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Metastability in Magnetically Confined Plasmas

B.H. Fong,* S.C. Cowley, and O. A. Hurricane

University of California at Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095-1547
(Received 11 November 1998

The parameter space of magnetically confined plasmas near marginal instability for interchange-type
modes is divided into three regions according to qualitative stability properties. Region | is linearly
stable though nonlinearly unstable to large excitations. Region Il is linearly unstable, nonlinearly stable
to small excitations, and nonlinearly unstable to large excitations. Region Il is linearly and nonlinearly
unstable. For an equilibrium evolving through marginal stability, region Il and therefore explosive
instability are inevitably encountered. [S0031-9007(99)09345-X]

PACS numbers: 52.35.Py, 52.30.Bt, 52.35.Mw, 52.65.K]

The line-tied interchange and ballooning instabilitiesforces—buoyancy and field line bending forces, respec-
play a prominent role in both laboratory and space plasmasively—nearly cancel, resulting in a small linear growth
In tokamak and magnetospheric plasmas, pressure-driveate. Nonlinearly, a rising flux tube encounters a posi-
modes are thought to account for such explosive eventive feedback mechanism: flux tube expansion enforces
as highg disruptions [1,2] and substorms [3,4], respec-pressure balance while also resulting in an increase in the
tively. Thus, the question of stability, and, in particular, linear drive and a decrease in the linear restoring force.
nonlinear stability, is crucial to these systems. NonlineaiThe flux tube expansion causes both a decrease in den-
stability and dynamics take on a dual significance: becaussity and a decrease in magnetic field strength due to flux
of the limited validity of linear expansions, a determinationconservation.
of linear stability necessarily cannot address the possibil- By a multiple-scale analysis of the ideal MHD equa-
ity of metastability; also, explosive behavior in previously tions incorporating the usual ballooning ordering [5] and
guiescent or slowly evolving systems can never be dethe marginal stability condition, two sets of differential
scribed by purely linear modes. In this Letter we considelequations can be derived that determine the mode’s spa-
the nonlinear stability and dynamics of the finite Larmortial and temporal dependences [6,9]. The first set is
radius (FLR)—modified ideal magnetohydrodynamicthe usual fourth-order coupled set of ordinary differential
(MHD) ballooning mode [5]. equations [10] giving the dependences of the mode on the

Because real unstable physical systems must haveld line coordinate Z). The shape of the local growth
evolved from previously stable states, our investigatiorrate function,I'*(X), is also determined from this set.
of nonlinear ballooning modes centers around the lineafWe consider only two-dimensional equilibri&; is the
marginal stability point. For ideal MHD plasmas, Cowley equilibrium ignorable coordinate.) The second set is an
and Artun found that marginally unstable ballooningenvelope equation [5] with the usual linear corrections as
modes inevitably evolve towards a finite-time singularitywell as nonlinear terms. Including the lowest order finite
[6]. With lowest order Larmor radius effects included, the Larmor radius effects [11] at this order gives, after rescal-
finite gyroradius may be sufficient to inhibit the mode’s ing, a nonlinear partial differential equation describing the
tendency to progress towards finer scales perpendiculé@mporal and fast perpendicular spatial dependences of the
to the field line; a nonlinear accessibility condition thusenvelope near linear marginal stability:

exists, and nonlinear oscillations can arise as linear and

linear dri d restoring f te. Though ¢ X 02 ” &

nonlinear drives and restoring forces compete. oug = =(1-5 - _2f udy + € = &
A dx dx

