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Twelvefold Quasiperiodic Patterns in a Nonlinear Optical System
with Continuous Rotational Symmetry
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Twelvefold quasiperiodic structures are observed in an autonomous optical pattern forming sy
with continuous rotational symmetry. These quasipatterns arise from a primary hexagonal struc
In dependence on the experimental parameters the bifurcation can be sub- or supercritical. I
supercritical case, the transition is mediated by a new kind of patterns with different amplitu
in its fundamental modes. It is proven by an optical Fourier filtering technique that the obser
quasipatterns can exist only in the presence of harmonics of the fundamental unstable m
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Periodic planar patterns have a translational symme
and anN-fold discrete rotational symmetry withN ­ 2,
3, 4, or 6. The typical structures, stripes, rhombi, square
and hexagons, have been investigated in dissipative s
tems for several years [1].N-fold rotational symmetries
with N ­ 5 or N . 6 are incompatible with translational
symmetry. Therefore the corresponding structures are
periodic, but quasiperiodic [2]. These quasipatterns ha
been predicted to occur in a large variety of dissipativ
systems with initialOs2d symmetry [3–6]. Their general
properties have been the subject of considerable theor
cal interest [7–12].

Experimental evidence, however, has been limited to t
Faraday experiment, i.e., to a parametrically excited hydr
dynamical system [13–15]. In these experiments eigh
and tenfold quasiperiodic patterns have been obtained
a situation characterized by inversion symmetry (with re
spect to the order parameter). In the more general ca
of broken inversion symmetry, dodecagonal quasipatter
(N ­ 12) are expected in many systems [5–8,10]. In th
Faraday system, however, their observation has been
stricted to a fairly special situation, close to a codimensio
two point. Furthermore, quasipatterns have been observ
in optical systems upon which a discrete rotational symm
try was imposed externally [16].

In this paper, we report the experimental observ
tion and numerical simulation of stationary twelvefold
quasiperiodic patterns in an optical system with continuo
rotational symmetry. In a large parameter range the
quasipatterns arise via a secondary bifurcation from
primary hexagonal structure. Moreover, we report on
new type of quasipatterns which might be interpreted
a mixed state between hexagons and twelvefold quasip
terns. In our studies, we make use of a genuine advanta
of optical pattern forming systems, i.e., the real tim
access to the Fourier transform of the pattern which c
be used in a Fourier filtering technique [6]. In this wa
it is provenexperimentallythat in the system under study
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spatial harmonics of the fundamental Fourier modes a
essential in the stabilization of the quasipatterns.

The experimental system (cf. Fig. 1) is built from a non
linear medium and a single mirror [17,18]. The nonlinea
medium is sodium vapor in a buffer gas atmosphere (n
trogen at a pressurepN2 of 200 300 hPa) which is con-
tained in a heated cell (lengthL ­ 15 mm) (cf. also [19]).
A cell temperatureT ø 300 ±C results in a particle den-
sity of N ø 2 3 1019 m23. The medium is irradiated by
the carefully spatially cleaned Gaussian output beam
a dye laser which is tuned to a frequency slightly abov
the frequency of the sodiumD1 line (frequency detun-
ing D ­ nlaser 2 nD1). The light is circularly polarized
and representss1 light with respect to the quantization
axis defined by a weak longitudinal magnetic field. (Th
transverse component of the magnetic field is smaller th
1 mT.) The beam waist (radiusw0 ­ 1.5 mm) lies in the
center of the sodium cell. The transmitted light is fe
back into the medium by a single plane mirror (reflectivit
R ­ 0.915), placed at a distanced of about 80 to 150 mm
behind the medium. The near and far field intensity dis
tributions of the forward beam transmitted by the mirro
are imaged onto two CCD cameras. The essential mod
cation with respect to the setup used before [19] is the i
sertion of a quarter-wave plate in the feedback loop whic
transforms thes1 polarization of the forward beam into a
s2 polarization of the feedback beam [20] (see also [21]

FIG. 1. Schematic experimental setup. LP: linear polarize
ly4: quarter-wave plate; SC: sodium cell; M: feedback mirror
CCD: charge coupled camera device.
© 1999 The American Physical Society 4627
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When the input power is increased from zero, a first b
furcation from the homogeneous state to hexagonal str
tures occurs. In the near field, structures of the type sho
in Fig. 2a are observed, while we obtain the distribution
Fig. 2b in the far field. The six spots result from the pre
ence of six transverse wave vectors mutually at an an
of py3. This configuration of three pairs of wave vector
is usually referred to as the hexagonal triad. The stro
confinement of the maxima of the far field intensity dis
tribution indicates that the description of the patterns
terms of Fourier modes is appropriate and that the patt
forming process should not significantly be affected by th
finite size of the Gaussian beam.

