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Numerical computations of transport coefficients at low temperatures are presented for sh
typically encountered in nuclear fission. The influence of quantum effects of the nucleonic deg
of freedom is examined, with pair correlations included. Consequences for global collective motion
studied for the case of the decay rate. The range of temperatures is specified above which this m
may be described as a quantal diffusion process. [S0031-9007(99)09304-7]
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In the past decade much progress has been made
the understanding of nuclear transport phenomena in t
regime of not too low temperatures, say between 1 an
5 MeV (with kB ­ 1). Such a situation is reached if
two heavy ions collide at an energy above the Coulom
barrier, but where the excess energy per particle still
small compared to the Fermi energy. In this regime th
dynamics of the composite system may be parametriz
in terms of shape variables. Of particular interest is th
outgoing channel which is dominated by fission and th
emission of light particles andg’s. It has been possible
experimentally to deduce valid information on the time
scale of collective motion [1], and, hence, on the size o
nuclear dissipation. These experiments suggest collecti
motion to be overdamped, possibly providing an answe
to the question raised by Kramers as early as 1940
his seminal paper [2], namely, whether nuclear frictio
is “abnormally small or abnormally large.” Nowadays
such processes are described theoretically in terms
the Langevin equation [3], which is understood to b
equivalent to Kramers’ original equation (of Fokker-
Planck type) for the density in collective phase space.

On general grounds, it may be anticipated that th
magnitude of nuclear dissipation will vary with excitation.
Indeed, there are experimental indications [4] for such
conjecture. At small thermal excitations the dynamics i
governed by the (real) mean field for which there is n
room for damping of slow collective motion fission. At
largerT coupling to more complicated configurations set
in, which causes transfer of energy from the collectiv
degrees of freedomQm to the nucleonic onesxi . Within
the linear response approach [5] the effects of th
coupling are accounted for by dressing the single partic
energies by complex self-energies depending both o
frequency andT . Approximating its imaginary part
by a constant proportional toT2, friction will again
decrease withT , once the microscopic damping become
so large that one may speak of “collision dominance.
At intermediate temperatures there might be the intrica
contribution to friction from the “heat pole,” which has
been seen to be large for nonergodic systems [6], a
which has a dramatic influence on theT dependence.
0031-9007y99y82(23)y4603(4)$15.00
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In the present Letter we want to focus on very low exc
tations, say in the range belowT ø 1 MeV. This regime
not only is of great practical importance, as for the produ
tion of superheavy elements [7], for instance, it is also
great theoretical interest. First of all, there is little dou
that in this domain quantum effects dominate nucleonic d
namics, and the transport coefficients will strongly be i
fluenced by shell effects and pair correlations. One ev
must expect quantum features to be present for collect
motion, for instance, as corrections to Kramers formula f
the decay rate [8]. Often quantal approaches are base
the functional integral method applied to simplified Hami
tonians of the Caldeira-Leggett type (for a review, see [9
There, the bath degrees of freedomxi are represented by a
set of oscillators of fixed frequencies, with a bilinear co
pling between thexi and the collective variableQ. The de-
cay rate is calculated for imaginary time propagation. Bo
features hardly can be taken over to nuclear fission. F
of all, the simplest constraint to warrant self-consisten
between the mean field and the shape of the nuclear den
requires the former to change withQ. This aspect alone
makes it very difficult to work with a (prefixed) Hamilton-
ian for the total system of all degrees of freedom. Mor
over, the temperature, which one may define [10] for t
fast degrees of freedom (supposedly given by the “nuc
onic” ones), is subject to changes withQ as well as with
time. The latter feature occurs because of the evapora
of particles mentioned before.

For these reasons a formulation with real time prop
gation is much more appropriate. This has been achie
by a suitable application of linear response theory on t
basis of a locally harmonic approximation (LHA) (for a
review, see [5]). One exploits the concept of propagato
which move the system forward in collective phase spa
by small time steps. As the individual ones only cov
small areas they may be represented by (multidimension
Gaussians. The latter satisfy an equation of motion who
structure is similar to that of Kramers, with only the diffu
sive terms being modified to account for quantum effec

The following study is based on numerical calculation
of transport coefficients for average motion, name
friction g, inertiaM, and local stiffnessC, more precisely
© 1999 The American Physical Society 4603
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of those ratios which determine transport in phase spac

Gg ­
g

M
, √2 ­

j C j

M
, h ­

Gg

2√
­

g

2
p

M j C j
.

