]D0 . 40 meV, the ratiog ; 2D0yh̄vc , 80.
This means that the significant weight of these states
strongly localized around the node regions. Extendi
the limits of integration to infinity in the normalization
condition (4), we obtain for the eigenfunctions

C2,nsud ­ cnHnfg1y2uge2sgy2du2

, (9)

whereHnsxd are the Hermite polynomials, and the coeffi
cientcn is

cn ­

s
sgypd1y2

2nn! fsn 1 2d 1 s5gy4nd 1 s2gd1y2g
,

n . 0 .
(10)

The angular amplitudes obeying the periodic bounda
conditions can be constructed from the above solutio
Eq. (9), by inserting them into Eqs. (6) and (7) with th
f a
o

is
ng

-

ry
n,
e

substitution F2,nsfd ­ Cfminjhf 2 s2j 1 1dpy4jg.
The overlap of the nodal states residing in two adjace
nodes is expf2p2D0y8h̄vcg , 3.7 3 10222. Clearly,
quantum oscillations arising from interference betwee
low lying nodal states located at different nodes will b
significant only nearHc2, whereh̄vc , D0. The eigen-
values areE2

n ­ 4nD0 h̄vc, which gives two branches of
eigenvalues for the original Eqs. (3)

En ­ 62
p

nD0 h̄vc . (11)

The spacing between these states is considerably lar
than the magnetic energȳhvc ø 2

p
D0 h̄vc ø D0. For

B ­ 9 T , dEn ­ s2gd1y2h̄vc , 13 meV, while h̄vc .
1 meV.

The n ­ 0 state is anomalous, as it does not belong
either of the sets in (7). It is a so-called “zero mode,”
feature that is expected for the supersymmetricsquared
Hamiltonian [22,23]. It is worth noting that even a
strongly anisotropics-wave order parameter could, in
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principle, give a discrete quasiparticle spectrum in a ma
netic field. However, the conditions of normalizabilit
required for the existence of such a state are naturally sa
fied only for an order parameter with true gap nodes [su
thatDsfd , f≠fDsfdgf­fj sf 2 fjd nearf , fj].

Clearly, the experimental detection of the discrete nod
spectrum and, especially, the observation of the anom
lous zero mode in materials suspected of having gap no
would be quite important. Let us now find the most favo
able experimental circumstances for observing these sta
The nodal quasiparticles are affected by the supercurre
surrounding the vortices, which vary over a distance set
the magnetic lengthd ­

p
2eByhc [15] whereB is the ap-

plied magnetic field, andhcy2e is the superconducting flux
quantum. An external field ofB ­ 9 T givesd . 150 Å.
This length also gives the lattice constant of the Abrikos
vortex lattice:ah ­ d; an ­ s4y3d1y4 d [24]. Since the
motion occurs on the background of a varying superflo
the spectrum is shifted [17] bydESsrd ­ mvF ? vssrd
typically of orderdES , D0j0y2d. This isnotnegligible
when compared to the level spacingdEn , 2

p
h̄vcD0 ,

2D0
p

,Fj0yd (here,F ­ 2pykF , 0.23 Å is the Fermi
wavelength). Indeed,

dEn

dES
, 4

√
,F

j0

!1y2

, 0.5 . (12)

If the trajectory includes segments close to the corer ,
j0, in those regions the ratio drops todEnydES , 0.05.
A global spectroscopic probe, such as electromagne
absorption [9], will detect a spatially averaged respon
Clearly, this also implies an average over the shiftdES,
which would make the resonant transitions between
discrete quasiparticle levels difficult to observe.

The situation is quite different for a scanning tunne
ing microscope, with which one could select with at lea
dr , 1 Å resolution the place where electrons are i
jected or removed from a superconductor. The local tu
neling conductance can be given as√

dIsrd
dV

!
~ 2NB

X
n$0

Z p

2p

df

2p
jT sfdj2

3

(
junsfdj2

≠ffE2
n sr , f, V dg
≠En

1 jynsfdj2
≠ffE1

n sr , f, V dg
≠En

)
. (13)

Here NB ­ ssample aready2pd2 is the degeneracy of
each level,jT sfdj2 is the square of the tunneling matrix
element which, in principle, can be angle dependent [2
E6

n sr , f, V d ­ Ensr , fd 6 eV , and fsed ­ fexpsbed 1

1g21 is the Fermi distribution function. The local spec
trum also depends on the anglef through the Doppler
shift

Ensr , fd ­ En 1 ESsrd cossf 2 ad , (14)

wherea is the angle between the local superfluid veloci
and the â crystal axis. For a rigid and stationary
g-
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Abrikosov latticea is fixed. ESsrd ­ myFyssrd is the
maximum Doppler shift at a particular placer. In
Eq. (13) there is no summation with respect tokz , the
momentum in theĉ direction. This two-dimensional
approximation is especially adequate for superconduct
Bi2Sr2CaCu2O81x samples [26].

