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Exact Exponents for the Spin Quantum Hall Transition
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We consider the spin quantum Hall transition which may occur in disordered superconductors with
unbroken SW2) spin-rotation symmetry but broken time-reversal symmetry. Using supersymmetry, we
map a model for this transition onto the two-dimensional percolation problem. The anisotropic limit is
ansl(2] 1) supersymmetric spin chain. The mapping gives exact values for critical exponents associated
with disorder averages of several observables in good agreement with recent numerical results.
[S0031-9007(99)09270-4]
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Noninteracting electrons with disorder, and the ensuingymmetry. The single-particle energg)(spectrum has
metal-insulator transitions, have been studied for several particle-hole symmetry [1] under which — —E, so,
decades, and are usually divided into just three classes lwhen states are filled up t& = 0, the positive-energy
symmetry considerations. Recently, the ideas have begrarticle and hole excitations become doublets of the
extended to quasiparticles in disordered superconductorglobal SU(2) symmetry. In this picture, a (honrandom)
for which the particle number is not conserved at theZeeman ternf{ for the quasiparticles maps onto a simple
mean field level. Several more symmetry classes havshift in the Fermi energy ta£ = H [5], splitting the
been found [1]. Of particular interest [2—5] is the case indegeneracy.
which time-reversal symmetry is broken but global SU(2) The model [4,5] is a network (generalizing Ref. [8]),
spin-rotation symmetry is not (clags of Ref. [1]), and in which a particle of either spin and with = 0, rep-
spin transport can be studied. In two dimensions (2D) itesented by a doublet of complex fluxes, can propagate
can occur ind-wave superconductors. Within this class, ain one direction along each link (Fig. 1). The propaga-
delocalization transition is possible in which the quantizedion on each link is described by a random SU(2) scat-
Hall conductivity for spin (the linear response coefficient tering matrix (the black dot), with a uniform distribution
between the spin current and the perpendicular gradiemtver the SU(2) group; the absence of an additional ran-
of a Zeeman field) changes by two units, resembling thelom U(1) phase here is crucial and implies that the global
usual quantum Hall (QH) transition but in a different SU(2) spin-rotation (or particle-hole) symmetry is unbro-
universality class. When a Zeeman term is introducedken. As in Ref. [8], there are two sublattices,and B,
which breaks the SU(2) symmetry down to U(1), theon which the nodes are related by a°90tation. Scat-
transition splits into two that are each in the usual QHtering of the fluxes at the nodes (black squares) is de-

universality class. scribed by orthogonal matrices diagonal in spin indices:
In this paper, we presergxact results for a recent Sg = Sg; & Sy,

model [4,5] for the spin QH transition in a system of (1 — 13,)1/2 tg

noninteracting quasiparticles in 2D. We use a super- Sso =< —tiz (1 - z§0)1/2>’ (1)

symmetry (SUSY) representation of such models, con- )
sidered previously [6], to obtain a mapping onto the 2DWhereS = A, B labels the sublattice, and =1, | labels
classical bond percolation transition, from which we ob-the spin direction. The network is spatially isotropic when
tain three independent critical exponents, and universdP€ scattering amplitudes on the two sublattices are related
ratios, exactly. An anisotropic version of the model isbY fas + 7530 = 1. o _
also mapped onto an antiferromagneti€2 | 1) SUSY [7] _'ll'r;e network has a multicritical point ai, = 1z, =
quantum spin chain. The results are in very good agree* /> (for the isotropic case). Taking., # g, (but
ment with recent numerical simulations [4,5].

