VOLUME 82, NUMBER 23 PHYSICAL REVIEW LETTERS 7 UNE 1999

One-Parameter Superscaling at the Metal-Insulator Transition
in Three Dimensions

Imre Vargal? Etienne Hofstettet,and Janos Pipék
'Elméleti Fizika Tanszék, Budapestiibzaki Egyetem, H-1521 Budapest, Hungary
2Fachbereich Physik, Philipps-Universitiat Marburg, Renthof 6, D-35032 Marburg an der Lahn, Germany
3Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
(Received 17 October 1997; revised manuscript received 8 Decembey 1998

Based on the spectral statistics obtained in numerical simulations on three-dimensional disordered
systems within the tight-binding approximation, a new superuniversal scaling relation is presented that
allows us to collapse data for the orthogonal, unitary, and symplectic symmegries1(,2,4) onto a
single scaling curve. This relation provides strong evidence for one-parameter scaling existing in these
systems which exhibit a second order phase transition. As a result a possible one-parameter family of
spacing distribution functions,(s), is given for each symmetry clagh whereg is the dimensionless
conductance. [S0031-9007(99)09296-0]

PACS numbers: 71.30.+h, 05.60.Gg, 72.15.Rn

The study of critical phenomena is an important subjectoupling, SBN)]. One then expects different critical
because of the rich variety of systems exhibiting a secondxponents related to the MIT for the three different
order phase transition [1]. By a second order transitioruniversality classes.
we mean a continuous transition between two regimes with Surprisingly, in spite of the apparent change of univer-
the correlation length diverging at the transition point. Thesality class, the same value of the critical exponent has
description of such a phenomenon leads to the introductiobeen found, numerically, both in the presence and absence
of very important concepts such as scaling, renormalizationf a magnetic field [3,4], as well as spin-orbit coupling
group, and universality classes. These reflect the fact th§$,6]. Moreover, Ohtsuket al. recently showed [7] that
the phase transition does not depend on the details of the anomalous diffusion exponent and also the fractal di-
system but only on some general symmetries as well as amensionD (2) seem to coincide at the MIT for@), U(N),
the dimension of the system. A direct consequence is thair SgN), in agreement with these results. It was recently
different systems with different Hamiltonians may shareproposed [6,8] that a natural way to understand these co-
the same critical exponents, describing the singularity ofncidences would be to invoke the spontaneous breaking
the phase transition, if the symmetry underlying theseof the symmetry right at the MIT. However, in a recent
systems is the same and therefore will belong to the sangaper [9], numerical evidence has been presented suggest-
universality class. Other features, on the other hand, maiyng a small difference between the scaling properties of
be in common for different universality classes leavingorthogonal and unitary systems.
the possibility to derive simple relations between these The problem is therefore far from being solved and
classes. Such a feature is scaling which is exploited inve wish to present new evidence concerning how the
order to find the position of the critical point and the valuedifferent universality classes are linked together. This
of the critical exponent. Even though scaling may beindication gives a nontrivial hint about the way in
commonplace, the scaling function may be different forwhich the symmetry parameter enters into the scaling
the different universality classes. function valid for each individual universality class. We

In this Letter we present a single one-parameter scalinglso present a possible one-parameter family of spacing
relation which is common to several different universality distribution functionsP(s), for each universality class.
classes. This relation involves the spectral statistics of a A convenient way to study the MIT is to resort to
three-dimensional (3D) disordered system with additionatandom matrix theory (RMT) and energy level statistics
degrees of freedom, e.g., strong magnetic field and spir(ELS) [10—12]. In RMT the statistics of the energy spec-
orbit scattering. The choice of this system comes frontrum are generally described by three different ensembles,
the realization that it exhibits a metal-insulator transitionGaussian orthogonal (GOE), unitary (GUE), and sym-
(MIT) as a function of the disorder in the thermodynamicplectic (GSE) depending upon the symmetries mentioned
limit [2]. Itis generally assumed that the critical behavior above. Recently it has been shown [5,6,8,10,13,14] that
at the MIT can be classified in terms of three differentin addition to the two expected statistics, namely, either
universality classes according to the symmetry of theGOE, GUE, or GSE for the metallic regime and the Pois-
system: orthogonal [with time reversal symmetryMJ],  son ensemble (PE) for the insulating regime, there is a
unitary [without time reversal symmetry, e.g., with a third statistics, called the critical ensemble, which occurs
magnetic field, UN)] and, symplectic [with spin-orbit only exactlyat the critical point.
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In order to investigate the MIT we consider the follow- where indexp refers to the PE ang to the Wigner sur-

ing tight-binding Hamiltonian [2] mise representing the GOE, GUE, or GSE, respectively.
Their values are listed in Table I. The choice of such a
H = Z €aln)(nl + Z Vim|n) (ml (1) rescaling defined in Egs. (4a) and (4b) maps the variables

