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Renormalization of the Three-Body System with Short-Range Interactions
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We discuss renormalization of the nonrelativistic three-body problem with short-range forces. The
problem becomes nonperturbative at momenta of the order of the inverse of the two-body scattering
length, and an infinite number of graphs must be summed. This summation leads to a cutoff dependence
that does not appear in any order in perturbation theory. We argue that this cutoff dependence can be
absorbed in a single three-body counterterm and compute the running of the three-body force with the
cutoff. We comment on the relevance of this result for the effective field theory program in nuclear
and molecular physics. [S0031-9007(98)08276-3]

PACS numbers: 03.65.Nk, 11.80.Jy, 21.45.+v, 34.20.Gj

Systems composed of particles with momehtenuch  dence can be absorbed in the coefficients of the leading-
smaller than the inverse ran@gR of their interaction are order interactions themselves. All our ignorance about
common in nature. This separation of scales can be exhe influence of short-distance physics on low-energy phe-
ploited by the method of effective field theory (EFT) that nomena is then embodied in these few coefficients, and
provides a systematic expansion in powers of the smaEFT retains its predictive power. However, the exten-
parameterkR [1]. Generically, the two-body scattering sion of this program to three-particle systems presents us
length a, is comparable taR, and low-density systems with a puzzle [5]. Although in some fermionic channels
with k¥ << 1/a, can be described to any order &#® by the resummed leading two-body interactions lead to un-
a finite number of EFT graphs [2]. However, there areambiguous and very successful predictions [6,7], ampli-
many interesting systems, such as those made out of ntudes in bosonic systems and other fermionic channels
cleons or of*He atoms, for whichz, is much larger than show sensitivity to the UV cutoff, as evidenced in the
R. In this case the expansion becomes nonperturbativEhomas [8] and Efimov [9] effects. This happens even
at momenta of the order of/a,, in the sense that an though each leading-order three-body diagram with re-
infinite number of diagrams must be resummed. This resummed two-body interactions is individually UV finite.
summation generates a new expansion in powerkRof We will argue below that the addition of a one-parameter
where the full dependence i, is kept. Consequently, three-body force counterterm at leading order is neces-
the EFT is valid beyond ~ 1/a,, comprising, in par- sary and sufficient to eliminate this cutoff dependence.
ticular, bound states of sizea,. There has been enor- This result extends the EFT program to three-particle
mous progress recently in dealing with this problem insystems with large two-body scattering lengths, includ-
the two-body case [3], where the resummation is equivaing the approach of Ref. [10] where pions are treated
lent to effective range theory [4]. Ultraviolet (UV) diver- perturbatively.
gences appear in graphs with leading-order interactions The most general Lagrangian involving a nonrelativistic
and their resummation contains arbitrarily high powersbosony and invariant under small-velocity Lorentz, parity,
of the cutoff. A crucial point is that this cutoff depen- and time-reversal transformations is
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if . \Y Co  t, 2 Let us now consider particle/bound-state scattering. All

L =¢'{ido + M ¥ - B W) diagrams contributing to this process in leading order are
D illustrated in Fig. 1(b). Each of the diagrams including

- ?0 Wiy + ..., (1) only two-body interactions gives a contribution of order

~Mg?/0Q* ~ 4wAda3. (The properly normalized ampli-
where the ellipsis denotes terms with more derivatives anduide is independent of the arbitrary paraméeteit appears
or fields; those with more fields will not contribute to the here only because of our choice of interpolating field for
three-body amplitude, while those with more derivativesthe bound state.) The relative size of graphs that include
are suppressed at low momentum. It is convenient [11] t@ three-body force will be discussed shortly.

rewrite this theory by introducing a dummy field(called The sum of all the diagrams in Fig. 1(b) can be accom-
“dibaryon” in analogy to the nuclear case) with quantumplished by solving the equation represented by the second
numbers of two bosons, equality in Fig. 1(b) [5-7,12]:
o2
L= l/f*(iao + 2VM>‘/’ + ATTT a(p) = K(p,k)
22 A 2
¢ + 2| dgK(p.g) 55— ale). (@)
- E(TTW + He) + hTtTyty + ... (2) ™ Jo q L€

here k is the i i tgoi tum,
The arbitrary scalé\ is included to give the field” the vA\//IEerj 3k2(;)4) _|sl/a(§ ilgct?]rglr;gtagognge%nﬁ)l(;ﬂozm;)ni:m

usual mass dimension. Observables depend on the pg; tteri litud lized i h that
rameters of Eq. (2) only through the combinatiatis = € scatiering ampliude normafzed n such a way ta

