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We discuss renormalization of the nonrelativistic three-body problem with short-range forces.
problem becomes nonperturbative at momenta of the order of the inverse of the two-body scatt
length, and an infinite number of graphs must be summed. This summation leads to a cutoff depen
that does not appear in any order in perturbation theory. We argue that this cutoff dependence c
absorbed in a single three-body counterterm and compute the running of the three-body force wit
cutoff. We comment on the relevance of this result for the effective field theory program in nuc
and molecular physics. [S0031-9007(98)08276-3]
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Systems composed of particles with momentak much
smaller than the inverse range1yR of their interaction are
common in nature. This separation of scales can be e
ploited by the method of effective field theory (EFT) tha
provides a systematic expansion in powers of the sm
parameterkR [1]. Generically, the two-body scattering
length a2 is comparable toR, and low-density systems
with k ø 1ya2 can be described to any order inkR by
a finite number of EFT graphs [2]. However, there ar
many interesting systems, such as those made out of
cleons or of4He atoms, for whicha2 is much larger than
R. In this case the expansion becomes nonperturbat
at momenta of the order of1ya2, in the sense that an
infinite number of diagrams must be resummed. This r
summation generates a new expansion in powers ofkR
where the full dependence inka2 is kept. Consequently,
the EFT is valid beyondk , 1ya2, comprising, in par-
ticular, bound states of size,a2. There has been enor-
mous progress recently in dealing with this problem i
the two-body case [3], where the resummation is equiv
lent to effective range theory [4]. Ultraviolet (UV) diver-
gences appear in graphs with leading-order interactio
and their resummation contains arbitrarily high powe
of the cutoff. A crucial point is that this cutoff depen-
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dence can be absorbed in the coefficients of the lead
order interactions themselves. All our ignorance abo
the influence of short-distance physics on low-energy p
nomena is then embodied in these few coefficients, a
EFT retains its predictive power. However, the exte
sion of this program to three-particle systems presents
with a puzzle [5]. Although in some fermionic channe
the resummed leading two-body interactions lead to u
ambiguous and very successful predictions [6,7], amp
tudes in bosonic systems and other fermionic chann
show sensitivity to the UV cutoff, as evidenced in th
Thomas [8] and Efimov [9] effects. This happens ev
though each leading-order three-body diagram with
summed two-body interactions is individually UV finite
We will argue below that the addition of a one-parame
three-body force counterterm at leading order is nec
sary and sufficient to eliminate this cutoff dependenc
This result extends the EFT program to three-parti
systems with large two-body scattering lengths, inclu
ing the approach of Ref. [10] where pions are treat
perturbatively.

The most general Lagrangian involving a nonrelativis
bosonc and invariant under small-velocity Lorentz, parity
and time-reversal transformations is
© 1999 The American Physical Society 463
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L ­ cy

√
i≠0 1

$=2

2M

!
c 2

C0

2
scycd2

2
D0

6
scycd3 1 . . . , (1)

where the ellipsis denotes terms with more derivatives an
or fields; those with more fields will not contribute to th
three-body amplitude, while those with more derivative
are suppressed at low momentum. It is convenient [11]
rewrite this theory by introducing a dummy fieldT (called
“dibaryon” in analogy to the nuclear case) with quantu
numbers of two bosons,

L ­ cy

√
i≠0 1

$=2

2M

!
c 1 DTyT

2
g

p
2

sTycc 1 H.c.d 1 hTyTcyc 1 . . . . (2)