#2 azf

the finite Larmor radius term can effectively block access 912
of the mode from linear to nonlinear instability, a region O
of function space corresponding to unbounded growth + (&7 — &) + vy 902 1)
nonetheless exists. Indeed, even for linearly stable modes Y
this nonlinearly unstable region still exists. Thus, withinHere &(x,y, ) is the scaled plasma displacement in the
the limits of the linear marginal stability assumption, X (flux function) direction,é = du/dy, x andy are the
ballooning modes are always metastable and unboundestaledX andY coordinates, and the overbar denotes an
growth is always possible. average over the coordinate. The rescaling of the equa-
While the analysis to follow applies to more generaltion leaves equilibrium dependence only in and v;,
field configurations, the simple line-tied Rayleigh-Taylor- which measure the scaled characterigtiwidth of the lo-
Parker [7,8] mode provides a more definite physical de€al growth rate function and size of the ion diamagnetic

scription of the linear and nonlinear instability processedrift, respectively. The cubic nonlinearity in Eq. (1) arises
(Fig. 1). At marginal stability, linear drive and restoring from the modification of the equilibrium profiles by the
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B described above. Note that the dynamical properties of
} Y+ the equation depend only ak, v; and the initial condi-
] tions oné. (The appearance & results from assuming
x| b T } v a parabolic local growth rate profild'f(X)] centered at
] x = 0. Also, the scaled ion diamagnetic drift speed is pro-
J g portional to 1“0_3, wherel'y is the maximum local linear
growth rate;v; therefore decreases as the system moves
o through the marginal stability boundary. The full expres-
4 z sions forA andv; in terms of unnormalized quantities are
FIG. 1. Equilibrium geometry and perturbed field lines for the lengthy and will be given in a future publication [12].) To
Rayleigh-Taylor-Parker mode. avoid a complex linear growth rate, the whole equation has

been transformed to the frame moving at one-half the ion
«jgt.diamagnetic drift speed, i.ev; /2. A conserved energy

fast compressional wave, resulting in a quasilinear . / STy
tening” of the perturbed profiles; the quadratic, explosivecan be derived from the equation by multiplying &g/ o1

nonlinearity arises from the positive feedback mechaniﬁnﬁrr:qiin;ii}%?r:g‘g over the fast perpendicular coordinates and
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which is useful in checking numerical simulations as wéllHence, the boundary between regions Il and Ill should
as in determining the approximate evolution of the modeproperly be called a nonlinear accessibility boundary
via a variational principle. rather than a nonlinear stability boundary: all regions are
Before considering the nonlinear and metastable propaonlinearly unstable.
erties of Eq. (1), a description of the linear solution is in  While the numerical simulations of Eq. (1) give good
order. A simple separation of variables gives the lineaiquantitative demarcations of stability region boundaries,
modes as a better understanding of the nonlinear accessibility con-
_ 2 dition and metastability properties can be obtained from
Enk = Apgelrni=H/280x ]Hn(\/ k/Ax)codky),  (3)  two analytical methods. When the most unstable mode
wherey2, = 1 — (2n + 1)/(kA) — k*v? and H, is the becomes marginally l_JnstabIe, a _bifurcation_ _analysis can
nth Hermite polynomial [6]. Equation (1) allows for bfe EmplfyedBto deasc_rlbe ItEhe nlon_lln?sr stabl::ty properttles
a spectrum of modes labeled by wave numbeand 01/2 g. (1). By ordering Eq. (1) in the small parameter
order n of the Hermite polynomial; the most unstable € correspondlng.to the growth rate of the mast unstable
mode is given byn = 0 and kmax = (2A;2)~1/3, with mode as well as its amplitude, and taklg”gx,y,t) to
2 S A 2/3 . lowest order to be the most unstable eigenmode with
v (kmay) = 1 — 3(v; /2A)*/°. The system is globally o ;
linearly unstable when” = (24)3-¥2. Here the finite € Substitution 0f(z) for Aoma, €Xy (kmad1], the time

Larmor radius effect modifies the mathematical propertiegelaendence of the amplituaés) can be determined via

in an essential way: the most unstable mode corresponds 82_A s 3
to a finite wave number instead @f,.x — o as in the a2 Y (kmadA + AlkmadA”, 4)
ideal case.

