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Instability of Antiferromagnetic Magnons in Strong Fields
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We predict that spin waves in an ordered quantum antiferromagnet in a strong magnetic field become
unstable with respect to spontaneous two-magnon decays. At zero temperature, the instability occurs
between the threshold field* and the saturation fielff.. As an example, we investigate the high-field
dynamics of a Heisenberg antiferromagnet on a square lattice and show that the single-magnon branch
of the spectrum disappears in most of the Brillouin zone. [S0031-9007(99)09251-0]

PACS numbers: 75.10.Jm, 75.50.Ee

There are several reasons for studying the effectnagnet:wy « k2. Simple continuity arguments predict
of strong magnetic field on quantum antiferromagnetdhat the high-field upward curvature of the spectrum for
(AFMs). A growing family of weakly interacting spin k — 0 changes to the low-field downward bend at some
systems, which includes chain [1], ladder [2], and squarefield H* < H., where the cubic factar vanishes. There-
lattice AFMs [3], now allows experiments in previously fore, a is positive in the field regiod/* < H < H. and
unreachable field regimes. The high-field physics idong-wave magnons are kinematically unstable towards the
proven to be rich for one-dimensional (1D) AFMs, to spontaneous decay [8].
mention only incommensurate gapless modes in a épin- The above argument for the existence of the thresh-
chain [1]. At the same time, in 2D or 3D the field evo- old field H* is general and valid for abbrderedquantum
lution of the Néel ordered ground state is trivial. SpinsAFMs irrespective of their dimensionality, length of spin,
cant gradually from the antiparallel structure until theor position ofQ. In the following, we study in detail the
magnetization saturates at the critical fi&ld. Zero-point  high-field dynamics of a spié-Heisenberg antiferromag-
fluctuations vanish at the same field making the grounchet with nearest-neighbor interaction on a square lattice
state atH > H. purely classical. One can suggest thatdescribed by the Hamiltonian
a similar quasiclassical scenario applies also for the spin R
dynamics. In contrast, we predict in this Letter that on the H=>8-8 —HYS" 2)
way to the saturated phase the excitation spectrum of an (N i

ordered AFM undergoes unexpectedly strong transformarhe ground state of this model is orderedat H < H,

tions. In high fields belowd., magnons are overdamped for an arbitrary value of the on-site spsn[9,10].
and disappear in most of the Brlllo_um zone (BZ). o For the canted AFM phase
' The effect originates from thg field-induced hybrldlzg- §5 — §761QT cog) + S¥ sing
tion of single-magnon states with a two-magnon contin- ! !
uum. Previously, Osaret al. [4] investigated the effect of S = Sising — ST QT cod,
SUICh af’.‘ |||:jteract|on onltheht_W?-ma%nohn g-‘/.gﬁm'?a' :esgonsgu — §7,andQ = (w, 7); the boson representation 8
atlowfieldsH < H.. In this limitthe hybridization 1ads g gptained by applying the Dyson-Maleev transformation
to a weak renormalization of the one-magnon Spectrum. .\ icted frames? = S — ala, ST — S5 -
In a strong field, however, a two-magnon continuum over-' ; _ - di iy Oi = s

; ; ; i a;/28)a;, Si = /25 a;. The tilting angled is de-
laps with the single-magnon branch and produces instabif ¢i/ b i Ve di tiiting -ang A
ity of the latter. AtT = 0, there is a threshold fielé*  termined from vanishing of the linear boson terk !):
(H* =~ 0.76H. for square and cubic lattices) above whichSind = H/8S, H. = 85. Apart from a constant, the bo-
magnons become unstable with respect to spontaneous di@n Hamiltonian is a sum of quadratic, cubic, and quar-
cays. The argument for that is based on softening of théic terms:H = H® + H® + 3{ @ [11]. Neglected
spin-wave velocity of the sound mode near the AFM waveerms containing products of five and six boson operators
vectorQ. For smallk = k — Q, the magnon energy is are of higher orders in an expansion parametet&(S
approximately [6], z being the number of nearest neighbors, and give

- - mall corrections even fof = 1.
op ~ k(1 + ak?). () small corrections even f&f = 5