The arbitrary scaleD is included to give the fieldT the
usual mass dimension. Observables depend on the
rameters of Eq. (2) only through the combinationsC0 ;
g2yD ­ 4pa2yM and D0 ; 23hg2yD2. The (bare)
dibaryon propagator is simply a constantiyD, while the
particle propagator reduces to the usual nonrelativis
form iysp0 2 p2y2Md. First, we consider the dressing o
the dibaryon in Fig. 1(a) at a generic momentumQ. The
boson loop has a linear UV divergence that is absorb
in g2yD, a finite piece,Mg2Qy4pD2 determined by the
unitarity cut, and terms suppressed by powers ofQ over
the cutoff L that are subleading and of the same size
terms in Eq. (2) already disregarded. Using the relati
betweeng anda2, we see that the finite piece is,Qa2yD

and, consequently, has to be resummed to all orders
Q * 1ya2. As a result, the dressed dibaryon propaga
to leading order is given by

iSspd ­
1

2D 1
Mg2

4p

q
2Mp0 1

$p 2

4 2 ie 1 ie

. (3)

Attaching four boson lines to this propagator gives th
two-particle scattering amplitude at leading order, whic
is identical to the effective range expansion at the ord
of the scattering length. Further corrections give the ne
terms in the effective range expansion [4].
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FIG. 1. (a) Dressing of the dibaryon. (b) Diagrams contribu
ing to particle/bound-state scattering.
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Let us now consider particle/bound-state scattering. A
diagrams contributing to this process in leading order a
illustrated in Fig. 1(b). Each of the diagrams including
only two-body interactions gives a contribution of orde
,Mg2yQ2 , 4pDa3

2. (The properly normalized ampli-
tude is independent of the arbitrary parameterD; it appears
here only because of our choice of interpolating field fo
the bound state.) The relative size of graphs that includ
a three-body force will be discussed shortly.

The sum of all the diagrams in Fig. 1(b) can be accom
plished by solving the equation represented by the seco
equality in Fig. 1(b) [5–7,12]:

aspd ­ Ksp, kd

1
2l

p

Z L

0
dq Ksp, qd

q2

q2 2 k2 2 ie
asqd , (4)

where k (p) is the incoming (outgoing) momentum,
ME ­ 3k2y4 2 1ya2

2 is the total energy,asp ­ kd is
the scattering amplitude normalized in such a way th
a3 ­ 2as0d is the particle/bound-state scattering length
and

Ksp, qd ­
4
3

√
1
a2

1

s
3
4

p2 2 ME

!

3

"
1

pq
ln

√
q2 1 pq 1 p2 2 ME
q2 2 qp 1 p2 2 ME

!
1

h
Mg2

#
.

(5)

The parametric dependence ofaspd on k is kept implicit.
We are interested inl ­ 1 for the boson case. This
equation reduces to the expressions found in Refs. [5,1
whenh ­ 0. Three nucleons in the spinJ ­ 1y2 channel
obey a pair of integral equations with similar propertie
to this bosonic equation, while the spinJ ­ 3y2 channel
corresponds tol ­ 21y2.

Let us look at the asymptotic behavior of the solution o
Eq. (4) in the caseh ­ 0. For1ya2 ø p ø L (but k ,
1ya2), the integral in Eq. (4) is dominated by momenta in
the intermediate region1ya2 ø q ø L and the equation

aspd ­
4l

p
3 p

Z `

0

dq
q

asqd ln

√
q2 1 pq 1 p2

q2 2 pq 1 p2

!
, (6)

holds up to terms suppressed by powers of1ypa2 and/or
pyL. The scale invariance of Eq. (6) suggests an ansa
of the formaspd , ps, which works ifs satisfies

1 2
8l
p

3

sin ps
6

s cosps
2

­ 0 . (7)