We study the spin QH transition in an alternative
description that is obtained from the superconductor after

a particle-hole transformation on the down-spin particles A

[2], which interchanges the roles of particle number and

z component of spin, and so particle number is conserved B

rather than spin. This makes it possible to use a single-

particle description, at the cost of obscuring the SU(2) FIG. 1. The network model.
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keepingzs; = fg)) drives the system through a QH tran- under the dli | 1) subalgebra generated By 03, V—, and
sition between an insulator and a QH state, and the HalW.,. The larger SUSY that exists wheg; = f5; is a
conductance (now for charge) jumps from 0 to 2. Makingmanifestation of the global SU(2) symmetry.
ts1 # ts) breaks the global SU(2) symmetry, and splits the The transfer matrix describing the evolution on a link,
transition into two ordinary QH transitions [4] each in the after averaging over the random SU(2) matrices, projects
unitary class. As we will argue later, this perturbation isthe states on the corresponding site to a three-dimensional
different from the uniform Zeeman term. subspace of singlets of the random SU(2) [3]. On the
We briefly describe, for the present case, the main stepsp sites, these form the fundamental representafion
of the SUSY method for the network models [6]. Trans-of s1(2]|1), and we denote them d#), m = 0, 1, 2.
port and other properties of the network, such as its conSimilarly, on the down sites, the three singlet states form
ductance, may be expressed in terms of sums over pathise representatiod, dual to3, and we call themjm); m
on the network. Such a sum may be written in secondis the number of fermions on a site of either type. We
quantized language as a correlation functign,-) =  find that |1) has negative squared norrl, | 1) = —1,
STr(T ---U), where the supertrace (STr) contains anwhile the others are positive. Thus, after averaging, we
evolution operatolU of an associated quantum 1D prob- have a horizontal chain of sites with alternating dual
lem, T is a time-ordering symbol, and - stands for representations on the two sublattices and a discrete-time
operators that represent the ends of paths and correvolution along the vertical direction given by the transfer
spond physically to density, current, etc. In this form, thematrices at the nodes, which will be specified below.
average can be taken to obtain moments of physical quan- We now consider in detail the node transfer maffix
tities, and we leave this implicit in later notation. In this on a single node on sublattice After the averaging, it
1D problem, vertical rows of links of the network become acts in the tensor produdt® 3 for the two sites. Because
sites, and the vertical direction becomes (imaginary) timef thes1(2 | 1) SUSY, we find that it takes the form
(we assume for the present periodic boundary conditions 2 2 -
in both directions). The evolution operattr, composed Ts = tsPr + (1 =)l ® 1. (2)
of transfer matrices for links and nodes, acts in a tensoHere, the first term contains the projection operdtpr=
product of Fock spaces of bosons and fermions on eads)(s| onto the normalized singlet state) = >, |m) ®
site. The presence of a fermion or boson on a link—i.e.|m), while in the second termy, I are the identity
on a site at an instant of discrete time—represents an ebperators on the two sites (note that= |0){(0] —
ement of a path traversing that link [6]. Both bosons and1){1| + |2)(2]). The two terms inTs represent the two
fermions are needed to ensure the cancellation of contrivays tosl(2 | 1)-invariantly couple the incoming and out-
butions from closed loops. Usually one needs two typegioing states at the node, such that the incoming state (in
of bosons and fermions, retarded and advanced, to be ablee fundamental representatidy flows out unchanged,
to obtain two-particle properties. However, the particle-turning either to the right or the left. They can be
hole symmetry relates retarded and advanced Greentgpresented graphically as shown at the top in Fig. 2.
functions [3]. Hence, for the study aheanvalues of When we multiply the transfer matrices together and
simple observables, we need only one fermion and ontake the supertrace in the tensor product of all sites to
boson per spin direction per site. [To study fluctuationscalculate the partition functio@ = STrU, the result is
and other observabled] types of fermion and boson are given by the sum of all contributions of closed loops that
needed, and the SUSY below becomes(28( 2N) [1].]
We denote them by, b, for the sites related to the links
going up (up sites), anfl,, b, for the down sites. On the T =2 DL
up sites,f, b, are canonical, but to ensure the cancella- 4 y

tion of closed loops we must either take the fermions on T,=1 +(1-12)
the down sites to satisf{/fg,fl,} = — 844, OF Similarly 22 L 2

for the bosons.