The quadratic Hamiltonian
In zero field both the classical and renormalized disper- . ) ‘ : ot
sions bend downward implying < 0 [5-7]. On the H® = dAcagax — 3Bxlaka—x + axa')], (4)
other hand, aHH = H, the low-energy asymptote fayy k
coincides with the corresponding expression for a ferrowhere Ay = 4S5(1 + sirf6yyx), Bx = 45 cos8y,, and

3)
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YKk = %(cogcx + cosy), is diagonalized by the Bogoliu- where we abbreviated momenta with their subscripts. The
bov transformation ax = uyby + Ukbik with ui +  firsttermV, is responsible for the hybridization between

vi = Ax/wx, 2uxvk = Bx/wk, giving the classical Single- and two-magnon spectra and is the principal inter-

spin-wave energies action of the problem. The vertices are given]b&é =
ox =45V - p) (1 — coRbyy).  (5) —VBSsirod(k;q),
The magnon spectrum is defined in the paramagnetic BZ. D(1;23) = y1(uy + v1) (av3 + vous)

It has a sound mode nekr= Q with the classical spin-

wave velocityc = 2+/2 S co9. + y2(uz + v2) (wyus + viv3)

In the leading order il /zS quantum corrections to the + y3(uz + v3) (wua + viva),  (7)
magnon dispersion can be found from the Dyson equation ., _ o
for the normal Green’s function (k, r) = —i(Thx(r)by), ~andTizz = —v8Ssin26F(k,q), where a similar expres-

neglecting anomalous contributions to the self-energy [6]Si0N for F(k,q) can be found in [10]. The lowest-order
To find 3 (k, ) we express the interaction terms via quasi-contributions to the self-energy shown in Fig. 1 are
particle operator$) and consider the first-order perturba- 45 sit20® (k; q)°

tion from the quartic part and the second-order perturbation  3(V(k, o) = Z —, (8a)
from the cubic part. ¢ @ — wq — wk-q+Q + i0
There are two interaction terms with cubic vertices —4S Sit20F(k, q)°
from 7 [10] 30K, 0) = 3~ T (@)
o1 () 1t @ @7 T e
Vi=— I'.53(b3 by by + H.C), . . . .
) 1_2_23:(2 123(b3 b2 by ) The first term describes a virtual decay of a magnon into
(6)  two-particle intermediate states. Frequency-independent
v, = 1 > T2 wintsl + He), contributions to the dispersion arise frafd ® and from
3 5-0 the renormalization of the tilting angle [10]:

|
SO(k) = 4(ui + vi)[-ncod + AcoShd — msintd + yi(—mco + %5 cosf — nsirtd)] — Suxvk

X [3A S0 — 1m oSO + yi(AcoR6 — ncosd + 18sin)],
2(4)(1() = 85|n29(A —n+ m) [(ui + Ulz()(l — vk) — 2uxvk vk,

where various two-boson contractions are defined as
Sk v m =, vevk, 8 = Sy ukvk, A = X, uxviyx. | when the bottom of the two-magnon continuum becomes
Four-magnon vertices do not contribute to the dispersiomearly degenerate with a part of the single-magnon spec-

to this order in1/zS. trum for H close to the decay threshold fiel*. The
Perturbation theory gives the magnon energy with thainrenormalized “classical” value df* is calculated by
first 1/S corrections as expanding Eq. (5) up to the third order in The cubic
ol = oy + Y S0k, wy). (9) factor a is anisotropic and vanishes first fér = k, at
7 H* = ZH, =~ 0.756H..
Figure 2 shows classical and renormalized spectra fer At H > H* the magnon self-energy acquires an imagi-

