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We consider the spin quantum Hall transition which may occur in disordered superconductors
unbroken SUs2d spin-rotation symmetry but broken time-reversal symmetry. Using supersymmetry,
map a model for this transition onto the two-dimensional percolation problem. The anisotropic limi
ansls2 j 1d supersymmetric spin chain. The mapping gives exact values for critical exponents assoc
with disorder averages of several observables in good agreement with recent numerical re
[S0031-9007(99)09270-4]
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Noninteracting electrons with disorder, and the ensuin
metal-insulator transitions, have been studied for seve
decades, and are usually divided into just three classes
symmetry considerations. Recently, the ideas have be
extended to quasiparticles in disordered superconducto
for which the particle number is not conserved at th
mean field level. Several more symmetry classes ha
been found [1]. Of particular interest [2–5] is the case i
which time-reversal symmetry is broken but global SU(2
spin-rotation symmetry is not (classC of Ref. [1]), and
spin transport can be studied. In two dimensions (2D)
can occur ind-wave superconductors. Within this class,
delocalization transition is possible in which the quantize
Hall conductivity for spin (the linear response coefficient
between the spin current and the perpendicular gradie
of a Zeeman field) changes by two units, resembling th
usual quantum Hall (QH) transition but in a differen
universality class. When a Zeeman term is introduce
which breaks the SU(2) symmetry down to U(1), th
transition splits into two that are each in the usual Q
universality class.

In this paper, we presentexact results for a recent
model [4,5] for the spin QH transition in a system o
noninteracting quasiparticles in 2D. We use a supe
symmetry (SUSY) representation of such models, co
sidered previously [6], to obtain a mapping onto the 2D
classical bond percolation transition, from which we ob
tain three independent critical exponents, and univers
ratios, exactly. An anisotropic version of the model i
also mapped onto an antiferromagneticsls2 j 1d SUSY [7]
quantum spin chain. The results are in very good agre
ment with recent numerical simulations [4,5].

We study the spin QH transition in an alternative
description that is obtained from the superconductor aft
a particle-hole transformation on the down-spin particle
[2], which interchanges the roles of particle number an
z component of spin, and so particle number is conserv
rather than spin. This makes it possible to use a sing
particle description, at the cost of obscuring the SU(2
0031-9007y99y82(22)y4524(4)$15.00
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symmetry. The single-particle energy (E) spectrum has
a particle-hole symmetry [1] under whichE ! 2E, so,
when states are filled up toE ­ 0, the positive-energy
particle and hole excitations become doublets of th
global SU(2) symmetry. In this picture, a (nonrandom
Zeeman termH for the quasiparticles maps onto a simpl
shift in the Fermi energy toE ­ H [5], splitting the
degeneracy.

The model [4,5] is a network (generalizing Ref. [8])
in which a particle of either spin and withE ­ 0, rep-
resented by a doublet of complex fluxes, can propaga
in one direction along each link (Fig. 1). The propaga
tion on each link is described by a random SU(2) sca
tering matrix (the black dot), with a uniform distribution
over the SU(2) group; the absence of an additional ra
dom U(1) phase here is crucial and implies that the glob
SU(2) spin-rotation (or particle-hole) symmetry is unbro
ken. As in Ref. [8], there are two sublattices,A and B,
on which the nodes are related by a 90± rotation. Scat-
tering of the fluxes at the nodes (black squares) is d
scribed by orthogonal matrices diagonal in spin indice
SS ­ SS" © SS#,

SSs ­

µ
s1 2 t2

Ssd1y2 tSs

2tSs s1 2 t2
Ssd1y2

∂
, (1)

whereS ­ A, B labels the sublattice, ands ­ ", # labels
the spin direction. The network is spatially isotropic whe
the scattering amplitudes on the two sublattices are rela
by t2

As 1 t2
Bs ­ 1.

The network has a multicritical point attAs ­ tBs ­
221y2 (for the isotropic case). TakingtAs fi tBs (but

FIG. 1. The network model.
© 1999 The American Physical Society
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keepingtS" ­ tS#) drives the system through a QH tran
sition between an insulator and a QH state, and the H
conductance (now for charge) jumps from 0 to 2. Makin
tS" fi tS# breaks the global SU(2) symmetry, and splits th
transition into two ordinary QH transitions [4] each in th
unitary class. As we will argue later, this perturbation
different from the uniform Zeeman term.

