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Metastability in Magnetically Confined Plasmas
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The parameter space of magnetically confined plasmas near marginal instability for interchange
modes is divided into three regions according to qualitative stability properties. Region I is line
stable though nonlinearly unstable to large excitations. Region II is linearly unstable, nonlinearly s
to small excitations, and nonlinearly unstable to large excitations. Region III is linearly and nonline
unstable. For an equilibrium evolving through marginal stability, region III and therefore explos
instability are inevitably encountered. [S0031-9007(99)09345-X]

PACS numbers: 52.35.Py, 52.30.Bt, 52.35.Mw, 52.65.Kj
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The line-tied interchange and ballooning instabilitie
play a prominent role in both laboratory and space plasm
In tokamak and magnetospheric plasmas, pressure-dri
modes are thought to account for such explosive eve
as high-b disruptions [1,2] and substorms [3,4], respe
tively. Thus, the question of stability, and, in particula
nonlinear stability, is crucial to these systems. Nonline
stability and dynamics take on a dual significance: becau
of the limited validity of linear expansions, a determinatio
of linear stability necessarily cannot address the possib
ity of metastability; also, explosive behavior in previousl
quiescent or slowly evolving systems can never be d
scribed by purely linear modes. In this Letter we consid
the nonlinear stability and dynamics of the finite Larmo
radius (FLR)–modified ideal magnetohydrodynam
(MHD) ballooning mode [5].

Because real unstable physical systems must ha
evolved from previously stable states, our investigatio
of nonlinear ballooning modes centers around the line
marginal stability point. For ideal MHD plasmas, Cowle
and Artun found that marginally unstable balloonin
modes inevitably evolve towards a finite-time singularit
[6]. With lowest order Larmor radius effects included, th
finite gyroradius may be sufficient to inhibit the mode’
tendency to progress towards finer scales perpendicu
to the field line; a nonlinear accessibility condition thu
exists, and nonlinear oscillations can arise as linear a
nonlinear drives and restoring forces compete. Thou
the finite Larmor radius term can effectively block acce
of the mode from linear to nonlinear instability, a regio
of function space corresponding to unbounded grow
nonetheless exists. Indeed, even for linearly stable mo
this nonlinearly unstable region still exists. Thus, withi
the limits of the linear marginal stability assumption
ballooning modes are always metastable and unboun
growth is always possible.

While the analysis to follow applies to more genera
field configurations, the simple line-tied Rayleigh-Taylo
Parker [7,8] mode provides a more definite physical d
scription of the linear and nonlinear instability process
(Fig. 1). At marginal stability, linear drive and restoring
0031-9007y99y82(23)y4651(4)$15.00
s
as.
ven
nts
c-
r,
ar
se
n
il-

y
e-
er
r

ic

ve
n
ar

y
g
y
e
s
lar
s
nd
gh
ss
n
th

des
n
,

ded

l
r-
e-
es

forces—buoyancy and field line bending forces, respe
tively—nearly cancel, resulting in a small linear growt
rate. Nonlinearly, a rising flux tube encounters a pos
tive feedback mechanism: flux tube expansion enforc
pressure balance while also resulting in an increase in
linear drive and a decrease in the linear restoring forc
The flux tube expansion causes both a decrease in d
sity and a decrease in magnetic field strength due to fl
conservation.

By a multiple-scale analysis of the ideal MHD equa
tions incorporating the usual ballooning ordering [5] an
the marginal stability condition, two sets of differentia
equations can be derived that determine the mode’s s
tial and temporal dependences [6,9]. The first set
the usual fourth-order coupled set of ordinary differenti
equations [10] giving the dependences of the mode on
field line coordinate (Z). The shape of the local growth
rate function,G2sXd, is also determined from this set
(We consider only two-dimensional equilibria;Y is the
equilibrium ignorable coordinate.) The second set is
envelope equation [5] with the usual linear corrections
well as nonlinear terms. Including the lowest order fini
Larmor radius effects [11] at this order gives, after resca
ing, a nonlinear partial differential equation describing th
temporal and fast perpendicular spatial dependences of
envelope near linear marginal stability:

≠2j

≠t2 ­

√
1 2

x2

D2

!
j 2

≠2

≠x2

Z
u dy 1 j

≠2

≠x2 j2

1 sj2 2 j2d 1 yp2
i

≠2j

≠y2 . (1)

Here jsx, y, td is the scaled plasma displacement in th
X (flux function) direction,j ; ≠uy≠y, x and y are the
scaledX and Y coordinates, and the overbar denotes
average over they coordinate. The rescaling of the equa
tion leaves equilibrium dependence only inD and y

p
i ,

which measure the scaled characteristicX width of the lo-
cal growth rate function and size of the ion diamagnet
drift, respectively. The cubic nonlinearity in Eq. (1) arise
from the modification of the equilibrium profiles by the
© 1999 The American Physical Society 4651
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FIG. 1. Equilibrium geometry and perturbed field lines for th
Rayleigh-Taylor-Parker mode.

fast compressional wave, resulting in a quasilinear “fla
tening” of the perturbed profiles; the quadratic, explosiv
nonlinearity arises from the positive feedback mechanis
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described above. Note that the dynamical properties
the equation depend only onD, y

p
i and the initial condi-

tions onj. (The appearance ofD results from assuming
a parabolic local growth rate profile [G2sXd] centered at
x ­ 0. Also, the scaled ion diamagnetic drift speed is pro
portional toG

23
0 , whereG0 is the maximum local linear

growth rate;yp
i therefore decreases as the system mov

through the marginal stability boundary. The full expres
sions forD andy

p
i in terms of unnormalized quantities are

lengthy and will be given in a future publication [12].) To
avoid a complex linear growth rate, the whole equation ha
been transformed to the frame moving at one-half the io
diamagnetic drift speed, i.e.,y

p
i y2. A conserved energy

can be derived from the equation by multiplying by≠jy≠t
and integrating over the fast perpendicular coordinates a
time, yielding
E ­
Z

dx dy
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which is useful in checking numerical simulations as we
as in determining the approximate evolution of the mo
via a variational principle.

Before considering the nonlinear and metastable pro
erties of Eq. (1), a description of the linear solution is
order. A simple separation of variables gives the line
modes as

jnk ­ Ankefgnkt2sky2Ddx2gHns
q

kyD xd cosskyd , (3)

whereg2
nk ­ 1 2 s2n 1 1dyskDd 2 k2y

p2
i and Hn is the

nth Hermite polynomial [6]. Equation (1) allows for
a spectrum of modes labeled by wave numberk and
order n of the Hermite polynomial; the most unstabl
mode is given byn ­ 0 and kmax ­ s2Dy

p2
i d21y3, with

g2skmaxd ­ 1 2 3syp
i y2Dd2y3. The system is globally

linearly unstable whenyp
i # s2Dd323y2. Here the finite

Larmor radius effect modifies the mathematical propert
in an essential way: the most unstable mode correspo
to a finite wave number instead ofkmax ! ` as in the
ideal case.

Equation (1) has been simulated directly using
leapfrog scheme on an adaptive mesh. For small init
disturbances, scanning through thesD, y

p
i d parameter

space not only reproduces the linear stability bounda
given above but also reveals a nonlinear accessibi
condition dividing linearly unstable systems into tw
classes. The results of the parameter space scans
shown in Fig. 2: region I consists of linearly stable
oscillatory systems; region II consists of linearly unstab
nonlinearly oscillatory systems; and region III consists
linearly unstable systems evolving directly to explosiv
instability. The small initial disturbances of thesD, y

p
i d

parameter scans, however, do not address the questio
metastability. For finite initial disturbances, the simu
lations show that regions I and II systems also evol
towards explosive instability; they are only metastab
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Hence, the boundary between regions II and III shou
properly be called a nonlinear accessibility boundar
rather than a nonlinear stability boundary: all regions a
nonlinearly unstable.

