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Dynamics of Axial Separation in Long Rotating Drums
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We propose a continuum description for the axial separation of granular materials in a long rotating
drum. The model, operating with two local variables, concentration difference and the dynamic angle of
repose, describes both initial transient traveling wave dynamics and long-term segregation of the binary
mixture. Segregation proceeds through ultraslow logarithmic coarsening. [S0031-9007(99)09348-5]

PACS numbers: 45.70.Mg, 47.35.+i, 47.54.+r, 64.75.+¢9

The collective dynamics of granular materials recentlya binary mixture the model yields a nonlinear diffusion
have been attracting much interest [1-7]. The dissipaequation for the relative concentration of the ingredients
tive nature of interaction among macroscopic particlesalong the horizontal axis. Axial segregation occurs when
sets granular matter apart from familiar gaseous, liquidthe diffusion coefficient turns negative. This model yields
or solid states. One of the most fascinating features of significant insight into the nature of the instability
heterogeneous granular materials is their ability to segrdeading to the segregation; however, it fails to describe
gate under external agitation instead of mixing as wouldhe transient waves at the early stages [7].
be expected from thermodynamics. Essentially any varia- In this Letter we propose a continuum model which
tion in mechanical properties of particles (size, shapedescribes consistently the early phase of segregation with
density, surface roughness) may lead to their segregatiortraveling waves as well as the later stage of segregation

Granular flow in slowly rotating drums is different from characterized by slow merging of bands of different par-
conventional fluid motion. In the bulk, particles perform ticles. Our model predicts slow (logarithmic) coarsening
rigid body rotation around the drum axis until they reachof the segregated state. The dynamics of segregation
the free surface. Then they slide down within a thin nearshows striking similarity with the experiments of Ref. [7].
surface layer [4]. For intermediate rotation speed, the sur- Let us consider a mixture of two sorts of particles,
face has a rather flat S-curved shape, and arctangent of ilsand B, of which A (B) corresponds to particles with
average slope defines thdgnamic angle of reposeSince  larger (smaller) static repose angle. Our model operates
there is almost no interparticle motion in the bulk, seg-with two variables: the relative concentration of particles
regation of binary granular mixtures predominantly oc-c = (c4 — cp)/{c), and local dynamic repose angte
curs within the fluidized near-surface layer [3,5,7]. InHerec, s are local partial concentrations of particles in-
radial segregation grains of one type (for grains of differ-tegrated over drum cross section, da@l = (c4 + cp) is
ent sizes, the smaller ones) build up a core near the axan average concentration over the whole system. We as-
of rotation. It occurs during the first few revolutions of sume that and# are functions of longitudinal coordinate
the drum. For long drums, along with radial segregationy and timer. We assume that all parameters and vari-
axial segregation occurs at much later stages (after hurables are normalized by the radius of the drum and gravity
dreds of revolutions). Recent experiments [3,6,7] re-acceleration.
vealed interesting features of axial segregation. For rapid The first equation represents conservation of the rela-
rotation speed and large composition fraction of saltive concentratiorr in the binary mixture:
grains in a salt-sand mixturé > 0.55, small-scale per- _
turbations travel across the drum at early stages of segre- drc = =0 [=D(c)ore + g(c)o50]. (1)
gation. At later times longer-scale perturbations take ovefhe first term describes diffusion flux, and the second
and lead to quasistationary bands of segregated materiadlsrm describes differential flux of grains due to the gra-
which exhibit slow coarsening [5] leading sometimes todient of dynamic repose angle. The transport coefficients
complete segregation [8]. D, g in general depend on the relative concentration

Most of the theoretical models of segregation agree imhe specific form of these coefficients can be derived
that the reason for segregation is the sensitive dependenfrem the equation for granular transport in the bulk and
of the surface slope or shape on the relative concentratiosurface layer. Flux balance calculation [11] yields the
of different particles in the mixture. In Ref. [6] a simple following expressionsD(c) = Dy(1 — nc) and g(c) =
theory of segregation in thin surface flow driven by theGy(1 — ¢?) (the latter was first derived in Ref. [6]). Con-
local slope was proposed. For a monodisperse materiadtantsn and G, depend on the physical properties of the
the model recovers the S shape of the free surface. F@rains. The constarti, can be eliminated by rescaling of
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distancex — x/+/Go. The plus sign before the last term N RV 2
means that the particles with the larger static repose angle A1z 2 [=Dy = do = V(D — do) 4goy JK°.