We briefly describe, for the present case, the main ste
of the SUSY method for the network models [6]. Trans
port and other properties of the network, such as its co
ductance, may be expressed in terms of sums over pa
on the network. Such a sum may be written in secon
quantized language as a correlation function,k· · ·l ;
STrsT · · · Ud, where the supertrace (STr) contains a
evolution operatorU of an associated quantum 1D prob
lem, T is a time-ordering symbol, and· · · stands for
operators that represent the ends of paths and co
spond physically to density, current, etc. In this form, th
average can be taken to obtain moments of physical qu
tities, and we leave this implicit in later notation. In thi
1D problem, vertical rows of links of the network becom
sites, and the vertical direction becomes (imaginary) tim
(we assume for the present periodic boundary conditio
in both directions). The evolution operatorU, composed
of transfer matrices for links and nodes, acts in a tens
product of Fock spaces of bosons and fermions on ea
site. The presence of a fermion or boson on a link—i.e
on a site at an instant of discrete time—represents an
ement of a path traversing that link [6]. Both bosons an
fermions are needed to ensure the cancellation of con
butions from closed loops. Usually one needs two typ
of bosons and fermions, retarded and advanced, to be a
to obtain two-particle properties. However, the particle
hole symmetry relates retarded and advanced Gree
functions [3]. Hence, for the study ofmeanvalues of
simple observables, we need only one fermion and o
boson per spin direction per site. [To study fluctuation
and other observables,N types of fermion and boson are
needed, and the SUSY below becomes osps2N j 2Nd [1].]
We denote them byfs , bs for the sites related to the links
going up (up sites), and̄fs, b̄s for the down sites. On the
up sites,fs , bs are canonical, but to ensure the cancell
tion of closed loops we must either take the fermions o
the down sites to satisfyh f̄s , f̄

y
s0j ­ 2dss0, or similarly

for the bosons.
To begin, we consider the spin-rotation invariant ca

with tS" ­ tS# ­ tS. In this case, for any realization of
the disorder in the scattering matrices, the transfer matri
commute with the sum over sites of the eight gener
tors (superspin operators) of the superalgebrasls2 j 1d >
osps2 j 2d, similarly to Ref. [6]. The generators for each
site are obtained as all bilinears in the fermions and boso
and their adjoints, which are singlets under the rando
SU(2). These are denoted by [7]B, Q3, Q6, V6, W6,
and have similar expressions for the two types of site
Cancellation of closed loops would require only invarianc
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under the gls1 j 1d subalgebra generated byB, Q3, V2, and
W1. The larger SUSY that exists whentS" ­ tS# is a
manifestation of the global SU(2) symmetry.

The transfer matrix describing the evolution on a lin
after averaging over the random SU(2) matrices, proje
the states on the corresponding site to a three-dimensio
subspace of singlets of the random SU(2) [3]. On t
up sites, these form the fundamental representation3
of sls2 j 1d, and we denote them asjml, m ­ 0, 1, 2.
Similarly, on the down sites, the three singlet states fo
the representation̄3, dual to3, and we call themjm̄l; m
is the number of fermions on a site of either type. W
find that j1̄l has negative squared norm,k1̄ j 1̄l ­ 21,
while the others are positive. Thus, after averaging, w
have a horizontal chain of sites with alternating du
representations on the two sublattices and a discrete-t
evolution along the vertical direction given by the transf
matrices at the nodes, which will be specified below.

We now consider in detail the node transfer matrixTS

on a single node on sublatticeS. After the averaging, it
acts in the tensor product3 ≠ 3̄ for the two sites. Because
of thesls2 j 1d SUSY, we find that it takes the form

TS ­ t2
SP1 1 s1 2 t2

SdI ≠ Ī . (2)

Here, the first term contains the projection operatorP1 ­
jsl ksj onto the normalized singlet statejsl ­

P
m jml ≠

jm̄l, while in the second termI, Ī are the identity
operators on the two sites (note thatĪ ­ j0̄l k0̄j 2

j1̄l k1̄j 1 j2̄l k2̄j). The two terms inTS represent the two
ways tosls2 j 1d-invariantly couple the incoming and out
going states at the node, such that the incoming state
the fundamental representation3) flows out unchanged,
turning either to the right or the left. They can b
represented graphically as shown at the top in Fig. 2.

When we multiply the transfer matrices together an
take the supertrace in the tensor product of all sites
calculate the partition functionZ ­ STrU, the result is
given by the sum of all contributions of closed loops th

FIG. 2. Graphical representation of the transfer matricesTS ,
percolating clusters, and two pointsr1, r2, on a hull.
4525
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fill the links of the network, weighted by factors of eithe
t2
S or s1 2 t2

Sd for each node. Each loop contributes
factor coming from the sum over the three states that c
propagate around the loop, the supertrace str1 ­ 1 taken
in the fundamental3. It is also clear thatZ is equal to 1,
as it is also before averaging.

