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Primary and Secondary Hopf Bifurcations in Stratified Taylor-Couette Flow
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Experimental and theoretical results for the axially, stably stratified Taylor-Couette flow a
presented. The primary instability is a direct Hopf bifurcation. It leads the system into
oscillatory state of confined internal waves, in good agreement with linear stability analysis. T
secondary bifurcation, which leads the system to a pattern of drifting nonaxisymmetric vortices
a subcritical Hopf bifurcation. This first experimental evidence of a global bifurcation is thoug
to be generic to dynamical systems with one destabilizing and one stabilizing control parame
[S0031-9007(99)09248-0]
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The transition to chaos in extended nonlinear systems
still an open question [1–3]. The oscillatory nature of th
primary bifurcation changes the scenario [4,5] and has n
yet been fully explored. Such a primary Hopf bifurcatio
can be obtained by adding a stabilizing control paramet
allowing the existence of waves, to a dynamical syste
Simply adding a stable, axial density stratification to th
well-known Taylor-Couette flow [6], with only the inner
cylinder rotating, allowed us to get such a rich dynamic
system.

In this Letter we present new experimental and theore
cal results of the stratified Taylor-Couette flow (STC) th
describe its first bifurcations and flow regimes. A nov
bifurcation diagram is found, explaining the discrepanci
between previous experimental studies [7,8] and nume
cal simulations [9]. The diagram enlightens the inte
action between two branches and gives evidence to
unusual saddle-node transition. Such a diagram has ne
been observed experimentally. Our results apply to oth
systems such as rotating Rayleigh-Bénard convection [
binary fluid convection [10], and convection subjected
a magnetic field, where it has been suggested theor
cally [11].

The apparatus, which is the same as in [7], consi
of two coaxial cylinders of lengthL ­ 573 mm. Only
the inner cylinder of radiusa ­ 40 mm rotates, with the
outer oneb ­ 52 mm, being at rest. The radius ratio
of the cylinders ish ­ ayb ­ 0.769 indicating a rather
wide gap. The linear stratification is achieved with
salt solution. The control parameters are the rotation r
of the inner cylinderV (destabilizing parameter), and
the Brunt-Vaı¨sälä frequencyN2 ­ 2sgyr0d≠ry≠z . 0
(stabilizing parameter) which represents the stratificatio
z is the vertical direction. The Schmidt number (ratio o
kinematic viscosity over molecular diffusivity) is 730. In
all experiments, the observations and measurements w
performed for times much smaller than the typical mixin
time in the regimes of interests,5 hd. In order to exhibit
the structures in the different flow regimes, fluoresce
dye, illuminated with a laser sheet cutting through th
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axis of the cylinders, is used. The temporal behavi
of the flow was obtained by point measurements of t
density fluctuations, using conductivity probes mounte
flush with the outer cylinder. Two probes were fixe
at the same height, at an azimuthal angle ofpy2. The
experimental setup and techniques are described in m
detail elsewhere [12].

The numerical simulations of Huaet al. [9] show that
the first bifurcation from a purely azimuthal Couette flow
is a direct Hopf bifurcation, leading to a flow regime o
“oscillatory convective modes.” We present in Fig. 1(a
a dye visualization of this regime. The pattern has be
captured for successive times in one vertical section
the gap. The initially vertical lines of dye are deforme
by spatially periodic oscillations, their wavelength bein

FIG. 1. Dye visualization of stratified Taylor-Couette flow
N ­ 0.97 rad s21. (a) Standing waves regimeV ­ 1.1Vc;
(b) vortex regimeV ­ 1.35Vc.
© 1999 The American Physical Society 4647
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nearly equal to the gap widthsl . dd. In contrast to the
homogeneous case, for which the first unstable regime
stationary (Taylor vortices) [6], the first unstable regim
for the stratified case is time dependent. As underline
by previous studies [7,9], the reduction in the vertica
wavelength as compared with the homogeneous ca
sl . 2dd is directly related to the inhibition of vertical
motions by stratification. Time records of this patter
clearly showoscillations, the positions of the maxima
and minima of oscillations being fixed. No overturning
is observed in this regime, indicatingstanding waves.