(1)
Their knowledge will allow us to examine implications
on the diffusion coefficients and, hence, on transpo
processes such as fission. It would be most desirable
such information be used as input for computational cod
to solve for Fokker-Planck or Langevin equations. In th
way one would be able to examine in more detail the ro
of shell effects, which are known to produce structure n
only in the static energy but in the inertial and frictiona
forces as well. To simplify matters, for the presen
purpose we will look at the more schematic case whe
the system’s energy exhibits just one minimum and o
barrier atQa andQb, respectively. The stiffnesses and th
barrier height are found from a Strutinsky calculation o
the free energy. Finer details of shell effects are remov
both from the potential as well as from the transpo
coefficients by applying a suitable smoothing over a sm
region of the collective variable aroundQa andQb .

Suppose we may at first discard any quantum effe
in the collective degrees of freedom, which amounts
look at the “high temperature limit,” for which Kramers
equation applies [5]. The temperatures we have in mi
are always small compared to the barrier height,T ø Eb .
The decay rateRK then shows the following behavior.
For givenT , but as a function of thehb (at the barrier),
the RK shb , T d increases first, to decrease after it ha
reached a maximal value (see, e.g., [11]). The decreas
branch is represented well by Kramers’ “high viscosit
limit” [2]

RK ­
va

2p
s
p

1 1 h2
b 2 hbd exps2EbyT d , (2)

which is valid for hb $ Tys2Ebd (see, e.g., [9]). If
blindly extended down tohb ­ 0 this form RK reaches
a value typical for a simple transition state model,rTST ø
rshb ­ 0d (Bohr-Wheeler formula). Rather, for very
small hb, one ought to apply Kramers’ “low viscosity
limit,” given by Rl.v.

K ­ Gb
gsEbyT d exps2EbyT d. For

nuclear physics the latter has not played any role y
as h is believed to lie above the limit given below
(2). According to [5,12,13] this should be the case
temperatures above 1 MeV. Moreover, the√ does not
change much withT . In [12] a value of about1 MeVyh̄
was found both at the potential minimum as well as
the saddle. It so turns out that this feature is more
less recovered even at smallerT , say within an accuracy
of the order of 20%, which may be good enough for th
following discussion.

More drastic modifications are expected, and inde
seen, for dissipation. To study this behavior, theg, Gg ,
and h have been calculated on the basis of the sam
deformed shell model as in [12] but with pair corre
lations included. The transformation from independe
particles to quasiparticles of the BCS-type is standa
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For our purpose the common procedure does not s
fice, however. As mentioned previously, a decent a
sensible description of nuclear dissipation needs to a
count for “collisions.” At low thermal excitations their
effects, too, will strongly be influenced by pair correla
tions. Look at the extreme case of zero temperature a
take an even-even system for the sake of simplicity. Th
there will be no quasiparticle states within twice the ga
energy2D. Hence, the imaginary part of the self-energ
Gsh̄v, D, T ­ 0d must be zero at least within such a rang
of frequenciesh̄v. Hence, atT ­ 0 friction will strictly
vanish for any collective motion whose frequencyv ­ √

lies in that range, i.e.,̄hv # 2D. Extrapolating from the
case ofT ­ 0 to finite T we should expect the function
g ­ gsT d to have a steplike behavior. This dependen
then goes through to that ofGg andh, albeit the inertia,
too, is influenced by pairing.

Let us demonstrate these features on the basis of
merical calculations performed for the example of224Th.
For details we have to refer to [14], but we may men
tion that theGsh̄v, D, T d has been calculated along th
lines suggested in [15]. In Fig. 1 we display thehsT d’s
at the minimum and the barrier. They have been o
tained for aD ­ DsT d as determined by the gap equa
tion. Unfortunately, so far it has not been possible
calculate the underlying response functionxsvd in full
glory. Rather, when evaluating the necessary folding i
tegrals over frequency the correct width had to be appro
mated by a constant, calculated at the Fermi energym:
Gsh̄v, D, T d ­ Gsh̄v ­ m, D, T d. Indeed, in this regime
of smallv and forT # Tpair , where pair correlations dis-
appear, such an estimate may be considered to represen
correct width well enough to allow for a general analysi
Evidently, the values ofh’s obtained forD fi 0 clearly
fall well below those of the unpaired case, shown here
the dashed lines.