are driven towards the greater dynamic repose angle. As (5)
will be shown below, this differential flux gives rise to the
segregation instability. Since this segregation flux van
ishes withg(c) for |c| — 1 (which correspond to purg

It is easy to see that §qfo > ady, long-wave perturba-
tions are unstablert > 0), and if goy > (Dy — do)*/4,

. _short-wave perturbations oscillate and decay (eigenval-
Mes Ao are complex conjugate with negative real part).
The full dispersion curve\(k?) for particular values of
parameters is plotted in Fig. 1. This curve is consis-
9,0 = a[Q — 0 + f(c)] + Dgd 0 + vyoc. (2) tentwith the measurements in Ref. [7]. Indeed, at small

. ) ) wavelengths the perturbations travel, and their phase ve-
Here Q) is the angular velocity of the drum rotation, and locity vy, = ImA/k asymptotically grows linearly with

f(c) is the static angle of repose which depends on the ¢  — k., frequency and phase velocity turn into
relative concentration [9]. The constant establishes ..y and remain zero for all long-wave perturbations
the time scale for the axial segregation. It characterizes  ;  perturbations in the range < k < k., where
the ratio of the number of particles flowing within the thin , _ fa(gofo — dy)/(g0y + doDg)]V? < ks, gr’ow ex-

. . . c
surface layer to the number of particles advected W'th”bonentially and there is an optimal wave number of the

the bulk of the drum. " In slowly rotating drums most of the ¢, qtest growing perturbatiorts. Oscillating perturbations
particles are brought to the surface via rigid body rotation,;ip, 1 > k. always decay, which seems to be in agree-
in the bulk, resulting ina ~ 1. In contrast, for rapidly  ent with experimental data, although direct experimental
rotating drums most of the particles are advected by closeghaasurement of Rek) is lacking. The explicit depen-
trajectories by the bulk flow, greatly reducing the valueyance of the coefficientdy, go on ¢, yields the threshold

of a. cmin for the transient oscillatory behavior. This thresh-

According to our definition ot, f(c) is an increasing 4" \vas indeed observed in the experiment [7]. Since
function of relative concentration. Since the angle of re- o — 0 ascy — 1, there also is an upper limity, for

pose as a function of the concentratioohanges typically  he transient oscillations according to our theory. This
in a small range [10], we can approximate the functlonupper threshold has not yet been observed.

f(c) by linear dependencﬁ(c) = F + foc. '_I'hg con- We performed numerical simulations of Egs. (1) and
stants(), F can b_e eliminated by the substitutigh— 5y \;sing pseudospectral split-step method with periodic
6 — 0o, wheredy = (Q + F) has the meaning of the Sta- o ndary conditions. We used up to 512 mesh points

tionary dynamic repose angle, which in the lifilt— 0 i, our numerical procedure. The following form of

approaches the static repose angle. The first term in the,sjinear functions in Egs. (1) and (2) was implemented:
right-hand side of Eq. (2) describes the local dynamics O%(c) —1 - c?andf(c) = foc [12]. For simplicity we
the repose angle() increases the angle, areéd + f(c) gt n =0, s0dy =D, We also verified thaty #

describes the equilibrating effect of the surface flow), an@) s¢ects only quantitative features (i.ek) without
the termDyd,., 0 describes axial diffusive relaxation. The ’

last term,yd,,c, represents the lowest-order nonlocal con-
tribution from the inhomogeneous distributioncaf It ap- 2 ' ' '
pears as a result of an interplay between the bulk flow
and Fick diffusion [11]. As we will see later, this term
gives rise to the transient oscillatory dynamics of the binary 1k i
mixture.