/A — dmay/M and Dy = —3hg?/A2 The (bare) g;d: —a(0) is the particle/bound-state scattering length,
dibaryon propagator is simply a constartA, while the

particle propagator reduces to the usual nonrelativistic 41 3

formi/(p® — p%/2M). First, we consider the dressing of K(p,q) = §<— Ry p? - ME)

the dibaryon in Fig. 1(a) at a generic moment@n The @2

boson loop has a linear UV divergence that is absorbed 1 q* + pg + p* — ME h
in g2/A, a finite piece~Mg>Q /47w A? determined by the X | —In{ ~>— T 2 — ME Me2 |
o /] rq q qp T p 8
unitarity cut, and terms suppressed by powergobver )

the cutoff A that are subleading and of the same size as

terms in Eq. (2) already disregarded. Using the relatiormThe parametric dependencedifp) on k is kept implicit.
betweeng anda,, we see that the finite pieceisQa,/A We are interested im = 1 for the boson case. This
and, consequently, has to be resummed to all orders farquation reduces to the expressions found in Refs. [5,12]
0 = 1/ay. As aresult, the dressed dibaryon propagatowheni = 0. Three nucleons in the spih= 1/2 channel

to leading order is given by obey a pair of integral equations with similar properties
1 to this bosonic equation, while the spin= 3/2 channel
iS(p) = o — corresponds ta = —1/2.
—A + %\/—MPO + G —ie+ie Let us look at the asymptotic behavior of the solution of

Attaching four boson lines to this propagator gives theEd: (4) inthe casé = 0. Forl/a, < p < A (butk ~
two-particle scattering amplitude at leading order, whichl/42), the integral in Eq. (4) is dominated by momenta in
is identical to the effective range expansion at the ordef® intermediate regioh/a, < ¢ < A and the equation
of the scattering length. Further corrections give the next

o 2 2
terms in the effective range expansion [4]. a(p) = 4A j d_qa(q) Inl £ Tprgtp . (6)
V3w Jo ¢ q> — pq + p?
_—==t ==+ ===+ - holds up to terms suppressed by powerd gba, and/or
(@ p/A. The scale invariance of Eqg. (6) suggests an ansatz

of the forma(p) ~ p*, which works ifs satisfies

Tl = At A T - o @

s
V3 sC0S%

= E + 5+ m + IM The solutions of Eqg. (7) come in pairs due to the ad-
(b)

ditional symmetrya(p) — a(1/p) of Eq. (6). ForA <

Ae = % = 0.4135, Eq. (7) has only real roots. How-

FIG. 1. (a) Dressing of the dibaryon. (b) Diagrams contribut-€ver, for A =1 there are two imaginary solutions=
ing to particle/bound-state scattering. *iso, With 5o = 1.0064. Both make the integral in Eq. (4)
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UV finite and are equally acceptable(p) is given in  pansion is perturbative, the cutoff-dependent contribution
the intermediate region by a linear combinationgfc  from high loop momenta can be expanded in powers of
and p~ %, Equation (6) is homogeneous, so it clearlythe low external momenta and canceled by local terms
cannot determine the overall normalizationagfbut we  in the Lagrangian. Thus all uncertainty coming from the
now see that it cannot uniquely determine the phase ehigh momentum behavior of the theory is parametrized
ther. However, Eq. (6) with finite\ has a solution with by a few local counterterms. The present case is com-
a well-determined phase that in the intermediate regiomplicated by the nonanalytic cutoff dependence of the am-
1/a; < p < Ais, on dimensional grounds, plitude aroundp = 0. That, however, does not mean that
the renormalization program is doomed: a three-body force
a(p) =A co<s0 In£ + 6), (8) term of sufficient strength contributes not only at tree level,
A but also in loops dressed by any number of two-particle
whered is some dimensiomeSS, Cutoff-independent numjnteractions. This generates nonlocal contributions pre-
ber. The limitA — o is not well defined because Eq. (4) cisely of the same form as the cutoff-dependent terms
does not have a unique solution in this limit. [A rigorous generated by the two-body force alone. To see how that
proof that Eq. (4) does not have a unique solution can béomes about we turn on the three-body force term and
found in [13].] This nonuniqueness comes from our ide-Write A(A) = 2Mg>H(A)/A* assumingH(A) ~ 1. The
alization of the interactions as pointlike. Note that sub-asymptotic Eq. (6) becomes
leading contributions from the integration ranfje= ¢ = 4 A dg
% change phase and amplitude significantly. Numerical — a(p) = NS f —al(q)
solutions of Eq. (4) withk = 0 for different values ofA . 5 1 5
are plotted in Fig. 2. (Our results agree with those in > [m(‘l TpPgtp ) + 2Hﬂ} (9)
Ref. [14] for the appropriate cutoff values.) We observe q* — pg + p? A |°
that indged_the behavior af(p) in the regio.nl/az < where we have sef = 1 for definiteness. Forp ~
’;1« Als given by Eq. (8) and that s_maII dlffer_ences N A the term proportional ta# becomes important and
the asymptotic phase lead to large differences in the para-(p ~ A) has a complicated form. In the rangéa, <

ticle/bound-state scattering length. p < A, however, the three-body force is suppressed by

Note that if the series of diagrams in Fig. 1(b) was /A compared to the logarithm and can be disregarded.