The characteristics of the onset of instability were inve
tigated by measurements of the temporal evolution of th
density fluctuations. When the rotation rate of the inne
cylinder is raised to the critical valueVc, the frequency
of the waves appears in the power spectra, indicating
Hopf bifurcation. We first checked that this frequency de
pends only on the rotation rate and the stratification, an
not on the experimental procedure. There is no hystere
for the transition between purely azimuthal flow and th
wave regime, i.e., the primary bifurcation is a supercritica
Hopf bifurcation. The experimental critical rotation rate
sVcd and critical frequencys fcd for different stratifications
are compared in Fig. 2 with theoretical values. These va
ues come from a linear stability analysis performed wit
rigid boundary conditions, infinite Schmidt number, an
finite gap [12].

Agreement between experiments and theory is exc
lent. The stabilizing effect of the stratification is demon
strated by the increase ofVc with the stratification.

We studied the evolution of the nondimensional fre
quency deviation from the critical values fyfc 2 1d in
the standing-wave regime (Fig. 3) as a function of th
control parameterse ­ VyVc 2 1d for different stratifi-
cations. All values collapse remarkably on as22d straight
line which is predicted by a model assuming that the o
served waves are internal waves confined between t
vertical cylinders [12,13]. Two probes cross-correlate

FIG. 2. Evolution of the critical rotation rate (Vc, left axis)
and of the critical frequency of the waves (fc, right axis) versus
stratification:ssd experimentalVc and (solid line) theoretical
curve;s1d experimentalfc and (dashed line) theoretical curve.
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spectra also show that these waves areaxisymmetric,with
the phase shift for the wave frequency being equal
zero. These observations demonstrate that the sys
bifurcates from the purely azimuthal flow through a s
percritical Hopf bifurcation to a state of axisymmetric
confined standing internal waves.

By further increasingV above Vc, a vortex regime
appears. The spatiotemporal structure of this regime
also been determined with the fluorescein dye techniq
[Fig. 1(b)]. Overturning is depicted by the presence
the small spirals in the structures. As in the wave regim
the vertical size of the structures is compressed by
stratification, and two counterrotating vortices are prese
at the same height. Records of the two plane sections
the gap (not shown here) show that the flow is no long
axisymmetric. These visualizations are in good agreem
with the numerical simulations of Huaet al. [9] and the
visualizations of Boubnovet al. [7].

In this vortex regime, only one frequency and its ha
monics are present in the power spectra. The phase s
between the two conductivity probes for the fundame
tal frequency is equal to the angle difference between
probes, confirming the nonaxisymmetry of the flow in th
regime. We checked that the evolution of the frequen
versus the rotation rate does not depend on stratificat
in the vortex regime (Fig. 4). The straight line fit verifie
the relationf ­ a 1 mskVly2pd, where a is a small
constant,kVl is the radially averaged angular velocity ca
culated from purely azimuthal circular Couette flow, an
m ­ 1 is the azimuthal mode. In a first approximation
the whole 3D pattern is drifting at this mean angular v
locity kVl. Because of the system’s symmetries (O2
the vortices cannot drift at exactly the mean angular v
locity [5]. Hence, the small value at the origin (a) is
the velocity with which the pattern precesses relative
the mean angular velocity. So, the measured freque
measures the drift velocity of the pattern, i.e., the revo
tion period of a vortex around the axis of the cylinder

FIG. 3. Evolution of the nondimensional frequency deviatio
from the critical value versuse in the wave regime.sed N ­
0.68 rad s21; ssd N ­ 0.82 rad s21; snd N ­ 0.925 rad s21.
Confined internal waves model: slopes22d straight line.
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FIG. 4. Evolution of the azimuthal rotation frequency with
Vy2p in the vortex regime. snd N ­ 0.68 rad s21; ssd, (d)
N ­ 0.82 rad s21; shd N ­ 0.925 rad s21. The straight line is
a linear fit:f ­ 0.0027 1 0.413sVy2pd, R ­ 0.985.

It is determined by the cylinders geometry and the r
tation rate of the inner one, so it is independent of th
stratification.

Special attention has been given to the transitio
between the wave regime and the vortex regime. Th
transition doesnot correspond to the appearance o
disappearance of any frequency in the spectra. The o
hint of a transition is that for two probes cross-correlate
spectra, the phase shift for the measured frequency
zero in the wave regime and equal topy2 in the vortex
regime. The evolution of the characteristic frequency
the power spectra versus the rotation rate when ascend
or descending by small steps the control parameter
plotted on Fig. 5(a). These measurements show that
frequency can have two different values for one rotatio
rate, depending on the procedure. This hysteresis imp
that the bifurcation between the wave regime and t
vortex regime isa subcritical bifurcation. Moreover, the
waves and vortices frequencies are equal at the transit
point. Since only one frequency (corresponding to th
azimuthal rotation) is present in the power spectra of t
vortex regime, the limit cycle (oscillations) of the waves
destabilized in the bifurcation. From bifurcation theory
it is known that a limit cycle cannot be destabilized i
a local bifurcation [1,3,14]. Therefore, the secondar
bifurcation is aglobal bifurcation.

