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Based on the spectral statistics obtained in numerical simulations on three-dimensional disord
systems within the tight-binding approximation, a new superuniversal scaling relation is presented
allows us to collapse data for the orthogonal, unitary, and symplectic symmetries (b ­ 1, 2, 4) onto a
single scaling curve. This relation provides strong evidence for one-parameter scaling existing in th
systems which exhibit a second order phase transition. As a result a possible one-parameter fami
spacing distribution functions,Pgssd, is given for each symmetry classb, whereg is the dimensionless
conductance. [S0031-9007(99)09296-0]
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The study of critical phenomena is an important subje
because of the rich variety of systems exhibiting a seco
order phase transition [1]. By a second order transiti
we mean a continuous transition between two regimes w
the correlation length diverging at the transition point. Th
description of such a phenomenon leads to the introduct
of very important concepts such as scaling, renormalizat
group, and universality classes. These reflect the fact t
the phase transition does not depend on the details of
system but only on some general symmetries as well as
the dimension of the system. A direct consequence is t
different systems with different Hamiltonians may sha
the same critical exponents, describing the singularity
the phase transition, if the symmetry underlying the
systems is the same and therefore will belong to the sa
universality class. Other features, on the other hand, m
be in common for different universality classes leavin
the possibility to derive simple relations between the
classes. Such a feature is scaling which is exploited
order to find the position of the critical point and the valu
of the critical exponent. Even though scaling may b
commonplace, the scaling function may be different f
the different universality classes.

In this Letter we present a single one-parameter scal
relation which is common to several different universalit
classes. This relation involves the spectral statistics o
three-dimensional (3D) disordered system with addition
degrees of freedom, e.g., strong magnetic field and sp
orbit scattering. The choice of this system comes fro
the realization that it exhibits a metal-insulator transitio
(MIT) as a function of the disorder in the thermodynam
limit [2]. It is generally assumed that the critical behavio
at the MIT can be classified in terms of three differen
universality classes according to the symmetry of th
system: orthogonal [with time reversal symmetry, OsNd],
unitary [without time reversal symmetry, e.g., with
magnetic field, UsNd] and, symplectic [with spin-orbit
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coupling, SpsNd]. One then expects different critica
exponents related to the MIT for the three differen
universality classes.

Surprisingly, in spite of the apparent change of unive
sality class, the same value of the critical exponent h
been found, numerically, both in the presence and abse
of a magnetic field [3,4], as well as spin-orbit couplin
[5,6]. Moreover, Ohtsukiet al. recently showed [7] that
the anomalous diffusion exponent and also the fractal
mensionDs2d seem to coincide at the MIT for OsNd, UsNd,
or SpsNd, in agreement with these results. It was recent
proposed [6,8] that a natural way to understand these
incidences would be to invoke the spontaneous break
of the symmetry right at the MIT. However, in a recen
paper [9], numerical evidence has been presented sugg
ing a small difference between the scaling properties
orthogonal and unitary systems.

The problem is therefore far from being solved an
we wish to present new evidence concerning how t
different universality classes are linked together. Th
indication gives a nontrivial hint about the way in
which the symmetry parameter enters into the scali
function valid for each individual universality class. W
also present a possible one-parameter family of spac
distribution functions,Pssd, for each universality class.

A convenient way to study the MIT is to resort to
random matrix theory (RMT) and energy level statistic
(ELS) [10–12]. In RMT the statistics of the energy spe
trum are generally described by three different ensembl
Gaussian orthogonal (GOE), unitary (GUE), and sym
plectic (GSE) depending upon the symmetries mention
above. Recently it has been shown [5,6,8,10,13,14] th
in addition to the two expected statistics, namely, eith
GOE, GUE, or GSE for the metallic regime and the Poi
son ensemble (PE) for the insulating regime, there is
third statistics, called the critical ensemble, which occu
only exactlyat the critical point.
© 1999 The American Physical Society 4683
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In order to investigate the MIT we consider the follow
ing tight-binding Hamiltonian [2]

H ­
X

n
enjnl knj 1

X
n,m

Vn,mjnl kmj (1)

with

Vn,m ­

8<: V , orthogonal,
V expsiun,md, unitary,
V expsiun,md, symplectic,

(2)

where the sitesn are distributed regularly in 3D space, e.g
on a simple cubic lattice. Only nearest neighbor intera
tions are considered. The phaseun,m is a scalar related
to the magnetic field [8] andun,m is a 2 3 2 matrix [6].
The site energyen is described by a stochastic variable
In the present investigation we use a box distribution wi
varianceW2y12. The parameterW describes the disorder
strength and is the critical parameter.

Based on the above Hamiltonian, the MIT is studied b
the ELS method, i.e., via the fluctuations of the energ
spectrum [6,10]. Starting from Eq. (1) the energy spe
trum was computed by means of the Lanczos algorith
for systems of sizeL 3 L 3 L with L ­ 13, 15, 17, 19,
and21 andW ranging from 3 to 100 averaging over dif-
ferent realizations of the disorder. After unfolding th
spectra obtained, the fluctuations can be appropriately
scribed by means of the spacing distributionPssd [11].
This distribution measures the level repulsion and is no
malized as is its first moment:m1 ­ ksl ­ 1.

