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Dynamics of Axial Separation in Long Rotating Drums
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We propose a continuum description for the axial separation of granular materials in a long rot
drum. The model, operating with two local variables, concentration difference and the dynamic ang
repose, describes both initial transient traveling wave dynamics and long-term segregation of the
mixture. Segregation proceeds through ultraslow logarithmic coarsening. [S0031-9007(99)0934

PACS numbers: 45.70.Mg, 47.35.+ i, 47.54.+r, 64.75.+g
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The collective dynamics of granular materials recent
have been attracting much interest [1–7]. The dissip
tive nature of interaction among macroscopic particl
sets granular matter apart from familiar gaseous, liqu
or solid states. One of the most fascinating features
heterogeneous granular materials is their ability to seg
gate under external agitation instead of mixing as wou
be expected from thermodynamics. Essentially any var
tion in mechanical properties of particles (size, shap
density, surface roughness) may lead to their segregati

Granular flow in slowly rotating drums is different from
conventional fluid motion. In the bulk, particles perform
rigid body rotation around the drum axis until they reac
the free surface. Then they slide down within a thin nea
surface layer [4]. For intermediate rotation speed, the s
face has a rather flat S-curved shape, and arctangent o
average slope defines thedynamic angle of repose. Since
there is almost no interparticle motion in the bulk, se
regation of binary granular mixtures predominantly oc
curs within the fluidized near-surface layer [3,5,7]. I
radial segregation grains of one type (for grains of diffe
ent sizes, the smaller ones) build up a core near the a
of rotation. It occurs during the first few revolutions o
the drum. For long drums, along with radial segregatio
axial segregation occurs at much later stages (after hu
dreds of revolutions). Recent experiments [3,6,7] r
vealed interesting features of axial segregation. For ra
rotation speed and large composition fraction of sa
grains in a salt-sand mixturef . 0.55, small-scale per-
turbations travel across the drum at early stages of seg
gation. At later times longer-scale perturbations take ov
and lead to quasistationary bands of segregated mater
which exhibit slow coarsening [5] leading sometimes
complete segregation [8].

Most of the theoretical models of segregation agree
that the reason for segregation is the sensitive depende
of the surface slope or shape on the relative concentrat
of different particles in the mixture. In Ref. [6] a simple
theory of segregation in thin surface flow driven by th
local slope was proposed. For a monodisperse mater
the model recovers the S shape of the free surface.
0031-9007y99y82(23)y4643(4)$15.00
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a binary mixture the model yields a nonlinear diffusio
equation for the relative concentration of the ingredien
along the horizontal axis. Axial segregation occurs wh
the diffusion coefficient turns negative. This model yield
a significant insight into the nature of the instabilit
leading to the segregation; however, it fails to descri
the transient waves at the early stages [7].

In this Letter we propose a continuum model whic
describes consistently the early phase of segregation w
traveling waves as well as the later stage of segregat
characterized by slow merging of bands of different pa
ticles. Our model predicts slow (logarithmic) coarsenin
of the segregated state. The dynamics of segregat
shows striking similarity with the experiments of Ref. [7]

Let us consider a mixture of two sorts of particles
A and B, of which A (B) corresponds to particles with
larger (smaller) static repose angle. Our model opera
with two variables: the relative concentration of particle
c ­ scA 2 cBdykcl, and local dynamic repose angleu.
Here cA,B are local partial concentrations of particles in
tegrated over drum cross section, andkcl ­ kcA 1 cBl is
an average concentration over the whole system. We
sume thatc andu are functions of longitudinal coordinate
x and timet. We assume that all parameters and va
ables are normalized by the radius of the drum and grav
acceleration.

The first equation represents conservation of the re
tive concentrationc in the binary mixture:

≠tc ­ 2≠xf2Dscd≠xc 1 gscd≠xug . (1)

The first term describes diffusion flux, and the secon
term describes differential flux of grains due to the gr
dient of dynamic repose angle. The transport coefficien
D, g in general depend on the relative concentrationc.
The specific form of these coefficients can be derive
from the equation for granular transport in the bulk an
surface layer. Flux balance calculation [11] yields th
following expressionsDscd ­ D0s1 2 hcd and gscd ­
G0s1 2 c2d (the latter was first derived in Ref. [6]). Con-
stantsh andG0 depend on the physical properties of th
grains. The constantG0 can be eliminated by rescaling o
© 1999 The American Physical Society 4643
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G0. The plus sign before the last term
means that the particles with the larger static repose an
are driven towards the greater dynamic repose angle.
will be shown below, this differential flux gives rise to the
segregation instability. Since this segregation flux van
ishes withgscd for jcj ! 1 (which correspond to pureA
or B states), it provides a natural saturation mechanis
for the segregation instability.