Equation (1) has been simulated directly using a
leapfrog scheme on an adaptive mesh. For small initial
disturbances, scanning through td,v;) parameter 08
space not only reproduces the linear stability boundary
given above but also reveals a nonlinear accessibility
condition dividing linearly unstable systems into two
classes. The results of the parameter space scans are
shown in Fig. 2: region | consists of linearly stable,
oscillatory systems; region Il consists of linearly unstable,
nonlinearly oscillatory systems; and region Il consists of
linearly unstable systems evolving directly to explosive
instability. The small initial disturbances of thd,v;)  FIG. 2. Portrait of the stability space depending on the
parameter scans, however, do not address the question Rarameters\ andv;. The solid lines are numerical simulation

tastabilit For finite initial disturb the si results for linear stability and nonlinear accessibility. The
metastability. For finite nitial disturbances, the SIMU- e and dashed lines are bifurcation and variational analyses’

lations show that regions | and Il systems also evolvespproximations to the nonlinear accessibility condition. The
towards explosive instability; they are only metastablethree regions are discussed in the text.
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where y2(kma) IS given above and A(kma) = andAy(r) = (7 /kma) [1 — o(8)]/[1 + o(r)]. Substitut-
—1/[22 y?(2kmax)] — kmax/ (V2 A). Equation (4), ing the trial function into Eq. (2) gives the potential and
an equation of motion for the amplitude, has an assokinetic energies which are used to determine the accessi-
ciated anharmonic potential, with the signs pf(kma)  bility condition as well as the equations of motion.
and A(kyay) determining the linear and nonlinear stability ~ Even within the trial function approximation, the poten-
properties, respectively, as well as the metastabilityial energy can be made arbitrarily large and negative re-
properties. gardless of the size of andv;. For large amplitude the
From this analysis, a nonlinear stability boundary ispotential is dominated by the contributions corresponding
given whenA = 0, i.e., when the quartic part of the po- to the last three terms in Eq. (2),
tential changes sign. Since the most unstable mode is Ay? Ax
ordered to have a small growth rate or oscillation fre- vV ~ At Ar Ay (6)
quency, the2knax mode is still stable, and the first term * Y
in A(kmay) is positive. This destabilizing first term re- The cubic term here causes the mode to grow explosively
sults from the nonlinear interaction of the fundamentaland to narrow inx andy; the quartic term counters the
and first harmonic modes, while the stabilizing secondendency to narrow in the direction (and, in fact, forces
term in A(kma) results from the cubic nonlinearity in the mode to spread outwards in thelirection) and slows
Eqg. (1). Solving forA > 0 gives nonlinear instability the growth of the maximum; the FLR term counteracts the
Whenvf2/3(5/2 — A2) < A23/21/3, Nonlinear instabil- narrowing of the mode in the direction. For largeA,

ity can be reached either when the diamagnetic drift velocchoosingAx and Ay such thatAx?/Ay > A > 1/Ay?

ity is sufficiently small (corresponding to a larges and ~ Makes the potential large and negative. The system is
the approach of the first harmonic mode to the linear stabilthus always metastable: a properly tailored finite initial
ity boundary) or the width of the linearly unstable region is€xcitation will result in unbounded growth in all three
sufficiently large. In fact, wherh > /5/2, the analysis e€gions. o . o o
gives nonlinear instability independent of the size of the For the variational analysis the accessibility condition is
diamagnetic drift. denveq by solvingy = 0 in the van_at_l(_)nally determined

From the bifurcation analysis, the stability space is di-Potential energy; assuming the initial mode has zero
vided into four regions according to the signs B kmax) total energy, thev =0 surface_encloses the accessible
and A. The A = 0 line is plotted as a dotted line in "egions of(Ay, Ax,A) space. Figures 3 anq! 4 show the
Fig. 2; we see that the line roughly approximates the comY = 0 surfaces in(Ay, Ax, A) space for(A, v;) pairs in
putationally determined nonlinear accessibility boundaryre€gions Il and Ill, respectively. For systems in region ||
The bifurcation analysis, however, gives nonlinear stabil{Fig- 3) a linear instability starting from the lower right
ity when A < 0 when, in fact, systems in regions | and Il of the figure encounters a positive potential barrier that
are always nonlinearly metastable. The limitations inher-
ent in the small-amplitude ordering thus prevent a com-
plete consideration of metastability.