% in two representative fields. A = 0, the only non- nary part due to spontaneous two-magnon decays, which
vanishing correctior®® (k) yields a 16% enhancement obey the energy conservation law

of magnon energies in the entire Brillouin zone [5,7]. In
low fields the magnon spectrum resembles a zero-field re- ) ) o ]
sult except the vicinity of the BZ center. The mode atSpin wave is stable, if Eq. (11) has only tr|V|a! solutions:
k = 0 describes a uniform precession of spins abHut 4 = k.Q. In this case, the two-magnon density of states
and, for axially symmetric systems its classical frequency2(k, @) = 20w — wq — wk-q+Q) Vanishes aty <

wo = H is exact, i.e., not changed by quantum effects@k- p2(k, @) has Van Hove singularities determined by
[12]. With increasing field the cubic terms grow and pushSymmetry extrem& — q* + Q = q" + G, whereG is a
down magnon energies. Abowk7H,, correction from reciprocal lattice vector. AH > H*, one of these points
S(k, wy) exceeds 50% aby signifying a breakdown of q" = (k + Q)/2 crosses the one-magnon state if
the1/S perturbation expan_sion for spin-wave frequenpies 0k = 20x+Q)/2 - (12)

(9). The correct renormalized spectrum plotted in Fig.
is recovered by solving the Dyson equation

wx = wq + WK—q+Q - (12)

2\Nhen applied to the phonon mode, Eq. (12) is equivalent
to the previously used conditiom > 0 [note the differ-

@ — ok — X(k,0) =0. (10)  ence betweek and in Egs. (1) and (12)]. AH > H,
Standard1/S expansion breaks down for any finitt  classical magnons (5) decay in the region arokng Q
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is smeared and aY > H* all magnons simultaneously
acquire finite lifetimes.

In the limit k — 0 the decaying rate is small and can be
found analytically. The self-consistent Born approxima-
tion (SCBA) with dressed lines in Fig. 1(a) gives

(@) (b)

FIG. 1. Lowest-order diagrams contributing to the magnon ImE(l)(k,w) = —47S sin226]
self-energy.

d’q
(2m)>
X ¢p(w — wqg — wk—q+Q)» (14)

D (k; q)

and remain stable in the vicinity of the uniformly precess- ) ) )

ing modek — 0 with the decay threshold boundary given Where functiong(w) is normalized by/ ¢(w)dw = 1

by the equality sign in Eq. (12). and has a characteristic width of the order of asum qf decay
Pitaevskii argued that such boundaries are actually tefates of crea31te~d magnons. Using the asymptotic form

mination points of the spectrum [8]. This fact is a conse-P(k; @) = —3[kg(k — §)/~/2cos'6]'/ we find

quence of logarithmic divergence of the one-loop diagram wk =~ ck(1 + ak® — iBK?), (15)

near the threshol®& " (k, w) = In(—A&/R), where® = . . .

Aw + v Ak, v, is a velocity of createé magnons, aRd with '88: (ﬁ_sm20/6477_\/§cfos30_)2/3. I.g'?'lar tg a 3D
is a cutoff. The termination point for the decay thresh-casef.[ I]d’ this express;l)g dqf IS .Va('j beyr?'nh a nzr-
old into a pair of rotons is known in the spectrum of Su_rowl_ 1€ _t_reglon near etermined Dy higher-order
perfluid *He. Since the self-energy is singular, a prope|non Inéartties.

renormalization of the cubic vertex is necessary in that A?Ott.her region IIT E’Zf wdhelr_e damplntgr]] is small antd
case [8]. Our problem, however, is different, becausézrxc' ations are well defined, fles near e zone center.

two new magnons created in an elementary decay proce ?is follows from the same arguments [12], which predict

are again unstable. Near the decay threshold, the dom?—o effect onw, from quantum fluctuations, since the exact

nant contribution ta2(!) arises from the close vicinity of requency ak = 0is real and has no imaginary part.

_ : . The spin-wave damping in the entire BZ is consid-
= + =~ . .
q = (k Q_)/lz’ therefore, we ,can approximate &g . ered by using the magnon spectral functiétk, w) =
Mok—q+q =T, Evensmall’s completely remove di- - _ 15k ), whereG (k. w) is calculated in the Born
vergence of the diagram [Fig. 1(a)]: . Lt ’

approximation. Results fot(k, w) at H = 0.85H,. and

/A& + 12 H = 09H,. are presented in Figs. 3(a) and 3(b), respec-
SW(k, w) o {Ian - igo:|, (13) tively. In the non-self-consistent approximation (dashed
lines),A(k, @) consists of a narrow one-magnon peak and

with ¢ = 7 /2 + arctaiA@ /I"). This analysis leads us two-magnon .S|deband, Wh'(.:h e>§h|b|ts loose maximum at
gher energies. The quasiparticle peaks survive even in