The sum over loops on the links of the network i
equivalent to the bond percolation problem on the squa
lattice, as follows. In Fig. 2, we shade one-half of th
plaquettes of the network in checkerboard fashion. T
two terms inTS possible at each node either do or do n
connect the shaded plaquettes, as indicated by the th
undirected line segments. At eachA (respectively,B)
node we have a horizontal (vertical) line with probabi
ity pA ­ t2

A (pB ­ 1 2 t2
B). Then on the square lattice

formed by the shaded plaquettes we have the classical b
percolation problem, and the loops are the boundaries
“hulls”) of the percolation clusters. This SUSY repre
sentation of percolation easily generalizes toslsn 1 1 j nd
SUSY,n $ 1, using the (2n 1 1)-dimensional fundamen-
tal representation and its dual.

Many critical exponents for 2D percolation are know
exactly. First, there is the correlation length exponen
which immediately gives the localization length for th
spin QH transition,

j , jpS 2 pScj
2n , (3)

with n ­ 4y3 [9]; the critical values arepAc ­ pBc ­
1y2 in the isotropic case. Then, because the ba
operators of our system are the superspins, which act
the states that live on the hulls of the percolation cluste
we should consider the exponents associated with th
hulls. These include an infinite set of scaling dimensio
for the so-calledn-hull operators [10],

xn ­ s4n2 2 1dy12 . (4)

The exponentxn describes the spatial decay at criticalit
,jr1 2 r2j

22xn of the probability thatn distinct hulls each
pass close to each of the two pointsr1 andr2. There is
also a set of analogous exponents for the same correla
near a boundary [11],

x̃n ­ ns2n 2 1dy3 . (5)

We will now relate further physical quantities within
our model to percolation exponents, through the SUS
mapping. We write the superspins as a single eig
component objectJ for either up or down sites. These
can be inserted in any links of the network, to obtain
correlator such askQ3sr1dQ3sr2dl, wherer1 andr2 repre-
sent links of the network. Then, using the same graphic
expansion, we obtain a sum over loop configurations, no
with the positions of the insertions marked on the loop
and, for loops with insertions, the factor 1 is replaced b
a supertrace (in the fundamental) of the product of mat
ces that represent theJ ’s inserted. We then require only
the total probabilities that loops pass through the mark
points in various ways. The simplest example is a tw
4526
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point function ofJ ’s, which is nonvanishing only if the
J ’s are on the same loop, becausestrJ ­ 0 for all com-
ponents ofJ. The leading term in the probability tha
the two points are on the same loop (hull) is govern
by the leading one-hull operator in the continuum theo
[10], giving

ks21di11i2 Jsr1dJsr2dl , jr1 2 r2j
22x1 , (6)

at the transition, wherex1 ­ 1y4 as specified above. Th
reason for the staggering factorss21di1 , where i1 is the
site corresponding tor1, will become clear momentarily.

It is useful to consider the anisotropic limit of the mode
This is defined bytA, tB ! 0 with a fixed ratiotAytB ­ e.
Then the transfer matricesTS may be expanded intS and
recombined in the exponential. The evolution operator
the formU . exps22tAtB

R
dt H1Dd, where the effective

HamiltonianH1D describes a 1D superspin chain, wi
alternating3 and3̄ representations, and continuous imag
nary timet:

H1D ­
X

iseJ2i21 ? J2i 1 e21J2i ? J2i11d . (7)

Here,J ? J denotes thesls2 j 1d invariant product [7]. The
transition point, whereH1D for an infinitely long chain is
gapless, is now ate ­ 1. The two-site version ofH1D
appeared in Ref. [3].

The sum
P

i Ji is the generator of global SUSY
transformations, and soJi , viewed as a function ofi, is the
superspin density on the lattice, which gives a sublead
contribution ,r22 to the J-J correlation at criticality.
The one-hull operator must therefore be the stagge
part,s21diJi .

The one-hull operators represented bys21diJi have
several physical applications. Components such asQ1 ­
f

y
" f

y
# on the up sites create fermions, so produce ends

the quasiparticle paths. The sum of all such paths betw
r1 andr2 represents the quasiparticle Green’s function,G.
To obtain nonzero results on averaging, we must multi
the retarded and advanced Green’s functions before a
aging, but this can be replaced by a spin-singlet com
nation of our fermions or bosons [3]. The staggered p
of this averaged correlator represents the average z
frequency density-density (“diffusion”) propagatorjGj2

(and also the average conductance between two point
tacts [12]), which therefore falls asjr1 2 r2j

21y2 at the
transition. Moreover, the local density of statesrsr, Ed
is represented by another component of the one-hull
erator, because both it and the density operator con
wave functions squared,,jcj2, in the original problem
and so scale in the same way. The energyE itself (set to
zero hitherto) has scaling dimensiony1 ­ 2 2 x1 because
an imaginary parth of E induces a staggered “magnet
field” term

P
i hrisihd in H1D . Hence, for the average

we have at criticality

rsr , Ed , jEjx1yy1 ­ jEj1y7. (8)
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Also, since a uniform Zeeman termH causes a shift in
the Fermi energy, it induces a correlation lengthjH ,
jHj2n1 , wheren1 ­ 1yy1 ­ 4y7.