For increasing input power, we observe a seconda
bifurcation to a different type of stationary structure. I
the near field these structures are of the type displayed
Fig. 2c; i.e., they are no longer periodic and appear to
rather irregular. In the far field, however, the structure
are regular (Fig. 2d). They consist of twelve intens
maxima of alternating intensity evenly distributed on
circle. These patterns can be thought of as being formed
two triads of wave vectors which are rotated with respe
to each other by an angle ofpy6 (cf. Fig. 3a).

FIG. 2. Experimentally observed near [(a),(c),(e)] and far fie
[(b),(d),(f )] images of the transmitted beam. The contrast
the far field images has been digitally enhanced. Paramet
pN2 ­ 200 hPa,T ­ 300 ±C, D ­ 14 GHz,d ­ 91 mm. The
input power is 78 mW in (a),(b), 88 mW in (c),(d), and
100 mW in (e),(f ). The frame size of the near field image
is 3 3 3 mm2.
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A further increase of the input power yields patterns
which the power in the two triads is equal (cf. Figs. 2
and 2f). This configuration of wave vectors is known t
form a twelvefold quasiperiodic pattern in real space (se
e.g., [8]). Keeping all parameters constant, we obser
different near field patterns for the same far field intensi
distribution. Therefore, we interpret these patterns
different parts of a spatially extended quasipattern.

For a closer examination of the bifurcation scenario, w
determined the dependence of the power in the two tria
on the input power (cf. Fig. 4). While the power in th
first triad remains approximately constant, the power
the second triad grows steadily from very low values
the threshold of the secondary bifurcation until the pow
of the primary triad is reached far above threshold.

The behavior just described indicates that we encoun
a supercritical bifurcation from hexagons to twelvefol
quasipatterns that is mediated by a new type of patter
We are not aware of any observation or prediction of pa
terns composed of two triads with different amplitude
These patterns are quasiperiodic, since they can be thou
of as the superposition of a (hexagonal) periodic a
a (twelvefold) quasiperiodic structure. They might b
interpreted as stable mixed states between hexagons
twelvefold quasipatterns.

The supercritical bifurcation is typical for small fre-
quency detunings, while for larger detunings, we obser
a direct transition from the hexagonal to the twelvefo
quasiperiodic structures. The transition is accompan
by bistability. These observations indicate that the bifu
cation is subcritical far from resonance.

Let us now turn to a more quantitative analysis of a typ
cal quasipattern, as displayed in Fig. 2f. In addition to th
fundamental Fourier modes with the wave numberq0, we
observe further sets of (weak) Fourier modes with twelv
fold rotational symmetry at higher spatial frequencie
The wave numbers of the most intense ones are1.43q0,
1.64q0, and 1.95q0. These values were obtained from
averaging the length of corresponding wave vectors a
have a standard deviation of about0.1q0. They agree rea-
sonably well with the valuesq1 ­ 2 coss p

4 dq0 ø 1.41q0,
q2 ­ 2 coss p

6 dq0 ø 1.73q0, and q3 ­ 2 coss p

12 dq0 ø
1.93q0, respectively, which are obtained from the additio

FIG. 3. (a) Superposition of two hexagonal triads (solid an
broken arrows); (b) generation of spatial harmonics via additi
of fundamental wave vectors.
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FIG. 4. Power in the primary (PT1, denoted by squares) and
secondary (PT2, denoted by triangles) triads of Fourier modes
Parameters as in Fig. 2.

of two fundamental wave vectors (cf. Fig. 3b). Thi
addition of two wave vectors to form a third one (“3-wave
mixing”) is typical for nonlinear systems with quadratic
interactions.

It has been argued that a quadratic interaction of ha
monic Fourier modes with fundamental modes can b
essential in stabilizing twelvefold structures [7,8,10]. I
order to examine the role of the harmonics experimental
we insert a low-pass Fourier filter in the feedback loo
[6]. The filter consists of a confocal telescope with an ir
aperture in the focal plane where the Fourier transform
available. The focal length of both lenses isf ­ 150 mm.
The first lens is located at a distancef from the sodium
cell. The feedback mirror is placed at a distancef 1 d
behind the second lens and acts as a “virtual” mirror [2
located at a distanced from the cell. No qualitative change
with respect to the results without the telescope has be
found in the observed structures as long as the apert
is open.

When the aperture radius is decreased, the quasipatte
give way to hexagons, which may have a slightly differen
fundamental wave number. As an example, the far fie
of a quasiperiodic structure obtained for an open apertu
is shown in Fig. 5a. Keeping all the other paramete

FIG. 5. Far field patterns observed with a Fourier filter in th
feedback loop. The aperture is open in (a); in (b) it correspon
to a maximum transverse wave vector ofqmax ­ 35.1 mm21,
which is indicated by the black circle. The fundamenta
wave number of the quasipattern in (a) isq0 ­ 18.5 mm21,
the fundamental wave number of the hexagonal pattern
q0

0 ­ 19.1 mm21. Parameters:pN2 ­ 300 hPa, T ­ 297 ±C,
D ­ 14 GHz, d ­ 150 mm, input power 140 mW.
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constant, we decrease the diameter of the aperture.
quasipattern remains stable down to an aperture size c
responding to a cutoff wave number ofqmax ­ 1.9q0
(cf. Fig. 5), whereq0 is the fundamental wave number o
the quasipattern for an open aperture. For an aperture
below a threshold value, the quasipattern is replaced b
hexagonal pattern. Within the margins of error the cuto
frequency agrees with the spatial frequency of the harmo
ics atq3 ø 1.93q0.