FIG. 1. The damping factorh ­ gys2
p

MjCj d at the poten-
tial minimum (top) and at the fission barrier (bottom) of224Th;
the dashed curves are forD ­ 0. The long-dashed line in the
bottom part shows the functionTy2Eb .
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The most important features exhibited in Fig. 1 may b
summarized as follows, together with the consequenc
for Kramers’ decay rate: (i) The steplike function men
tioned before is clearly visible. (ii) BelowT ø Tpair .
0.5 MeV the effective damping rateh is smaller than
about 0.1. (iii) As seen in Fig. 1,h may fall below
Ty2Eb such that formula (2) no longer applies. (iv) Up
to T . 1 MeV h stays below.0.2 at the minimum and
below .0.3 at the barrier. The latter value implies tha
the rate may be approximated fairly well by the transitio
state valuerTST ø RK sh ­ 0d; see (2). (v) These values
of h are much smaller than those one gets within “macr
scopic models,” say in terms of a combination of wa
friction with the stiffness and inertia of the liquid drop
model (with irrotational flow).

In Fig. 2 we plot the ratio of Kramers’ prefactorfK ­
s
p

1 1 h2
b 2 hbd obtained from our results to that of the

macroscopic limit just described [16]. It is seen that th
latter underestimatesthe decay rate by about a facto
of 10. Quantum corrections will increase this deviatio
further, indicated here by the dashed curve.

Within the LHA, these quantum corrections come i
through the diffusion coefficients, as given by the fluctu
tion dissipation theorem [5]. It is only at temperature
above 2 MeV that one may safely assume the clas
Einstein relationDpp ­ gT to be valid [5]. In the
general case, in addition to theDpp there is a cross
term Dqp , both of which depend in a nonlinear way
on combinations ofM, g, and C, or on the parameters
introduced in (1). The diffusion coefficients behav
very differently for stable and for unstable modes. T
demonstrate this feature let us look at the limit of sma
dissipationh ø 1. To lowest order ing one gets

Dqp ­ 0 Dpp ­ gTp with Tps√d ­
h̄√

2
coth

√
h̄√

2T

!
(3)

with √ ­
p

CyM ­ j√j for C . 0 and √ ­ ij√j for
C , 0. The form (3) may be said to represent the corre
behavior fairly well belowh . 0.1 (see Fig. 3.4.2 of [5]).

FIG. 2. The ratio of the Kramers correction factorfK ­p
1 1 h2

b 2 hb to its macroscopic counterpart as a functio
of temperature. The quantityfQfK yfmacro

k accounts for the
quantum correction factorfQ ; see Eq. (5).
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From the results shown above forhsT d, one may thus
argue the relation (3) to be acceptable for temperatu
below Tpair , whereas deviations must be expected f
T $ Tpair . For C , 0 and weak friction the diffusion
coefficient Dpp falls below the values given by the
Einstein relation. It quickly drops to zero at a critica
temperatureTc, below which theDpp would become
negative and the diffusion equation would loose i
meaning. The value of thisTc decreases with increasing
h, such that the form given in (3) delivers an upper lim
and we may write

Tc # Tcsh ­ 0d ­ h̄√byp Tc , Tpair . (4)

The statement on the right is reached assuming theh̄√b

to be of the order of 1 MeV and taking the value forTpair ,
as reported above, together with the fact that belowTpair
the damping rateh falls below 0.1.

Commonly, the quantum corrections to Kramers dec
rate are expressed by a factorfQ appearing in the
correct rate asR ­ fQRK (see, e.g., [9]). As shown
in [8], this form may also be obtained within the LHA
This derivation is based on the assumption that in t
neighborhood of the potential minimum friction is larg
enough to ensure sufficient relaxation inside the well. T
same assumption is behind Kramers’ high viscosity lim
upon which we just have convinced ourselves to be giv
in the range of temperature atTpair and above. Moreover,
this assumption turns out to be necessary also when
problem is formulated and solved with path integrals
real time propagation (see [17]).