In order to characterize the shape ofPssd, we first
calculate shape descriptive parameters which continuou
change as we vary external parameters, e.g., the sys
sizeL or disorderW :

q ­ m21
2 and Sstr ­ mS 1 lnm2 , (3)

where m2 ­ ks2l is the second moment ofPssd, while
mS ­ 2ks lnsl. These quantities were first introduce
to describe the spatial-localization properties of gene
lattice distributions [15] and then used for the shap
analysis ofPssd around the MIT [16]. It is interesting
to note that in contrast to previous methods which us
only part of the information contained inPssd [10,13] we
consider here the entire distribution obtained numerical
Parameterq is a well-known quantity in probability theory
that describes the peakedness of a distribution functi
For example, forPssd ­ dss 2 1d we haveq ­ 1. The
parameterSstr is called the structural entropy for reason
described elsewhere [15]. These parameters describe
only the bulk features ofPssd, but also they are sensitive
to the numerical upper cutoff of the support ofPssd.

In order to describe and compare the different unive
sality classes within the same method we perform a line
rescaling as

2 lnsqd !
2 lnsqd 1 lnsqW d

2 lnsqPd 1 lnsqW d
­ Q̃ , (4a)

Sstr !
Sstr 2 SW

SP 2 SW
­ S̃ , (4b)
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where indexP refers to the PE andW to the Wigner sur-
mise representing the GOE, GUE, or GSE, respective
Their values are listed in Table I. The choice of such
rescaling defined in Eqs. (4a) and (4b) maps the variab
S̃ andQ̃ onto thef0, 1g interval, with S̃ ­ Q ­ 0s1d be-
longing to the RMT (PE) limit. Furthermore, in Eq. (4a
it is more natural to use2 lnsqd instead ofq since, simi-
larly to Sstr , it is connected to differences of Rényi en
tropies [17]. As an illustration of the behavior of thes
parameters, in Fig. 1 we report the results forQ̃sL, Wd
and S̃sL, Wd for the case of spin-orbit coupling (b ­ 4).
We can see that the data depend on the size of the sys
except at the critical pointWc wherePssd is scale invari-
ant. This is due to the fact that the MIT is a second ord
transition and that finite-size scaling laws apply close
the transition [18]. These properties were already us
with success to describe the MIT [10,13,19]. In parti
ular, it was shown that such quantities have a finite-s
scaling behavior and can be written as

qsL, Wd ­ fsLyj`d; Sstr sL, Wd ­ hsLyj`d (5)

with correlation lengthj`sW d , jW 2 Wcj2n, and the
critical exponentn. The functionsfsxd and hsxd are
universal in the sense that they do not depend on
details of the systems—just on the general symmetries
and therefore they directly reflect the universality class
the system.

From Eq. (5) we can see that, because of the scal
behavior of qsL, Wd and Sstr sL, Wd, if we plot Sstr as
a function ofq we can see the similarities and also th
differences between the universality classes. The sam
true for the rescaled parametersQ̃ andS̃.

Indeed, Fig. 2 shows clear differences between t
orthogonal, unitary, and symplectic cases, although all
data fall onto special curves irrespective ofW andL for
each case. This figure allows us to determine the scal
relations for b ­ 1, 2, and4 without having to derive
fsLyj`d, hsLyj`d, and j`sW d which are not easy to
obtain numerically due to their singularities at the critic
point. Using now the rescaling defined above in Eqs. (4
and (4b), we plot̃SsL, Wd as a function ofQ̃sL, Wd. The
results are shown in Fig. 3. We see that all the data sc
nicely onto thesamecurve indicating the presence of
one-parameter superscaling function. The position of t
MIT moves along thesamecurve, for b ­ 1, 2, and4,
as a function of the critical disorderWc which can be
changed by the magnetic field and spin-orbit scatteri

TABLE I. Shape descriptive parameters for the case of diffe
ent Pssd functions.

Poisson GOE GUE GSE dss 2 1d
b 0 1 2 4 `

q 0.5295 0.7854 0.8488 0.9054 1.0
2 lnsqd 0.6358 0.2416 0.1639 0.0994 0.0

Sstr 0.2367 0.1025 0.0733 0.0464 0.0
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FIG. 1. Q̃sL, W d and S̃sL, W d for the case of symplectic
symmetry. Continuous curves are polynomial fits.

rate as well as the type of potential scattering. This ne
superscaling relation is very interesting and of importan
in shedding new light on the MIT in 3D systems. New
results [21] indicate that the data forb ­ 2 in 2D
scale onto a different curve (see Fig. 3). This point
important because it implies that superscaling is not
mere consequence of the universality of level repulsi
but something more subtle.