To begin, we consider the spin-rotation invariant case
with g1 = rg; = ts. In this case, for any realization of
the disorder in the scattering matrices, the transfer matrices
commute with the sum over sites of the eight genera-
tors (superspin operators) of the superalgefi(a| 1) =
osp212), similarly to Ref. [6]. The generators for each
site are obtained as all bilinears in the fermions and bosons
and their adjoints, which are singlets under the random
SU(2). These are denoted by [B] Q3, O+, V+, Wx,

and have similar expressions for the two types of sitesFiG. 2. Graphical representation of the transfer matrites
Cancellation of closed loops would require only invariancepercolating clusters, and two points, 7,, on a hull.
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fill the links of the network, weighted by factors of either point function ofJ’s, which is nonvanishing only if the
13 or (1 — 3) for each node. Each loop contributes aJ’s are on the same loop, because/ = 0 for all com-
factor coming from the sum over the three states that caponents of/. The leading term in the probability that
propagate around the loop, the supertrace strl taken the two points are on the same loop (hull) is governed
in the fundamentad. It is also clear thaZ is equal to 1, by the leading one-hull operator in the continuum theory

as it is also before averaging. [10], giving
The sum over loops on the links of the network is ity o,
equivalent to the bond percolation problem on the square (DRI (r2)) ~ e = a5, (6)

lattice, as follows. In Fig. 2, we shade one-half of theat the transition, where, = 1/4 as specified above. The
plaquettes of the network in checkerboard fashion. Theason for the staggering factafs 1)'!, wherei; is the
two terms inTs possible at each node either do or do notsjte corresponding te;, will become clear momentarily.
connect the shaded plaquettes, as indicated by the thick it js yseful to consider the anisotropic limit of the model.
undirected line segments. At each (respectively,B)  This is defined by,, 1, — 0 with a fixed ratior /15 = e.
node we r21ave a horlzogtal (vertical) line with probabil- Then the transfer matrice® may be expanded in; and

ity pa =11 (pp =1 — 5). Then on the square lattice recombined in the exponential. The evolution operator has
formed by the shaded plaquettes we have the classical bofige formy = exp(—2tatp [ dr H,p), where the effective
percolation problem, and the loops are the boundaries (Q4amijltonian #,p describes a 1D superspin chain, with

“hulls”) of the percolation clusters. This SUSY repre- aiternatingd and3 representations, and continuous imagi-
sentation of percolation easily generalizeslio + 1{n)  pary timer:

SUSY,n = 1, using the?n + 1)-dimensional fundamen-
tal representation and its dual. _ . 17 .7
Many critical exponents for 2D percolation are known Hip = 2 (ehimi + Joi + € i D). (D)

exactly. First, there is the correlation length exponentHere,J - J denotes thel(2 | 1) invariant product [7]. The

which immediately gives the localization length for the transition point, whereH |, for an infinitely long chain is

spin QH transition, gapless, is now a¢ = 1. The two-site version ofHp
&~ lps — psel™”, (3) appeared in Ref. [3].

with » = 4/3 [9]: the critical values ar _ _ The sum Y, J; is the generator of global SUSY
' @ac = Pbe .transformations, and sh, viewed as a function af, is the

1/2 in the isotropic case. Then, bec_ause t_he basi uperspin density on the lattice, which gives a subleading
operators of our system are the superspins, which act %bntribution ~+~2 to the J-J correlation at criticality.

the states that live on the hulls of the percolation clustersy, * o W (oeraior must therefore be the staggered
we should consider the exponents associated with these P 99

hulls. These include an infinite set of scaling dimension a.:.tﬁg_(l))rié"_hu” operators represented by1)'J; have
for the so-called:-hull operators [10], P P !

R several physical applications. Components sucf as=
X, = (4n® — 1)/12. 4 £'7 on the up sites create fermions, so produce ends for
The exponent, describes the spatial decay at criticality the quasiparticle paths. The sum of all such paths between
~|r1 — ry| % of the probability thai: distinct hulls each  r; andr, represents the quasiparticle Green’s functién,
pass close to each of the two poinfsandr,. There is To obtain nonzero results on averaging, we must multiply
also a set of analogous exponents for the same correlatatlse retarded and advanced Green’s functions before aver-
near a boundary [11], aging, but this can be replaced by a spin-singlet combi-

%, = n(n — 1)/3 (5) nation of our fermions or bosons [3]. The staggered part
n . .