The important observation here is that according
Eq. (9) the Bogoliubov amplitudesunsfd, ynsfd are
highly peaked functions around the nodal angles. Co
pared tojunsfdj2 andjunsfdj2, all other factors in (13) are
weak functions of the anglef, and can be taken outside
the integral. As a consequence the integration over
angle reduces to summation over the nodal directio
of the order parameter: For ad-wave superconductor,
fj ­ s2j 1 1dpy4, j ­ h0, 1, 2, 3j. While the tunneling
matrix element along the node directionsjT sfjdj2 is small
[25], it is nevertheless finite, as indicated by the finite ze
bias conductance in tunneling experiments [11]. In t
following, it is assumed thatjT sfjdj2 has the same value
for all four nodes. The dimensionless conductancegsV d
can be defined as

gsV d ; 2
X

j,n$0

(
≠ffE2

n sr , fj, V dg
≠sbEnd

1
≠ffE1

n sr , fj, V dg
≠sbEnd

)
. (15)

In order to reveal the essential features of the above res
let us first assume that the tip of the scanning tunneling m
croscope is positioned on the Wigner-Seitz cell of the vo
tex lattice (cf. the inset of Fig. 3). For all points on the ce
boundary ESsrd ­ 0. At low enough temperature the
quasiparticle scattering rate [27], as well as the uncertai
in dESsrd due to vortex lattice fluctuations, is smaller tha
the level spacingdEn . h̄ytqp, dElattice

S . Under these
conditions the tunneling conductance reveals (see Fig
the discrete spectrum obtained in Eq. (11). Note that
amplitude of the zero mode is twice the amplitude of th
finite voltage peak, since the particle and hole tunneli

FIG. 2. The dimensionless STS tunneling spectrumgsV d on
the Wigner-Seitz cell boundary, according to Eq. (15), f
kBTydEn ­ 1y24.
4705
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rates are the same nearV ­ 0. This is also evident from
Eq. (13).

As the tip is moved away from the cell boundary
towards one of the cores (for example, along the dash
line of the inset of Fig. 3), each peak splits up into fou
separate peaks, corresponding to the four nodes of
order parameter. This is illustrated in the main part
Fig. 3, where, for clarity, only the splitting of the zero
bias peak is shown. The amplitudes of the split pea
are 4 times smaller than the amplitude of the single pe
measured at the Wigner-Seitz cell boundary.

In conclusion, this paper addressed the problem of t
quasiparticle spectrum in ad-wave superconductor in an
external magnetic field. The spectrum is discrete, and
quasiparticle amplitudes are strongly peaked for mome
pointing along the node directions. An anomalous ze
mode is present only if the order parameter has tr
nodes. As it turns out, the level spacing is small
than the average Doppler shift due to the interaction
quasiparticles with the supercurrents circling around t
vortices. Thus, in order to detect this spectrum, o
needs to perform scanning tunneling spectroscopy on
Wigner-Seitz cell boundary of the Abrikosov vortex lattice
where the superfluid velocity is zero. The calculate
local tunneling spectrum also indicates that slightly awa
from the Wigner-Seitz boundary, each peak splits in
four subpeaks, as a consequence of the four differ
Doppler shifts arising for quasiparticles tunneling into th
four nodes. The results are clearly more general than
specific case of a quasi-two-dimensional superconduc
with a d-wave order parameter, and can be extended
a straightforward manner toany layered superconductor

FIG. 3. Main figure: Plot of the dimensionless conductanc
gsV d [cf. Eq. (15)] of thezero bias peak only,as the position
is varied along the dotted line of the inset. The parameters
dEn ­ 5 meV, d ­ 400 Å, a ­ py6, and T ­ 6 K. Inset:
Schematic figure of a vortex lattice. The Wigner-Seitz cell
where the superfluid velocity is zero, are drawn with heav
lines; the dots correspond to the vortex cores (not on sc
with the lattice constant). The suggested path for the
of the scanning tunneling microscope is shown with a hea
dotted line.
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that has gap nodes.In fact, the experiment proposed here
would probe intimate details of the superconducting state
such as theexistence,thenumber,and thepositionof gap
nodes on the Fermi surface.
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