Let us consider the stability of the uniform state,
¢ = co; Bp = foco, Where ¢y is determined by initial
conditions:

for the segregation instability.
The second equation describes the dynamia, of

c=co+ Ce/\t+ikx,
0 = 00 + (I)e)\t+ikx

To linearize the system, we need to expand the functions
D(c), g(c) nearcy. The stability properties depend on the  -15 1
values of fo and gg = g(cg), dg = Do(1 — mcg). The
eigenvalues\, ; are found from the following equation: 25 0.5 1 15 2
(A + dok®) (A + Dgk® + a) — golafok® — yk*) = 0.
(4) FIG. 1. Dispersion relation(k) for the small perturbation of

the uniform statecy = 0 at f, = 40, D = 0.05, Dy = 0.1,

At k — 0 one findsA; = —a — (Dy + gofo)k’s Ax = & =0025, y = 1. Perturbations are unstable at< k, =
(gofo — do)k?. Asymptotic expansion &t — o« yields 0.994 and oscillate (and decay) at> k. = 1.
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changing the qualitative behavior. Comparing the results Fronts separating bands of different grains can be

of our linear stability analysis with the experimental found as stationary solutions of Egs. (1) and (2). In an

data of Ref. [7] we obtained the representative valueinfinite system one finds from stationary Eq. (8)=

of the model parameterst ~ 10731072, fo ~ 10—40, 0y + DG(c) (we again assume) = 0), where G(c) =

n ~ 1,Dy/Dg ~ 1, y/Dg ~ 10 [11]. Jlg(e)] Vde = —5In 155 and 6, is an integration con-
The dynamics of the initially preseparated state withstant. Plugging this expression in Eq. (2), we obtain the

wave numberk > k. in a system with size. = 60 is  second-order differential equation fer(for a symmetric
shown in Fig. 2. Short-wave initial perturbations producesolution one choose%, = 0),

decaying standing waves, which later are replaced by qua- d DD, \dc

sistationary bands (Fig. 2a). The bands are separated by d |:(7 1 — 02>E:| + afoc +

sharp interfaces which are very weakly attracted to each

other. In fact, in simulations with parameters correspond- aD | l—c_ 0 (6)
ing to Fig. 2a we were not able to detect interface merging 2 1 +c¢ '

at all in a reasonable simulation time. However, at higheThis equation indeed possesses an interface solution. Its
rates of diffusion and dissipation, the interaction becomessymptotic behavior can be found in the limit <«
more significant, and it leads to band merging and overalf,, when the states on both sides of the interface are
pattern coarsening (see Fig. 2b). In Fig. 3, we present well segregated|{(x — «©)| — *1). In this limit, far
number of bands as a function of time for this run. away from the interfacel — |c| « exp(—x/I), where

(a) (b)
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FIG. 2. Space-time diagrams of the evolution of the preseparated stat®)[= ¢y + ¢; codkox)] with ¢y = 0, ¢; = 0.95, and
ko = 1.79 > k.); time increases from top to bottom, coordiante from left to right. (a) Initial transient. At times< 15 the
initial perturbations excite decaying standing wave (superposition of left- and right-traveling waves), and at largerstimgs
aperiodic segregated bands emerge. Parameters of the model-ar@.05, vy = 1, a = 0.025, f, = 40, L = 60, andDy = 0.1.

(b) Space-time diagram for long-time evolution, band merging, and coarsening during long-time evdlution<¢ 10000) at
higher diffusion constants, parametéls= 0.8, Dy = 0.5, vy = 1, « = 0.5, fo = 2, L = 140.
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model, the order parameter (here concentratjas a con-
served quantity; therefore, front interaction must conform
to a global constraint. Our simulations also showed that
the model qualitatively reproduces more complicated phe-
nomenology of the separation process reported in Ref. [6].
In particular, periodic modulation of the drum radius, mod-

| eled in our approach by a periodic variation(®f leads to

N — band locking. Breaking of the — —x symmetry results

S N in complete segregation in a much shorter time, similarly to
the dynamics of grains in the drum with helicoidal shape.
Finally, this model operates with variables averaged over
the cross section of the drum and thus cannot describe
‘ ‘ radial segregation. A more elaborate three-dimensional
0 5000 10000 15000 model is needed to describe both radial and axial segre-

t gation within a unified framework.

FIG. 3. Number of frontsV as a function of time (diamonds) We thank S. Morris and J. Kakalios for useful
and its fit by a functionv = 70/(Int — 2.5) (long-dashed line). JiScussions. This research is supported by the U.S.

Parameters correspond to Fig. 2b. DOE, Grants No. W-31-109-ENG-38, No. DE-FGO3-
95ER14516, No. DE-FG03-96ER14592, and by NSF,
STCS No. DMR91-20000.
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I = \/% + i—gexp(—%). As seen from this formula,

the characteristic front width vanishes @x Dy — 0.

This could be anticipated, as in the absence of diffusion

nonlinearity g(¢) drives the system towards complete
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