The solutions of Eq. (7) come in pairs due to the ad
ditional symmetryaspd ! as1ypd of Eq. (6). Forl ,

lc ­
3
p

3
4p . 0.4135, Eq. (7) has only real roots. How-

ever, for l ­ 1 there are two imaginary solutionss ­
6is0, with s0 . 1.0064. Both make the integral in Eq. (4)
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UV finite and are equally acceptable:aspd is given in
the intermediate region by a linear combination ofpis0

and p2is0 . Equation (6) is homogeneous, so it clearl
cannot determine the overall normalization ofa, but we
now see that it cannot uniquely determine the phase
ther. However, Eq. (6) with finiteL has a solution with
a well-determined phase that in the intermediate regi
1ya2 ø p ø L is, on dimensional grounds,

aspd ­ A cos

µ
s0 ln

p
L

1 d

∂
, (8)

whered is some dimensionless, cutoff-independent num
ber. The limitL ! ` is not well defined because Eq. (4
does not have a unique solution in this limit. [A rigorou
proof that Eq. (4) does not have a unique solution can
found in [13].] This nonuniqueness comes from our ide
alization of the interactions as pointlike. Note that sub
leading contributions from the integration rangeL # q #

` change phase and amplitude significantly. Numeric
solutions of Eq. (4) withk ­ 0 for different values ofL
are plotted in Fig. 2. (Our results agree with those
Ref. [14] for the appropriate cutoff values.) We observ
that indeed the behavior ofaspd in the region1ya2 ø
p ø L is given by Eq. (8) and that small differences in
the asymptotic phase lead to large differences in the p
ticle/bound-state scattering length.

Note that if the series of diagrams in Fig. 1(b) wa
truncated at some finite number of loops, one would mi
the correct asymptotic behavior ofaspd [Eq. (8)] that
generates the cutoff dependence. This is becauses0 (and
its expansion in powers ofl) vanish in a neighborhood
of l ­ 0 and the truncation of the series in Fig. 1(b) i
equivalent to perturbation theory inl.

This cutoff dependence comes from the behavior of th
amplitude in the UV region, where the EFT Lagrangian
Eq. (2), is not to be trusted. When the low-energy e

FIG. 2. aspd for k ­ 0. Full, dashed, and dash-dotted curve
are for H ­ 0 and L ­ s1.0, 2.0, 3.0d 3 104a21

2 , respectively.
Dotted, short-dash-dotted, and short-dashed curves are forL ­
104a21

2 andH ­ 26.0, 22.5, 21.8, respectively.
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pansion is perturbative, the cutoff-dependent contributi
from high loop momenta can be expanded in powers
the low external momenta and canceled by local term
in the Lagrangian. Thus all uncertainty coming from th
high momentum behavior of the theory is parametrize
by a few local counterterms. The present case is co
plicated by the nonanalytic cutoff dependence of the a
plitude aroundp ­ 0. That, however, does not mean tha
the renormalization program is doomed: a three-body for
term of sufficient strength contributes not only at tree leve
but also in loops dressed by any number of two-partic
interactions. This generates nonlocal contributions p
cisely of the same form as the cutoff-dependent term
generated by the two-body force alone. To see how th
comes about we turn on the three-body force term a
write hsLd ­ 2Mg2HsLdyL2 assumingHsLd , 1. The
asymptotic Eq. (6) becomes

aspd ­
4

p
3 p

Z L

0

dq
q

asqd

3

"
ln

√
q2 1 pq 1 p2

q2 2 pq 1 p2

!
1 2H

pq
L2

#
, (9)

where we have setl ­ 1 for definiteness. Forp ,
L the term proportional toH becomes important and
asp , Ld has a complicated form. In the range1ya2 ø
p ø L, however, the three-body force is suppressed
pyL compared to the logarithm and can be disregarde
Consequently, Eq. (8) is still correct in the intermedia
region. The effect of a finite value ofH can be at most
to change the values of the amplitudeA and the phased,
which become functions ofH. As shown in Fig. 2, this is
confirmed by numerical solutions: while different values o
the three-body force preserve the form of the solution, t
phase (and amplitude) are changed. IfH is chosen to be a
function ofL such as to cancel the explicitL dependence,
we can make the solution of Eq. (4) cutoff independent f
all p ø L. In particular, the scattering amplitude that i
determined by the on-shell valueaskd with k , 1ya2 will
be cutoff independent as well. For this to be possibleA
andd must depend on the same combination ofL andH.
ThusHsLd must be chosen such that

2s0 ln L 1 dsssHsLdddd ­ 2s0 ln L? , (10)

where L? is a parameter fixed by experiment or b
matching with a microscopic model.