The second equation describes the dynamics ofu,

≠tu ­ afV 2 u 1 fscdg 1 Du≠xxu 1 g≠xxc . (2)

HereV is the angular velocity of the drum rotation, and
fscd is the static angle of repose which depends on th
relative concentration [9]. The constanta establishes
the time scale for the axial segregation. It characteriz
the ratio of the number of particles flowing within the thin
surface layer to the number of particles advected with
the bulk of the drum. In slowly rotating drums most of the
particles are brought to the surface via rigid body rotatio
in the bulk, resulting ina , 1. In contrast, for rapidly
rotating drums most of the particles are advected by clos
trajectories by the bulk flow, greatly reducing the valu
of a.

According to our definition ofc, fscd is an increasing
function of relative concentration. Since the angle of re
pose as a function of the concentrationc changes typically
in a small range [10], we can approximate the functio
fscd by linear dependencefscd ­ F 1 f0c. The con-
stantsV, F can be eliminated by the substitutionu !
u 2 u0, whereu0 ­ sV 1 Fd has the meaning of the sta-
tionary dynamic repose angle, which in the limitV ! 0
approaches the static repose angle. The first term in t
right-hand side of Eq. (2) describes the local dynamics
the repose angle (V increases the angle, and2u 1 fscd
describes the equilibrating effect of the surface flow), an
the termDu≠xxu describes axial diffusive relaxation. The
last term,g≠xxc, represents the lowest-order nonlocal con
tribution from the inhomogeneous distribution ofc. It ap-
pears as a result of an interplay between the bulk flo
and Fick diffusion [11]. As we will see later, this term
gives rise to the transient oscillatory dynamics of the bina
mixture.

Let us consider the stability of the uniform state
c ­ c0; u0 ­ f0c0, where c0 is determined by initial
conditions:

c ­ c0 1 Celt1ikx ,

u ­ u0 1 Felt1ikx .
(3)

To linearize the system, we need to expand the functio
Dscd, gscd nearc0. The stability properties depend on the
values of f0 and g0 ; gsc0d, d0 ­ D0s1 2 hc0d. The
eigenvaluesl1,2 are found from the following equation:

sl 1 d0k2d sl 1 Duk2 1 ad 2 g0saf0k2 2 gk4d ­ 0 .
(4)

At k ! 0 one findsl1 ­ 2a 2 sDu 1 g0f0dk2; l2 ­
sg0f0 2 d0dk2. Asymptotic expansion atk ! ` yields
4644
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2

f2Du 2 d0 6
p

sDu 2 d0d2 2 4g0g gk2.

(5)

It is easy to see that ifg0f0 . ad0, long-wave perturba-
tions are unstable (l2 . 0), and if g0g . sDu 2 d0d2y4,
short-wave perturbations oscillate and decay (eigenv
uesl1,2 are complex conjugate with negative real part
The full dispersion curvelsk2d for particular values of
parameters is plotted in Fig. 1. This curve is consis
tent with the measurements in Ref. [7]. Indeed, at sma
wavelengths the perturbations travel, and their phase v
locity yph ­ Imlyk asymptotically grows linearly with
k. At k ­ kp, frequency and phase velocity turn into
zero and remain zero for all long-wave perturbation
k , kp. Perturbations in the range0 , k , kc, where
kc ; fasg0f0 2 d0dysg0g 1 d0Dudg1y2 , kp, grow ex-
ponentially and there is an optimal wave number of th
fastest growing perturbationsk0. Oscillating perturbations
with k . kp always decay, which seems to be in agree
ment with experimental data, although direct experiment
measurement of Relskd is lacking. The explicit depen-
dence of the coefficientsd0, g0 on c0 yields the threshold
cmin for the transient oscillatory behavior. This thresh
old was indeed observed in the experiment [7]. Sinc
g0 ! 0 as c0 ! 1, there also is an upper limitcmax for
the transient oscillations according to our theory. Th
upper threshold has not yet been observed.

We performed numerical simulations of Eqs. (1) an
(2) using pseudospectral split-step method with period
boundary conditions. We used up to 512 mesh poin
in our numerical procedure. The following form of
nonlinear functions in Eqs. (1) and (2) was implemente
gscd ­ 1 2 c2 and fscd ­ f0c [12]. For simplicity we
set h ­ 0, so d0 ­ D0. We also verified thath fi

0 affects only quantitative features (i.e.,kp) without
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FIG. 1. Dispersion relationlskd for the small perturbation of
the uniform statec0 ­ 0 at f0 ­ 40, D ­ 0.05, Du ­ 0.1,
a ­ 0.025, g ­ 1. Perturbations are unstable atk , kc ­
0.994 and oscillate (and decay) atk . kp ­ 1.
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changing the qualitative behavior. Comparing the resu
of our linear stability analysis with the experimenta
data of Ref. [7] we obtained the representative valu
of the model parameters:a , 1023 1022, f0 , 10 40,
h , 1, DuyD0 , 1, gyDu , 10 [11].