The fQ can be expressed by a ratio of two partitio
sums: fQ ­ jZbjyZa, where the one associated to th
barrier has to be defined by analytic continuation. A
cording to [18], theZ of a damped oscillator can be calcu
lated from the equilibrium fluctuations of momentum an
coordinate. Hence, within the LHA it might be expresse
by the diffusion coefficients. Unfortunately, forg fi 0 a
calculation of the momentum fluctuation requires regula
ization, for instance, by introducing a frequency depe
dent friction coefficient (Drude regularization). To get
fairly simple estimate offQ and itsT dependence we used
the following formula (withh̄vn ­ n2pT ):

fQ ­
Ỳ
n­1

v2
n 1 vnGg 1 √2

a

v2
n 1 vnGg 2 √

2
b

with Gg ­
Ga

g 1 Gb
g

2
,

(5)

It may be noted in passing that (a) without (Drude
regularization this formula would diverge forGa

g fi Gb
g

and (b) problems of this type are absent for the Caldei
Leggett approach where the transport coefficients do n
change with the collective variable; generalizations a
possible, though, for instance, by introducing variab
coefficients phenomenologically; see, e.g., [19]. Th
result of a numerical evaluation of (5) within our theor
is shown in Fig. 2 by the dashed curve. This grap
demonstrates several features, valid in this range
temperatures: (i) The quantum effects in the collectiv
4605
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motion may change the decay rate by about 30% or le
(ii) Already at T ­ 1 MeV they amount to only about
10%. (iii) More important are the quantum effects o
nucleonic motion, which are responsible for the deviatio
of the transport coefficients from the macroscopic mode

Unfortunately, it is not possible to carry the analys
further down to smaller temperatures. BelowTc [recall
(4)] we have seen the LHA break down. It may be sa
that this problem generally appears in real time form
lations. Within the functional integral approach this ha
been demonstrated in [17] and traced back to the harmo
approximation to the barrier. The problem at stake he
is a very severe one for any applications of Langevin
Fokker-Planck equations to nuclear physics. Both me
ods allow one to account for various nonlinear effects,
manifested by variable transport coefficients, for instanc
but both of them rely on “real time propagation.” More
over, practical computer programs exploit locally ha
monic approximations, in one way or other, such that
is not possible to even define meaningful diffusion coef
cients belowTc.

In this context we mention the possibility of calcu
lating and exploiting a Feynman-Vernon functional fo
global motion on the basis of random matrix theory (RMT
[20]. In principle, this might allow one to study quantum
effects, but it is somewhat questionable whether this p
cedure will be applicable to nuclear physics, at those te
peratures where these quantum effects become impor
which we just mentioned. This concern has essentia
two reasons—discarding for the moment the very fa
that this model, too, has difficulties with self-consistenc
(i) Generally an application of RMT ceases to be valid
low excitations. (ii) So far practical applications have bee
possible only to leading order in an expansion in1yT , actu-
ally to that regime ofT where friction decreases withT .

Summarizing our results we hope to have been ab
to exhibit for low energy nuclear physics an excitin
problem of quantum transport which still is lacking a gen
eral solution. With respect to the application in nucle
physics itself, it appears to be very difficult to describ
theoretically processes such as the “cold” production
superheavy elements without a decent understanding
transport at small temperatures and weak dissipati
Whereas low thermal excitations are dictated by expe
mental conditions, the fact of small friction then is a con
sequence of the quantal nature of nucleonic dynamics
a mean field, in particular, when pair correlations becom
important. Of course, to obtain more quantitative resul
further studies on the microscopic level are needed. F
instance, it is necessary to understand better the mec
nism of collisions under the presence of pair correlation
Their role on theTdependence of transport, as well a
that of the “heat pole” in the larger range of excitation
require further clarification. Likewise, it should be ver
interesting to allow for fluctuations in the gap paramet
and to examine in which way they might modify fissio
dynamics.
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