To treat the metastability properties at finite amplitude,
an approximate variational method is used to determine
the dynamics of the system as projected onto the restricted
trial function space. Instead of the customary minimiza-
tion of the potential energy, the action is minimized with
respect to the trial function parameters and the equations
of motion determined.

The trial function is chosen to satisfy both the linear
equation and qualitative nonlinear properties of Eq. (1).
Additionally, the trial function must retain the zeno
average properties of the equation [6]. Thus, we choose

APAx Ay + v?A?

Ewial(A, b, o) = A() exd —b(H)x*][1 — o (1)]

X > o"(n)cod(m + Dkmay]  (5)

m=0

with |o ()] <1 and b(r) > 0. The time dependence )
of the three parameters will be determined from theirf!G: 3. Zero potential energy surface i@y, Ax,A) space

. . . . for a variationally determined region Il equilibrium.A =
respective Euler-Lagrange equations. The trial functio .65, v;i = 0.059. The trajectory starting from the initial linear

can be characterized by its amplitudér) as well as its  instability reaches a finite maximum amplitude and is unable to
widths in thex and y directions; Ax(r) = [2/b(t)]"!,  reach the high amplitude region of negative potential energy.
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v; decreases (slowly), anl remains constant. Thus, as
long asI'y increases, the theory predicts that the system
eventually reaches the region of nonlinear explosive be-
havior. In high magnetic field, higj$ disruptions in the
Tokamak Fusion Test Reactor, the chang€&jrcan be at-
tributed to a fast-growing = 1 kink mode that leads to
the steepening of the pressure profile and destabilization of
the ballooning mode [1,2,13]. For this cade= 0.4-0.6,
and takingl'y as evolving on the kink mode’s time scale
gives approximatelg00 ws from linear marginal stability
to the explosive singularity, which is roughly the observed
time between the onset of the ballooning mode and the dis-
ruption. In the case of low field higB ballooning insta-
bilities, the analysis predicts the same behavior as in the
high field. However, if the global equilibrium evolution
is sufficiently slow, we speculate that enhanced transport
across the mode would further slow the growthlgfand
the system would exhibit a “softB limit as the system
FIG. 4. Zero potential energy surface {dy,Ax,A) space moves slowly through region Il. For ballooning modes in
for a region Il equilibrium. A = 0.65,v; = 0.057. The  magnetospheric plasmas the approach to the marginal sta-
initial linear instability evolves directly to the region of large bility boundary would occur during the “growth phase” of
amplitude, unbounded growth. : . -
the substorm. Here, roughlg, = 1 so a linear instability
evolves directly to explosive singularity in approximately
800-1200 s. A plasma sheet configuration in region | may
prevents access of the mode to the region of unboundealso be sufficiently excited by an external trigger to result
growth. A linear instability in a region Il system (Fig. 4) in explosive instability on the same time scale.
faces no positive potential barrier and evolves directly This work was supported by the U.S. Department
to explosive growth. Thus, the variationally determinedof Energy, the National Science Foundation, and the
accessibility condition is the line A, v;) parameter National Aeronautics and Space Administration.
space that gives precisely a zero potential “barrier”
between accessible regions 6Ay,Ax,A) space; this
is plotted as a dashed line in Fig. 2. In determining
the possible potential barrier the accessibility condition
measures the competition between the explosive and FLR
terms in narrowing they width, and between the cubic *Permanent address: Princeton University Plasma Physics
and local linear instability drive terms in broadening the Laboratory, Princeton, NJ 08543-0451.
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