In the theoretical description of our system, we follow
the approach described in [18]. In contrast to the Ke
medium assumed in [18] sodium vapor is saturable. T
spin of the atoms brings pronounced tensor propert
of the nonlinearity into play. Under the conditions o
our experiment the sodiumD1 line can approximately be
modeled as a homogeneously broadenedJ ­ 1

2 $ J 0 ­
1
2 transition with a negligible population of the excited
state [23]. An intensity difference between the circula
polarization components (pump ratesP6) of the light field
creates a population differencew between the Zeeman
sublevels of the ground state, which decays very slo
(g ø 1.5 s21). w determines the susceptibility of the
medium [23]. The medium is considered to be thin, s
that diffraction within it can safely be neglected. Howeve
because of the opposite circular polarization of the forwa
and backward beams, absorption is rather strong a
the resulting pump depletion has to be accounted f
Following the approach developed in [24], we derive a
equation of motion for the mean orientationFsx, yd ­
1
L

RL
0 wsx, y, zd dz, averaged over the lengthL of the

medium (cf. Ref. [20] for details):

≠

≠t
f ­ 2 sg 1 D=2

'df

1
1

2La0
s1 2 e22La0s12fddPf

1s0d

2
1

2La0
s1 2 e22La0s11fddPb

2sLd .

D is the atomic diffusion coefficient and2a0 is the linear
absorption coefficient. Thes2-polarized field Eb

2sLd
reentering the sodium cell is derived from thes1-polarized
input fieldE

f
1s0d by

Eb
2sLd ­ Re2isdyk0d=2

' e2La0s12iD̄d s12fdE
f
1s0d .

Here R is the reflectivity of the mirror and the spatia
operator exps2i

d
k0

=
2
'd describes the diffraction of the

forward and the backward beams in the free space betw
cell and mirror. k0 is the wave number of the light
andD̄ ­ 2pDyG2 is determined by the detuning and th
relaxation rate of the optical coherencesG2.

Assuming a plane wave input, we investigate the li
ear stability of the homogeneous state with respect to sin
soidal perturbations. The marginal instability curve show
the typical structure for the single feedback mirror arrang
ment which is a sequence of instability balloons [18]. F
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FIG. 6. Numerical simulation of a quasiperiodic structur
for a buffer gas pressure 300 hPa, cell temperature307 ±C,
the detuning 6 GHz, mirror distanced ­ 81 mm, beam waist
w0 ­ 1.5 mm, input power 145 mW for (a),(b) and 150 mW
for (c),(d). The frame size of the near field [(a),(c)] image
is 4 3 4 mm2; the corresponding contrast enhanced far fie
distributions are shown in (b),(d).

increasing input power the instability balloons successive
become unstable in the order of the wave numbers th
contain.

The linear stability analysis qualitatively reproduces th
frequency dependence of the observed threshold for
first bifurcation. There is also a good agreement betwe
the fundamental wave numberq0 in the experiment and
the minimum of the first instability balloon [20]. This cor-
respondence is a further indication that the spatial variati
of the stress parameter given by the Gaussian beam ha
negligible impact on the pattern formation process.

There is a near coincidence between the harmonicsq3
and the minimum of the third instability balloon. It has
been emphasized that the existence of the higher ins
bility balloons in optical systems favors the formation o
quasipatterns [5,6,25]. In the parameter range displayi
quasipatterns in the experiment and in numerical simu
tions (see below) all higher harmonics are passive. Th
fact suggests that the mechanism of quadratic coupling p
posed in Ref. [6,7,10] is of importance for the stabilizatio
of quasipatterns even if it is provided by (weakly damped
passive modes (cf. also [12] and [25]).

Numerical simulations reproduce the appearance
negative hexagons at threshold and the supercritical s
ondary bifurcation to twelvefold quasipatterns (cf. Fig. 6
The subcritical bifurcation has not been reproduced yet.
should be noted, however, that in Fig. 6b the wave num
bers in the two triads are slightly different. As in the
experiment, the quasipatterns give way to hexagons, if t
harmonics atq3 are suppressed by a filter in Fourier spac
Moreover, the simulations reveal that also the removal
the harmonics atq1 or the ones atq2 suppresses the quasi-
4630
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patterns. Thus it is evident from both the experiment a
the simulation that harmonics of the fundamental Fouri
modes are crucial in the formation of the quasipatterns.
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