. : : i
to two conclusions: (i) vertex corrections can be neglecte({fn . ; AR
but instead a self-consistent treatment of intermediate - classical decay region Eq. (12), because hybridization

magnons and their decaying rates is required: (ii thé)UShes them out from the two-magnon continuum. This

. / purious feature arises due to the lack of self-consistency,
boundary (12) between stable and decay regions in B%s the two sides of Eq. (11) are treated with different ac-

curacy in the non-SCBA. That is, the magnon energy is

— T T renormalized while the energy of the continuum (right-
< hand side) is given by a classical expression. Peaks disap-
pear in the SCBA, which takes into account modification
of a two-particle continuum due to renormalization of one-
magnon states. We performed a numerical solution of the
Dyson equation in the SCBA with6 X 96 k-points in BZ.
Results are plotted in Fig. 3 by solid lines. Our analysis
shows that a self-supporting instability intensifiedHat=
0.85H. for magnons from the regiok < Q/2, which
are classically stable but become strongly damped since
they lie in the decay region for renormalized spectrum.
e Magnon peaks id(k, w) are strongly suppresseH (=
%.0 0.2 0.4 06 0.8 1.0 0.85H.) and disappearH = 0.9H_.) because of the shift

n of the single-particle pole iG(k, w) from the real axis
FIG. 2. Magnon dispersion fdt = «(n, n): (i) Thin dashed into the comple_x plane due to rgpigjly growing decay.
lines represent the classical spectrum; (il) dot-dashed lines surface (11). Single-magnon excitations reappear again
are o™ (iii) solid lines are solution of the Dyson equation. Only atH =~ 0.99H., where the decaying vertdX"(1;23)
For H = 0.1H,, curves (ii) and (iii) are indistinguishable. is small.
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To complete our study, we investigate now the high-via the spin Green’s functioi# (k, r) = —i<TSﬁ(z)S€k>
field dynamical response of the square-lattice AFM, whichpy S*£(k, w) = —260(w)G*#(k, w). The latter is related
is probed in neutron diffraction experiments. Our cal-to the boson Green’s function by using Eq. (3) and the
culation of the dynamical structure factsf”(k, @) =  Dyson-Maleev transformation. The result for the inelastic
fdt(Sff(t)Sljk)e"“” is standard. We express it a&t= 0 | part of the dynamical structure factor is

Sk, w) = 7S sir0(ux + vi)’Ak, w) + 7coS0 Z(uqvk_q+Q + vquk_q+Q)25(a) — wq — Wk—q+Q)»
q
57k, w) = 7S(ux — vi)*Ak, @), (16)

S¥Kk,w) = 7S CO§0(uk7Q + kaQ)zA(k - Q,w) + 7sito Z(uqkaq + vququ)zb‘(a) — wq — Wk—q),
q

where two-magnon contributions described by the last
terms inS* and $* are calculated using classical spec-factorsvy, ~ cog6. In the same approximatiom, =~ 1
trum. They are negligible in high fields because of smallexcept fork ~ Q. Thus, in high fieldsH* < H < H,
the longitudinal componer#®*(k, w) = 0, whereas trans-
verse components™(k, w), $*”(k, w) are proportional to
50 ] A(k, w) with momentum independent prefactors.
[ H=0.85H, ﬂ ) O 1 In conclusion, the nonlinear coupling between one- and
I I ] two-magnon states, which exists only in the canted AFM
phase, becomes very important in high fields. Together
with the field-induced kinematic instability of the spectrum
this interaction leads to suppression and disappearance of
single-magnon excitations féf* < H < H.. Therefore,
an intriguing situation arises in the high-field regime:
the ground state of an ordered quantum AFM is nearly
classical, while the excitation spectrum and the dynamical
response are strikingly different from the classical results.
Though our analysis was restricted mainly to the sbin-
AFM in 2D, the qualitative picture remains valid for other
values ofS and for 3D.
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