FIG. 2. Sstr as a function ofq for all the symmetry classes.
(All data are presented in the full range of disorder.) Th
solid curve is obtained from a simple interpolatingPssd due
to Izrailev [20]. The RMT and Poisson distributions appear
solid circles using the values of Table I.
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Next we will show that the observed relationS̃sQ̃d pre-
sented in Fig. 3 can be understood with the introduction
the dimensionless conductance as a scaling variable.
have found that the constant shifts in (4) for both term
2 lnsqd 1 lnsqW d andSstr 2 SW correspond to a convo-
lution of different distributions [22]:

Pg,bsexd ­
Z `

2`

Qg,bsex2ydWbseyd dy (6)

with ex ; s. In this case [22]2 lnsqP d ­ 2 lnsqQd 2

lnsqW d and alsoSP
str ­ S

Q
str 1 SW

str .
In Eq. (6),Pg,bssd is the numerically obtained spacing

distribution for different symmetry classes parametrize
by the dimensionless conductanceg, which ranges from
zero to infinity asL andW change as well, andWbstd is
the RMT limit for g ! ` represented by, e.g., the Wigne
surmise. This rescaling provides us with a method
study what isbeyondthe universal level repulsion presen
in finite systems in the full range of disorder. Th
parameters2 lnsqd and Sstr of Pg,bssd give different
curves (see Fig. 2), while after rescaling̃Q and S̃ give
thesamecurve (see Fig. 3). This is what is meant by th
superscalingrelation as can be seen in Fig. 3. Scalin
in this context refers to the appearance ofg. We will
show that the parameters̃Q andS̃ of the functionQg,bssd
appearing in Eq. (6) can account for the major part of t
numerically observed relation.

In what follows we give an approximate formula fo
Pg,bssd based on analytical calculations and a phenomen
logical assumption. First, we point out that Eq. (6) ca

FIG. 3. S̃sL, Wd as a function ofQ̃sL, W d for all the symme-
try classes. The solid symbols represent the positions of
critical points. The continuous (solid, dashed, and dotted line
curves are our analytical estimates (see text for details). F
comparison, the results obtained for the network model [21]
the quantum Hall effect (d ­ 2, b ­ 2) are also presented.
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be solved exactly for the extreme cases of a perfect me
(g ! `) and perfect insulator (g ! 0). In the former case
the left hand side should equal the Wigner surmise and
is easy to show that such a convolution will hold if the
Qg,bssd function asg ! ` approaches a Dirac-delta func-
tion, dss 2 1d. As for the perfect insulator we have to
find Q0,b so that the left hand side in each case equa
Pssd ­ exps2sd. The solution for these problems, intro-
ducing the notationRssd ; Q0,bssd, is [22]

Rs yd ­ a

8><>:
e2y2

b ­ 1 ,
erfcs yd b ­ 2 ,
s2y2 1 1d erfcs yd 2

2y
p

p
e2y2

, b ­ 4 ,
(7)

where y ­ bs, a ­ 2yp, py4, and 9py64, and
b ­ 1y

p
p,

p
py4, and 3

p
py16 for b ­ 1, 2, and 4,

respectively.
These solutions are spacing distributions themselv

since their zeroth and first moments are normalized
unity. The interpolating formula is introduced based o
the most simple assumption

Qgssd ­ agsgRsbgsd . (8)

Parametersag and bg are determined from the normal-
ization conditionsk1l ­ ksl ­ 1 for eachb. These in-
terpolating distributions behave in the limitg ­ 0 and
g ! ` appropriately as defined above. The continuou
curves in Fig. 3 show that the rescaled Rényi entropi
of Qgssd [Eq. (8)] indeed reproduce the results of the nu
merical experiments. Solid, dashed, and dotted lines sta
for b ­ 1, 2, and4, respectively. However, we see tha
the analytical curves donot fall onto the same curve. This
discrepancy may be due to the simplicity of the approx
mation in (8) and also because of the presence of a ma
mal spacing, i.e., a cutoff in both the numerical histogra
and consequently in the analytical curves. The analytic
curves without the upper cutoff (not presented here) fa
on top of each other within the linewidth precision.

Finally, Fig. 3 allows us to give an estimate of the
critical conductancegp. The best fits to the numerical
histograms givegp ­ 1.58, 1.46, and1.34 for b ­ 1, 2,
and4, respectively.

In conclusion, we have presented evidence for a ne
superscaling relation characterizing the MIT in 3D diso
dered systems with different additional degrees of fre
dom, i.e., in different universality classes. Such a relatio
gives a hint for the derivation of the symmetry depen
dence of the scaling function. We have also given a
approximate analytical formulation of the spacing distr
bution where the symmetry parameterb and the scaling
variableg enter in a very clear way. The estimates of th
critical conductance on the other hand show differenc
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for the position of the MIT. This result is complementar
to the fact that the critical exponentn obtained numeri-
cally in the three cases is the same [3–6].

We have to note that in some recent experiments p
viding the same value of the critical exponent [23,24], a
well as the absence of the influence of the magnetic fie
[24] and the spin-orbit coupling [23] at the MIT, show th
possibility that the superscaling relation presented in th
Letter could be verified experimentally.

The method presented in this Letter can be useful in t
analysis of other phase transitions as well.
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