From these observations a plausible projection in
plane [e, typical energy of mode] of the diagram o
bifurcations is proposed in Fig. 5(b). The dimensio
of the rigorous diagram is 6: each mode energy a
frequency, e and N . The experimental measuremen
of Fig. 5(a) is its projection in a [e, frequency] plane.
For fixed stratification, this bifurcation diagram can b
described as follows. A branch of waves is create
through a direct Hopf bifurcation at the abscissae ­ 0
(by definition). An unstable branch is created through
o-
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FIG. 5. (a) Hysteretic evolution of the measured frequen
with the control parameter.ssd Ascending and (d) descending
procedure forN ­ 0.82 rad s21. (b) Schematic representation
of the bifurcations diagram from purely azimuthal flow to
vortices. The ordinate is the energy of the perturbations
the basic state.

inverse Hopf bifurcation at the abscissaeh2. This unstable
branch gains stability in a saddle-node bifurcation at t
abscissaesn, creating the branch of the vortices. Ateg,
the stable oscillatory branch coming from the first Hop
bifurcation is destabilized in a global bifurcation, and th
system jumps onto the stable branch of the vortices.
the drifting vortices branch, ife is decreased, the system
will follow the vortices branch untile ­ esn. Then it can
jump either onto the purely azimuthal flow ifesn , 0, or
onto the waves branch ifesn . 0.

From the bifurcation diagram, we are able to expla
the differences between the previous results obtained w
the STC system. The onset of instability in the expe
ments [7] is a nonaxisymmetric flow regime with vortice
whereas in the direct numerical simulations [9], the ons
of instability is time dependent and axisymmetric. Th
experimental apparatus of Boubnovet al. [7] had circu-
larity defects of the order of 1 mm for a gap width o
12 mm. Such large defects induce, as we checked e
where [12], a sufficiently large noise amplitude to forc
the system to jump directly to the drifting vortices branc
whenever possible. Since in these experiments, no
axisymmetric vortices were always obtained at the ons
of instability, the abscissa of the saddle-node bifurcati
esn was measured instead of the real onset of instabili
4649
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Comparison of these values with the theoretical critic
ones shows thatesn is close to 0 for all the stratifications,
which remains unexplained.

We provide here the first experimental evidence of th
existence of such a scenario in hydrodynamics. This ki
of diagram for primary and secondary bifurcations ha
been proposed theoretically for convection subjected to
magnetic field [11], and for binary fluid convection usin
numerical simulations [10,15]. Its possible existenc
has never been demonstrated experimentally. To o
knowledge, these studies are the only ones to mention
possibility of such diagrams in hydrodynamics.

More generally, this diagram is thought to be gener
for systems with two independent control parameters w
opposite effects. When the typical disappearance tim
associated with the stabilizing control parameter is larg
than the typical dissipation time of instability, the primar
bifurcation is oscillatory. This is the case in severa
hydrodynamical systems: convection in rotating system
[5,16,17], with magnetic field [18], or in binary fluids with
negative separation ratio [4,19] when, respectively, t
Prandtl, magnetic Lewis, and Lewis numbers are smal
than 1. It also applies in magnetic Taylor-Couette flo
[20] and obviously, in stratified Taylor-Couette when th
Schmidt number is large. The case of counterrotati
Taylor-Couette flow [6] is marginal since the typical time
are equal.

In conclusion, we present here the first experimen
evidence of a novel bifurcation diagram, for a quit
simple hydrodynamical system. Indeed, the STC flo
bifurcates from the purely azimuthal flow through
direct Hopf bifurcation to a wave regime. This is
followed by a secondarysubcritical Hopf bifurcation
leading to a state of drifting vortices (vortex regime
From the characteristics of these two states, we prop
a bifurcation diagram which reconciles the previou
results obtained for the stratified Taylor-Couette syste
and can hold for a large class of hydrodynamic
systems.

We acknowledge fruitful discussions with Bach Lie
Hua, Paul Manneville, Arnaud Chiffaudel, Jean-Mar
Chomaz, Jan-Bert Flor, and the technical assistance
Serge Layat. This work has been supported by CNR
(GDR-MFGA 1074).
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