We can get a handle on the form ofHsLd by considering
Eq. (4) with two different values of the cutoffL and
L0 . L, whose solutions we denote byaspd and a0spd.
In the intermediate region1ya2 ø p ø L the equations
for aspd anda0spd will have the same form except for

2
p

" Z L0

L

dq K 0sp, qda0sqd

1 2
Z L

m

dq

√
HsL0d

L0
2

HsLd
L

!
a0sqd

#
, (11)
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FIG. 3. Three-body force as a function of the cutoffL:
numerical solution (dots) and Eq. (12).

where m ø L is an arbitrary scale, and we droppe
terms suppressed by further powers of1ypa2 and pyL.
Assuminga0spd has the same phase cosfs0 lnspyL?dg as
aspd even forp , L0, we can make the terms in Eq. (11
vanish by choosing

HsLd ­ 2
sinfs0 lnsLyL?d 2 arctans1ys0dg
sinfs0 lnsLyL?d 1 arctans1ys0dg

. (12)

Since K 0 2 K nearly vanishes for allp ø L, a0spd
has also the same amplitude asaspd in the intermediate
region. That is, withHsLd chosen like Eq. (12),aspd ­
a0spd for all valuesp ø L (up to terms suppressed b
pyL), and the on-shell amplitudeaskd for k ø L will
be L independent. Once the parameterL? is fitted to an
experimental datum at a certain energy, the energy dep
dence can be predicted.

We also determineHsLd numerically by finding the
value of H that keeps the scattering lengtha3 ­ 2as0d
constant for each value ofL varying over a large range.
These values are plotted as a function ofL in Fig. 3
together withHsLd given by Eq. (12). For illustration
we used a3 ­ 1.56a2, but have verified that similar
agreement holds for other values ofa3. In Fig. 4 we show
the correspondingk cotd ­ ik 1 askd21, whered is the
S-wave phase shift for particle/bound-state scattering,
several values ofL. As argued above, it is insensitive to
L as long ask ø L. The effective range, for example
is predicted asr3 ­ 0.57a2. Note that the three-body
force discussed here is not the one used in realis
potential models where the effective cutoff is at muc
higher scales.

These arguments hold for the bound-state problem
well because the inhomogeneous terms played no ro
We have solved the homogeneous equation with theHsLd
of Fig. 3. Only the shallowest bound state is large enou
to be unequivocally within the limits of applicability of
466
d

)

y

en-

for

,

tic
h

as
le.

gh

FIG. 4. Energy dependence:k cotd for different cutoffs
fL ­ s42.6, 100.0, 230.0, 959.0da21

2 g.

the EFT; it has a cutoff-independent binding energy
B3 ­ 1.5yMa2

2.
The value for the ratioa3ya2 used above is the one

suggested by the values ofa2 ­ 124.7 Å and a3 ­
195 Å given by a phenomenological4He-4He potential
[15] consistent with the recent measurement of the dim
binding energy [16]. Figure 4 then represents the pha
shifts for atom/dimer scattering, with an effective rang
r3 ­ 71 Å. Similarly, our result for the shallowest bound
state suggests an excited state of the trimer atB3 ­
1.2 mK. Because the integral equations are similar, o
arguments are relevant for three-fermion systems w
internal quantum numbers as well [17]. The approach
Ref. [10] then suggests that our bound-state results wo
provide a reasonable estimate of the triton binding ener

In conclusion, we have provided analytical and n
merical evidence that renormalization of the three-bo
problem with short-range forces requires in general t
presence of a one-parameter contact three-body force
leading order. This opens up the possibility of applyin
the EFT method to a large class of systems of three
more particles with short-range forces.
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