The dynamics of the initially preseparated state wit
wave numberk . kp in a system with sizeL ­ 60 is
shown in Fig. 2. Short-wave initial perturbations produc
decaying standing waves, which later are replaced by qu
sistationary bands (Fig. 2a). The bands are separated
sharp interfaces which are very weakly attracted to ea
other. In fact, in simulations with parameters correspon
ing to Fig. 2a we were not able to detect interface mergin
at all in a reasonable simulation time. However, at high
rates of diffusion and dissipation, the interaction becom
more significant, and it leads to band merging and over
pattern coarsening (see Fig. 2b). In Fig. 3, we presen
number of bands as a function of time for this run.
FIG. 2. Space-time diagrams of the evolution of the preseparated state [csx, 0d ­ c0 1 ci cossk0xd] with c0 ­ 0, ci ­ 0.95, and
k0 ­ 1.79 . kp); time increases from top to bottom,x coordiante from left to right. (a) Initial transient. At timest , 15 the
initial perturbations excite decaying standing wave (superposition of left- and right-traveling waves), and at larger timest . 15,
aperiodic segregated bands emerge. Parameters of the model areD ­ 0.05, g ­ 1, a ­ 0.025, f0 ­ 40, L ­ 60, andDu ­ 0.1.
(b) Space-time diagram for long-time evolution, band merging, and coarsening during long-time evolution (0 , t , 10 000) at
higher diffusion constants, parametersD ­ 0.8, Du ­ 0.5, g ­ 1, a ­ 0.5, f0 ­ 2, L ­ 140.
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Fronts separating bands of different grains can
found as stationary solutions of Eqs. (1) and (2). In a
infinite system one finds from stationary Eq. (1)u ­
u0 1 DGscd (we again assumeh ­ 0), where Gscd ­R

fgscdg21 dc ­ 2
1
2 ln 12c

11c and u0 is an integration con-
stant. Plugging this expression in Eq. (2), we obtain t
second-order differential equation forc (for a symmetric
solution one choosesu0 ­ 0),

d
dx

"√
g 1

DDu

1 2 c2

!
dc
dx

#
1 af0c 1

aD
2

ln
1 2 c
1 1 c

­ 0 . (6)

This equation indeed possesses an interface solution.
asymptotic behavior can be found in the limitD ø
f0, when the states on both sides of the interface a
well segregated (jcsx ! `dj ! 61d. In this limit, far
away from the interface1 2 jcj ~ exps2xyld, where
4645
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FIG. 3. Number of frontsN as a function of time (diamonds)
and its fit by a functionN ­ 70yslnt 2 2.5d (long-dashed line).
Parameters correspond to Fig. 2b.

l ­
q

Du

a 1
4g

aD exps2 2f0

D d. As seen from this formula,
the characteristic front width vanishes asD, Du ! 0.
This could be anticipated, as in the absence of diffusio
nonlinearity gscd drives the system towards complete
segregation.

Logarithmic coarsening of the segregated state can
understood in terms of the weak interaction of fronts
Since the asymptotic field of the front approaches th
equilibrium value of the concentration exponentially fas
we expect exponential times for front interaction,T ~

expsdyld, whered is the initial distance between fronts.
For multiband structure, the number of frontsN (propor-
tional to the inverse average distance between fronts) d
creases approximately as a logarithmic function of tim
N ­ 1yd , 1ysconst1 l lnT d. This dependence indeed
agrees with our numerical simulations (see Fig. 3).

In conclusion, we proposed a simple continuum mod
for axial segregation of binary granular mixtures in long ro
tating drums. The model operates with two local dynam
cal variables, relative concentration of two components a
dynamic repose angle. The dynamics of our model show
qualitative similarity with the experimental observations o
initial transients and long-term segregation dynamics [3,5
7]. It captures both initial transient traveling waves an
subsequent onset of the band structure. The dispersion
lation for the slightly perturbed uniform state (4) quali
tatively agrees well with observations [7] and can serv
for fitting the model parameters. More detailed deriva
tion of the model and comparison with experiments wi
be given elsewhere [11]. The model also describes log
rithmic coarsening of the quasistatic band structure. Th
coarsening is typical for one-dimensional systems with e
ponentially weak attractive interaction among defects
interfaces, as in the phase ordering kinetics described
the Cahn-Hilliard model [13]. As in the Cahn-Hilliard
4646
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model, the order parameter (here concentrationc) is a con-
served quantity; therefore, front interaction must conform
to a global constraint. Our simulations also showed th
the model qualitatively reproduces more complicated ph
nomenology of the separation process reported in Ref. [
In particular, periodic modulation of the drum radius, mod
eled in our approach by a periodic variation ofV, leads to
band locking. Breaking of thex ! 2x symmetry results
in complete segregation in a much shorter time, similarly
the dynamics of grains in the drum with helicoidal shape
Finally, this model operates with variables averaged ov
the cross section of the drum and thus cannot descr
radial segregation. A more elaborate three-dimension
model is needed to describe both radial and axial seg
gation within a unified framework.
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