truncated at some f|n|_te numbgr of laops, one would mISéonsequently, Eq. (8) is still correct in the intermediate
the correct asymptotic behavior of(p) [Eq. (8)] that region. The effect of a finite value df can be at most

generates _the .CUtOff dependence_. T_his is b_ec&usaand to change the values of the amplitudeand the phasé,
its expansion in powers of) vanish in a neighborhood i hecome functions d. As shown in Fig. 2, this is

of A =0 and the truncation of th_e series in Fig. 1(b) is confirmed by numerical solutions: while different values of
equw_alent to perturbation theory i . the three-body force preserve the form of the solution, the
Th!s CUthf dependenc_e comes from the behavior Of th%hase (and amplitude) are changedH|is chosen to be a
amphtud_e in the UV region, where the EFT I‘agrang""m'function of A such as to cancel the explicit dependence,
Eq. (2), is not to be trusted. When the low-energy €X-we can make the solution of Eq. (4) cutoff independent for
all p < A. In particular, the scattering amplitude that is
— determined by the on-shell valugk) with & ~ 1/a, will
3 be cutoff independent as well. For this to be possible
and é must depend on the same combinatiomcind H.
ThusH(A) must be chosen such that

73 —soInA + 8(H(A) = —soInAx,  (10)

where A, is a parameter fixed by experiment or by
3 matching with a microscopic model.

E We can get a handle on the form@&f A) by considering
Eq. (4) with two different values of the cutofA and

3 A’ > A, whose solutions we denote by p) anda’(p).

ol il 3 In the intermediate regioih/a;, < p < A the equations

10 10 ' 10° 10° 10t for a(p) anda’(p) will have the same form except for
a
2

p [1/ 2 A
[ N dq K'(p,q)d'(q)

FIG. 2. a(p) for k = 0. Full, dashed, and dash-dotted curves T

are forH = 0 and A = (1.0,2.0,3.0) X 104a{1, respectively. A H(A H(A

Dotted, short-dash-dotted, and short-dashed curves ar fer + 2[ dgq HA) _ HA) a'(q) (11)
10*a; ' andH = —6.0, —2.5, —1.8, respectively. u A/ A ’
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FIG. 3. Three-body force as a function of the cutoff
numerical solution (dots) and Eq. (12).
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FIG. 4. Energy dependencekcoté for different cutoffs
[A = (42.6,100.0,230.0,959.0)a; '].

2.0

where u < A is an arbitrary scale, and we droppedthe EFT; it has a cutoff-independent binding energy of

terms suppressed by further powersigia, and p/A.
Assuminga’(p) has the same phase fodn(p/A4)] as
a(p) even forp ~ A/, we can make the terms in Eq. (11)
vanish by choosing

_siniso In(A/A4) — arctaril/so)]

HA) = = G50 n(A /Ay + arctant] /so)]”

(12)

Since K/ — K nearly vanishes for allp < A, a'(p)
has also the same amplitude @s) in the intermediate
region. That is, withH(A) chosen like Eq. (12k(p) =
a'(p) for all valuesp < A (up to terms suppressed by
p/A), and the on-shell amplitude(k) for k < A will
be A independent. Once the paramefer is fitted to an

experimental datum at a certain energy, the energy depen-

dence can be predicted.

We also determingd(A) numerically by finding the
value of H that keeps the scattering lengith = —a(0)
constant for each value of varying over a large range.
These values are plotted as a function &fin Fig. 3
together withH(A) given by Eq. (12). For illustration
we usedaz = 1.56a,, but have verified that similar
agreement holds for other valuesaf In Fig. 4 we show
the corresponding coté = ik + a(k)™', whereé is the

S-wave phase shift for particle/bound-state scattering, fo

several values o\. As argued above, it is insensitive to
A as long ask < A. The effective range, for example,
is predicted asr; = 0.57a4,. Note that the three-body

B; = 1.5/Ma5.

The value for the ratiaczz/a, used above is the one
suggested by the values af, = 124.7 A and a3
195 A given by a phenomenologicdHe-*He potential
[15] consistent with the recent measurement of the dimer
binding energy [16]. Figure 4 then represents the phase
shifts for atom/dimer scattering, with an effective range
r3 = 71 A. Similarly, our result for the shallowest bound
state suggests an excited state of the trimerBat=
1.2 mK. Because the integral equations are similar, our
arguments are relevant for three-fermion systems with
internal quantum numbers as well [17]. The approach of
Ref. [10] then suggests that our bound-state results would
provide a reasonable estimate of the triton binding energy.
In conclusion, we have provided analytical and nu-
merical evidence that renormalization of the three-body
problem with short-range forces requires in general the
presence of a one-parameter contact three-body force in
leading order. This opens up the possibility of applying
the EFT method to a large class of systems of three or
more particles with short-range forces.
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force discussed here is not the one used in realistic

potential models where the effective cutoff is at much

higher scales.

These arguments hold for the bound-state problem as
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well because the inhomogeneous terms played no role[;) G p. Lepage, inFrom Actions to Answers, Proceedings

We have solved the homogeneous equation withihk)

of Fig. 3. Only the shallowest bound state is large enough

to be unequivocally within the limits of applicability of
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