S and 0 onto the[0, 1] interval, withS = Q = 0(1) be-

with longing to the RMT (PE) limit. Furthermore, in Eq. (4a)
v, . orthogonal it is more natural to use- In(g) instead ofg since, simi-

Vi = 1V €xplif,), unitary, (2)  larly to S, it is connected to differences of Rényi en-

Vexpif,,,), symplectic tropies [17]. As an illustration of the behavior of these

where the sites are distributed regularly in 3D space, e.g., parameters, in Fig. 1 we report the results oL, W)
on a simple cubic lattice. Only nearest neighbor interacand S(L, W) for the case of spin-orbit coupling3(= 4).
tions are considered. The phagg, is a scalar related We can see that the data depend on the size of the system
to the magnetic field [8] and,,, is a2 X 2 matrix [6].  except at the critical poin. whereP(s) is scale invari-
The site energy, is described by a stochastic variable. ant. This is due to the fact that the MIT is a second order
In the present investigation we use a box distribution withtransition and that finite-size scaling laws apply close to
varianceW?/12. The parameteW describes the disorder the transition [18]. These properties were already used
strength and is the critical parameter. with success to describe the MIT [10,13,19]. In partic-
Based on the above Hamiltonian, the MIT is studied byular, it was shown that such quantities have a finite-size
the ELS method, i.e., via the fluctuations of the energyscaling behavior and can be written as
spectrum [6,10]. Starting from Eq. (1) the energy spec- _ . _
trum was computed by means of the Lanczos algorithm gL W) = f(L/ &) Sur(L, W) = h(L/é=) (5
for systems of sizé. X L X L with L = 13, 15, 17,19,  with correlation lengthé.(W) ~ [W — W.|~”, and the
and21 and W ranging from 3 to 100 averaging over dif- critical exponentr. The functionsf(x) and i(x) are
ferent realizations of the disorder. After unfolding the universal in the sense that they do not depend on the
spectra obtained, the fluctuations can be appropriately déletails of the systems—ijust on the general symmetries—
scribed by means of the spacing distributiBs) [11].  and therefore they directly reflect the universality class of
This distribution measures the level repulsion and is northe system.
malized as is its first momentt; = (s) = 1. From Eg. (5) we can see that, because of the scaling
In order to characterize the shape Bfs), we first behavior of (L, W) and S (L, W), if we plot Sy, as
calculate shape descriptive parameters which continuoush function ofg we can see the similarities and also the
change as we vary external parameters, e.g., the systetifferences between the universality classes. The same is
sizeL or disorderw: true for the rescaled paramet&sands.
g=p;" and Sy = ws + Inus, 3) Indeed, Fig. 2 shows clear differences between the
where s, = (s2) is the second moment ab(s), while orthogonal, unitary, and symplectlc cases, although all the
us = —(slns). These quantities were first introduced data fall onto s_pet_:lal curves lrrespectlvvelandL for .
?ach case. This figure allows us to determine the scaling

to describe the spatial-localization properties of general

lattice distributions [15] and then used for the shaperelatIons forg = 1,2, and4 without having to derive

analysis ofP(s) around the MIT [16]. It is interesting f(L/.é:“’)’ h(L./fm)’ and f”(W.) Wh'Ch are not easy to
to note that in contrast to previous methods which use(?b.tam numerlcally due to th_elr smgularmes at _the critical
only part of the information contained iR(s) [10,13] we point. Using now the rescaling def_lned above in Egs. (42)
consider here the entire distribution obtained numericallyand (4b), we ploS (L, W) as a function ofQ(L, W). The

Parametey is a well-known quantity in probability theory results are shown in Fig. 3. We see that all the data scale

that describes the peakedness of a distribution fun(:tiorp.ICer onto thesamecurw_e |nd|cat|_ng the presence of a
For example, foP(s) = 8(s — 1) we haveg = 1. The oOne-parameter superscaling function. The position of the
parametesS, is called the structural entropy for reasonsMIT r?oves alor]:g r;thesa_me(‘iur\_/e, for :hl"% andt
described elsewhere [15]. These parameters describe nﬁi a function of the critical disordew, which can be.
only the bulk features oP(s), but also they are sensitive changed by the magnetic field and spin-orbit scattering
to the numerical upper cutoff of the support®fs).