We have already identified the valuen ­ 4y3 of the lo-
calization length exponentn with that in percolation. In
terms ofH1D , the effect of a small deviationd ; e 2 1
is to add the perturbationd

P
is21diJi ? Ji11 to the criti-

cal H1D . This term contains the dimer operatorDi ­
s21diJi ? Ji11, which is odd under reflection through an
lattice site (parity). The scaling dimensionx2 of the two-
hull operator is the same as that of this “thermal” perturb
tion for the transition; that is,n ­ n2 ­ 1yy2, y2 ­ 2 2

x2 [10]. We therefore expect that the two-hull operator
part of a multiplet of staggered two-superspin operato
that are similar toDi , but are not allsls2 j 1d singlets.

As a final perturbation of the critical Hamilton-
ian, we consider the effect oftS" fi tS#. This breaks
the global SU(2) symmetry, and breaks the SUSY
gls1 j 1d. Taking tAs ­ tBs, we find that the effect is
to add toH1D a term st" 2 t#d2

P
i Ĵi ? Ĵi11, where Ĵi

is the four-component set of generators of gls1 j 1d, and
the product is invariant under this algebra. This term
an anisotropy in superspin space. The two QH tran
tions it produces [4] cannot be seen in our formulatio
without explicitly introducing both retarded and advance
fermions and bosons, and we will see only exponentia
decaying correlations. The correlation lengthjD induced
by D ­ t" 2 t# scales asjD , jDj2m, in the notation of
Ref. [4], for smallD. If the spin anisotropŷJi ? Ĵi11 has
dimensionx0, then we will havem ­ 2ys2 2 x0d. The
operator does not appear to be the one-hull operator,
has the opposite parity to the two-hull. However, th
operator product of two one-hull operators has the corr
parity and might contain this operator. In conformal fie
theory, the one-hull operator can be represented byf2,2 in
the Kac classification ofc ­ 0 Virasoro representations
The fusion rules for this primary field with itself contain
the leading nontrivial operatorf1,3, which we view as
a subleading one-hull operator, with scaling dimensi
x̂1 ­ 2h1,3 ­ 2y3. We suggest thatx0 ­ x̂1 ­ 2y3,
which yields m ­ 3y2. We further suggest that this
operator describes arandom Zeeman term (with zero
mean).

Finally, we note that the average two-probe condu
tance of our system with open ends [6], and withtS" ­
tS#, can be related to the numbern of hulls that connect
one end to the other (and back). Each such configu
tion of loops contributesn to the conductance, times2 for
spin, so the mean conductance has the scaling form

ḡ ­ 2
X̀
n­1

nPsn, LyW , Lyjd ,

where Psn, LyW , Lyjd is the probability that exactlyn
hulls run from one end to the other and back, for
system of sizeL by W . This can be considered both
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for periodic and reflecting transverse boundary conditions
At the transition,j ­ `, and for largeLyW , it is known
[13] that Psn, LyW , 0d , e22pxnLyW for periodic, and
,e2px̃nLyW for reflecting, boundaries. The sum forḡ is
dominated by then ­ 1 term in this limit, so it has the
form ḡ , e2Lyj1D , giving the behavior of the localization
lengthj1D , the only parameter that enters in the complete
distribution of conductance in this limit [14]. AsLyW !
0, we expect thatḡ ~ WyL, implying that there is a
nonzero critical conductivity.

We may now compare our results with those of recen
numerical work. In Ref. [4], the results obtained were
n . 1.12 and m . 1.45. These are in fair agreement
with our predictions, especially form where our theoretical
argument is less well established. The authors of Ref. [5
study the SUSY spin chain numerically, and find critical
exponentsx1 ­ 0.26 6 0.02 and x2 ­ 1.24 6 0.01, in
excellent agreement with our predictions.

To conclude, we have used SUSY methods to find a re
markable equivalence of a quasiparticle localization prob
lem, the spin quantum Hall transition, to 2D percolation,
resulting in the exact values of three exponents, and th
universal ratios for the localization length in the 1D limit.
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