While the numerical simulations of Eq. (1) give good
quantitative demarcations of stability region boundarie
a better understanding of the nonlinear accessibility co
dition and metastability properties can be obtained fro
two analytical methods. When the most unstable mod
becomes marginally unstable, a bifurcation analysis c
be employed to describe the nonlinear stability properti
of Eq. (1). By ordering Eq. (1) in the small paramete
e1y2 corresponding to the growth rate of the most unstab
mode as well as its amplitude, and takingjsx, y, td to
lowest order to be the most unstable eigenmode wi
the substitution ofAstd for A0,kmax expfgskmaxdtg, the time
dependence of the amplitudeAstd can be determined via

≠2A
≠t2 ­ g2skmaxdA 1 lskmaxdA3, (4)

FIG. 2. Portrait of the stability space depending on th
parametersD andy

p
i . The solid lines are numerical simulation

results for linear stability and nonlinear accessibility. Th
dotted and dashed lines are bifurcation and variational analys
approximations to the nonlinear accessibility condition. Th
three regions are discussed in the text.
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where g2skmaxd is given above and lskmaxd ;
21yf2

p
2 g2s2kmaxdg 2 kmaxys2

p
2 Dd. Equation (4),

an equation of motion for the amplitude, has an ass
ciated anharmonic potential, with the signs ofg2skmaxd
andlskmaxd determining the linear and nonlinear stability
properties, respectively, as well as the metastabili
properties.

From this analysis, a nonlinear stability boundary
given whenl ­ 0, i.e., when the quartic part of the po-
tential changes sign. Since the most unstable mode
ordered to have a small growth rate or oscillation fre
quency, the2kmax mode is still stable, and the first term
in lskmaxd is positive. This destabilizing first term re-
sults from the nonlinear interaction of the fundament
and first harmonic modes, while the stabilizing secon
term in lskmaxd results from the cubic nonlinearity in
Eq. (1). Solving forl . 0 gives nonlinear instability
wheny

p2y3
i s5y2 2 D2d , D2y3y21y3. Nonlinear instabil-

ity can be reached either when the diamagnetic drift velo
ity is sufficiently small (corresponding to a largerG0 and
the approach of the first harmonic mode to the linear stab
ity boundary) or the width of the linearly unstable region i
sufficiently large. In fact, whenD .

p
5y2, the analysis

gives nonlinear instability independent of the size of th
diamagnetic drift.

From the bifurcation analysis, the stability space is d
vided into four regions according to the signs ofg2skmaxd
and l. The l ­ 0 line is plotted as a dotted line in
Fig. 2; we see that the line roughly approximates the com
putationally determined nonlinear accessibility boundar
The bifurcation analysis, however, gives nonlinear stab
ity when l , 0 when, in fact, systems in regions I and I
are always nonlinearly metastable. The limitations inhe
ent in the small-amplitude ordering thus prevent a com
plete consideration of metastability.

To treat the metastability properties at finite amplitud
an approximate variational method is used to determi
the dynamics of the system as projected onto the restric
trial function space. Instead of the customary minimiza
tion of the potential energy, the action is minimized wit
respect to the trial function parameters and the equatio
of motion determined.

The trial function is chosen to satisfy both the linea
equation and qualitative nonlinear properties of Eq. (1
Additionally, the trial function must retain the zeroy-
average properties of the equation [6]. Thus, we choos

jtrialsA, b, sd ­ Astd expf2bstdx2g f1 2 sstdg

3
X̀

m­0

smstd cosfsm 1 1dkmaxyg (5)

with jsstdj , 1 and bstd . 0. The time dependence
of the three parameters will be determined from the
respective Euler-Lagrange equations. The trial functio
can be characterized by its amplitudeAstd as well as its
widths in thex and y directions;Dxstd ; f2

p
bstd g21,
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andDystd ; spykmaxd f1 2 sstdgyf1 1 sstdg. Substitut-
ing the trial function into Eq. (2) gives the potential and
kinetic energies which are used to determine the access
bility condition as well as the equations of motion.

Even within the trial function approximation, the poten-
tial energy can be made arbitrarily large and negative re
gardless of the size ofD andy

p
i . For large amplitude the

potential is dominated by the contributions corresponding
to the last three terms in Eq. (2),

V , A4 Dy2

Dx
2 A3Dx Dy 1 yp2

i A2 Dx
Dy

. (6)

The cubic term here causes the mode to grow explosivel
and to narrow inx and y; the quartic term counters the
tendency to narrow in thex direction (and, in fact, forces
the mode to spread outwards in thex direction) and slows
the growth of the maximum; the FLR term counteracts the
narrowing of the mode in they direction. For largeA,
choosingDx and Dy such thatDx2yDy . A . 1yDy2

makes the potential large and negative. The system
thus always metastable: a properly tailored finite initial
excitation will result in unbounded growth in all three
regions.