In order to describe and compare the different univerTABLE I.  Shape descriptive parameters for the case of differ-
sality classes within the same method we perform a lineagntF(s) functions.

rescaling as Poisson  GOE GUE GSE 6(s—1)
—In(g) + In(gw) ~ 0 1 2 4
—In(g) — = 4a B *
(@)= = In(gp) + In(gw) Q. (4a) 0.5295 0.7854 0.8488 0.9054 1.0
S — S —In(g) 0.6358 0.2416 0.1639 0.0994 0.0
Sy — S OW _ 5 (4b) Se  0.2367  0.1025 0.0733 0.0464 0.0

Sp — Sw
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100 [ : : : : - - - - Next we will show that the observed relatiétQ) pre-
oo b Symplectic symmetry (B = 4) ] sented in Fig. 3 can be understood with the introduction of
’ the dimensionless conductance as a scaling variable. We
0.80 have found that the constant shifts in (4) for both terms
—In(g) + In(gw) and Sy, — Sy correspond to a convo-
0.70 lution of different distributions [22]:
0.60 *
w Pos(e) = [ Quple M Wolehay  (®)
S 050 —e
O 040 with ¢* = 5. In this case [22]-In(gp) = —In(qo) —
’ Q
In(gw) and alsaS?. = Sg + S W,
0.30 In Eq. (6), 7, g(s) is the numerically obtained spacing
0.20 distribution for different symmetry classes parametrized

by the dimensionless conductangewhich ranges from

zero to infinity asL andW change as well, andV;(¢) is

the RMT limit for g — o represented by, e.g., the Wigner
00 60 190 200 210 220 230 240 250 260 surmise. This rescaling provides us with a method to

W (disorder) study what isbeyondthe universal level repulsion present

B B in finite systems in the full range of disorder. The

FIG. 1. Q(L, W) and S(L,W) for the CaS(_B O.f SymplectiC parameters_ In(q) and Sstr of ?g,ﬂ(s) glve different

symmetry. Continuous curves are polynomial fits. curves (see Fig. 2), while after resca"@ and § give

the samecurve (see Fig. 3). This is what is meant by the

rate as well as the type of potential scattering. This newpUPerscalingrelation as can be seen in Fig. 3. Scaling

superscaling relation is very interesting and of importancd? this context refers to the appearancegof We will
in shedding new light on the MIT in 3D systems. New ShoW that the parametegsands of the functionQ (s)

results [21] indicate that the data fg8 — 2 in 2D appearing in Eq. (6) can account for the major part of the

scale onto a different curve (see Fig. 3). This point is"umerically observed relation. _
important because it implies that superscaling is not a_ !N what follows we give an approximate formula for

mere consequence of the universality of level repulsionz.s(s) based on analytical calculations and a phenomeno-
but something more subtle. logical assumption. First, we point out that Eq. (6) can
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g FIG. 3. S(L,W) as a function ofQ(L, W) for all the symme-
FIG. 2. S as a function ofg for all the symmetry classes. try classes. The solid symbols represent the positions of the
(All data are presented in the full range of disorder.) Thecritical points. The continuous (solid, dashed, and dotted lines)
solid curve is obtained from a simple interpolatigs) due  curves are our analytical estimates (see text for details). For
to Izrailev [20]. The RMT and Poisson distributions appear ascomparison, the results obtained for the network model [21] of
solid circles using the values of Table I. the quantum Hall effectd = 2, B = 2) are also presented.
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be solved exactly for the extreme cases of a perfect metébr the position of the MIT. This result is complementary
(g — ) and perfect insulatorg(— 0). Inthe former case to the fact that the critical exponemt obtained numeri-
the left hand side should equal the Wigner surmise and itally in the three cases is the same [3—6].

is easy to show that such a convolution will hold if the We have to note that in some recent experiments pro-
Q,.s(s) function asg — o approaches a Dirac-delta func- viding the same value of the critical exponent [23,24], as
tion, (s — 1). As for the perfect insulator we have to well as the absence of the influence of the magnetic field
find Qo4 so that the left hand side in each case equal§24] and the spin-orbit coupling [23] at the MIT, show the
P(s) = exp(—s). The solution for these problems, intro- possibility that the superscaling relation presented in this
ducing the notatioR(s) = Q¢ g(s), is [22] Letter could be verified experimentally.
The method presented in this Letter can be useful in the

e B =1, analysis of other phase transitions as well.
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