) . . . of this averaged correlator represents the average zero-

We will now relate further physical quantities within frequency density-density (“diffusion”) propagatb®|?

our model to percolation exponents, through the SUSY(5q a1s0 the average conductance between two point con-
mapping. We write the superspins as a single eighty,qq [12]), which therefore falls as; — r|~'/? at the

component objecy for either up or down sites. These angition. Moreover, the local density of stateé, E)

can k?e |nserter31d in any links of thhe network, to obtain g yepresented by another component of the one-hull op-
correlator such agQs(r1)Q3(r2)), wherer, andry repre- — graiar hecause both it and the density operator contain
sent links of the network. Then, using the same graphica},o\e functions squared; |2, in the original problem

expansion, we obtain a sum over loop configurations, NOW 4 sq scale in the same way. The enefigiself (set to
with the positions of the insertions marked on the loops, ¢, hitherto) has scaling dimension= 2 — x; because

and, for Ioops_with insertions, the factor 1 is replaced bYan imaginary part; of E induces a staggered “magnetic
a supertrace (in the funqlamental) of the produc'; of matrizaig” term S mpiin) in Hyp. Hence, for the average
ces that represent this inserted. We then require only \ o have at clriticality

the total probabilities that loops pass through the marked
points in various ways. The simplest example is a two- p(r E) ~ |EM/» = |E|'7. (8)
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Also, since a uniform Zeeman terid causes a shift in for periodic and reflecting transverse boundary conditions.

the Fermi energy, it induces a correlation length ~ At the transition,& = «, and for largeL /W, it is known
|H|~"', wherev, = 1/y, = 4/7. [13] that P(n,L/W,0) ~ e 27%L/W for periodic, and
We have already identified the value= 4/3 of the lo-  ~e~"%L/W for reflecting, boundaries. The sum fgris

calization length exponent with that in percolation. In dominated by the: = 1 term in this limit, so it has the

terms of H|p, the effect of a small deviatioh = ¢ — 1  form g ~ ¢ L/é0_ giving the behavior of the localization

is to add the perturbatiod > ;(—1)'J; - J;1; to the criti-  length&;p, the only parameter that enters in the complete

cal H,p. This term contains the dimer operatb; = distribution of conductance in this limit [14]. As/W —

(—1){J; - J;i+1, which is odd under reflection through any 0, we expect thatg « W/L, implying that there is a

lattice site (parity). The scaling dimensiap of the two-  nonzero critical conductivity.

hull operator is the same as that of this “thermal” perturba- We may now compare our results with those of recent

tion for the transition; thatisy = v, = 1/y,, y, =2 — numerical work. In Ref. [4], the results obtained were

x> [10]. We therefore expect that the two-hull operator isy = 1.12 and u = 1.45. These are in fair agreement

part of a multiplet of staggered two-superspin operatorswith our predictions, especially far where our theoretical

that are similar taD;, but are not alkl(2 | 1) singlets. argument is less well established. The authors of Ref. [5]
As a final perturbation of the critical Hamilton- study the SUSY spin chain numerically, and find critical

ian, we consider the effect ofs; # r5;. This breaks exponentsx; = 0.26 = 0.02 and x, = 1.24 = 0.01, in

the global SU(2) symmetry, and breaks the SUSY toexcellent agreement with our predictions.

gl(1]1). Taking ta, = t3,, We find that the effect is To conclude, we have used SUSY methods to find a re-

to add to H,p a term(s; — 1)*>,J; - Ji+1, whereJ;  markable equivalence of a quasiparticle localization prob-

is the four-component set of generators ofigll), and lem, the spin guantum Hall transition, to 2D percolation,

the product is invariant under this algebra. This term igesulting in the exact values of three exponents, and the

an anisotropy in superspin space. The two QH transiuniversal ratios for the localization length in the 1D limit.
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