For the variational analysis the accessibility condition is
derived by solvingV ­ 0 in the variationally determined
potential energy; assuming the initial mode has zero
total energy, theV ­ 0 surface encloses the accessible
regions ofsDy, Dx, Ad space. Figures 3 and 4 show the
V ­ 0 surfaces insDy, Dx, Ad space forsD, y

p
i d pairs in

regions II and III, respectively. For systems in region II
(Fig. 3) a linear instability starting from the lower right
of the figure encounters a positive potential barrier tha

FIG. 3. Zero potential energy surface insDy, Dx, Ad space
for a variationally determined region II equilibrium.D ­
0.65, y

p
i ­ 0.059. The trajectory starting from the initial linear

instability reaches a finite maximum amplitude and is unable to
reach the high amplitude region of negative potential energy.
4653
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FIG. 4. Zero potential energy surface insDy, Dx, Ad space
for a region III equilibrium. D ­ 0.65, y

p
i ­ 0.057. The

initial linear instability evolves directly to the region of large
amplitude, unbounded growth.

prevents access of the mode to the region of unbound
growth. A linear instability in a region III system (Fig. 4)
faces no positive potential barrier and evolves direct
to explosive growth. Thus, the variationally determine
accessibility condition is the line insD, y

p
i d parameter

space that gives precisely a zero potential “barrie
between accessible regions ofsDy, Dx, Ad space; this
is plotted as a dashed line in Fig. 2. In determinin
the possible potential barrier the accessibility conditio
measures the competition between the explosive and F
terms in narrowing they width, and between the cubic
and local linear instability drive terms in broadening th
x width. The V ­ 0 surface for region IsD, y

p
i d pairs

looks similar to the region II plot, except that the smal
amplitude lower surface is absent.

When unbounded growth ensues whether from r
gion III systems or excited regions I and II systems, th
system grows explosively towards a finite-time singularit
In the asymptotic evolution regime, the shape of the ins
bility can be estimated analytically from Eq. (2), yielding
Astd , st0 2 td22, Dystd , st0 2 td1, and Dxstd ,
st0 2 td20.5. Numerical integration of the Euler-
Lagrange equations derived from the variational meth
reproduces these scalings close to the singularity tim
t0. The full numerical simulation of Eq. (1), however, is
unable to evolve sufficiently near the singularity time t
reproduce these scalings; the formation of a shock in t
x direction eventually exceeds the numerical resolution
the simulation.

For laboratory and space plasmas, systems becom
unstable to the interchange instability must start in r
gion I. As the system evolves through marginal stabilit
the MHD growth rateG0 increases, the scaled paramet
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p
i decreases (slowly), andD remains constant. Thus, as

long asG0 increases, the theory predicts that the syste
eventually reaches the region of nonlinear explosive b
havior. In high magnetic field, highb disruptions in the
Tokamak Fusion Test Reactor, the change inG0 can be at-
tributed to a fast-growingn ­ 1 kink mode that leads to
the steepening of the pressure profile and destabilization
the ballooning mode [1,2,13]. For this case,D ø 0.4 0.6,
and takingG0 as evolving on the kink mode’s time scale
gives approximately300 ms from linear marginal stability
to the explosive singularity, which is roughly the observe
time between the onset of the ballooning mode and the d
ruption. In the case of low field highb ballooning insta-
bilities, the analysis predicts the same behavior as in t
high field. However, if the global equilibrium evolution
is sufficiently slow, we speculate that enhanced transpo
across the mode would further slow the growth ofG0 and
the system would exhibit a “soft”b limit as the system
moves slowly through region II. For ballooning modes in
magnetospheric plasmas the approach to the marginal s
bility boundary would occur during the “growth phase” o
the substorm. Here, roughly,D $ 1 so a linear instability
evolves directly to explosive singularity in approximately
800–1200 s. A plasma sheet configuration in region I ma
also be sufficiently excited by an external trigger to resu
in explosive instability on the same time scale.
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