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Persistent Currents on Networks
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We develop a method to calculate persistent currents and their spatial distribution (and transport
properties) on graphs made of quasi-1D diffusive wires. They are directly related to the field derivatives
of the determinant of a matrix which describes the topology of the graph. In certain limits, they are
obtained by simple counting of the nodes and their connectivity. We relate the average current of
a disordered graphvith interactionsand thenoninteractingcurrent of the same graph with clean 1D
wires. A similar relation exists for orbital magnetism in general. [S0031-9007(99)09102-4]

PACS numbers: 72.20.My, 73.40.Lq

The existence of persistent currents in mesoscopibetween the diffusion and the Schroédinger equation, we
metallic rings is a thermodynamic signature of phasewill point out a very simple relation between the Hartree-
coherence [1]. These currents have been calculated usiigpck (HF) average magnetization of a diffusive system
diagrammatic methods in which disorder and interactionsnd the grand canonical magnetization of the correspond-
are treated perturbatively [2—-5], in a way very similar toing clean system. As a simple example, we relate the
the calculation of transport quantities such as the weakAslamasov-Larkin contribution to the magnetization and
localization (WL) correction, or the universal conductancethe Landau susceptibility.
fluctuations (UCF). Like transport quantities [6—8], they All quantities of interest in this work can be related
have also been derived (after disorder averaging) usintp the solutionP(7,7’, w) of the diffusion equation in a
semiclassical calculations, in which they were expresseghagnetic fieldB = V x A’(;) [16] (& = 1 throughout the
in terms of the classical and interference parts of theaper):
return probability for a diffusive particle [9—-12]. This
formalism had made possible the calculation of WL
corrections on any type of graph made of diffusive wires ()
[13]. A diffusion equation was solved on each link of D is the diffusion constant. Unless specified, the mag-
the graph with current conservation on each node. Fonetic field dependence is implicity = 1/74 = D/Lf,,

a network with N nodes, the return probability could is the phase coherence ratd., and 7, are, respec-
be related to the elements of & X N “connectivity” tively, the phase coherence length and time. In the fol-
matrix M and its inverse. This method has also been usetbwing, we will need only the space integrated return
recently to calculate the magnetization of such a networlrobability P(r) = [d?7 P(7,7,t). It is simply written
[14], but it required rather lengthy calculations. in terms of the eigenvaluek, of the diffusion equation,

In this Letter, we show that the magnetization and theP(r) = Y, e 7" = py(r)e~?". The time integral of
transport quantities can beéirectly written in terms of P(z), i.e., the Laplace transform &fy(z), can be straight-
the determinant d&f of the connectivity matrix. Besides forwardly written in terms of the spectral determinant (1):

> >/

[—iw + v — D(V; — ZieZ)Z]P(r,r ,w)=06GF — 7).

being a very powerful method to calculate the above o 1 9

quantities, this result leads to a straightforward harmonic P = drP(t) = > = — InSs(y). ()
. .. 0 En + Y ay

expansion of these quantities for any network geometry. "

The efficiency of this method is shown for simple !_et us now recall how average magr!etizations can be
geometries of connected rings. In addition, we are able t@/ritten in terms OfP(t)._ Here, we restrict ogrselves to
derive the local distribution of the currents in the links of 7 = 0 K. The fluctuation of the magnetizatiait,y, =
the network. Since the persistent current problem has stil{M?) — (M)?)!/? is given by [11]
to be considered as unsolved, it is of interest to motivate 1 = pl(t,B) — P"(t,0)
. . . . . 2 s )
new experiments in various geometries for which the My, = 53 . d 3 . 4
magnetization and its distribution can be simply predicted , 5 5 _ o
and related to geometrical or topological parameters. ~ WhereP"(z, B) = 9°P(z, B)/dB". The main contribution
In the course of this work, we shall obtain a simplet0 the average magnetization is due to electron-electron in-
expression for the spectral determinant of the diffusiorferactions[3,4]. Considering a screened interactién —
equation, defined as r') = US8(F — 7') and definingAy = Upo, wherep, is
the density of states (DoS) at the Fermi enetgythe HF
Sa(y) = l—[ bu(y + E), (1) contribution to the magnetization has been written as [10]

where E,, are the eigenvalues of the diffusion equation, M.} — Ao 9 f*’” 5 P(t,B) (5)
andb, are regularization factors [15]. Using the analogy ¢ 7 0B Jo 2
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Considering higher corrections in the Cooper channel leadthe Landau susceptibility for the clean systewys =

to a ladder summation [5,12,17,18], so thgtshould be  —e?/247m.

replaced byA(r) = Ag/[1 + AgIn(err)] [19]. We shall We now calculate the spectral determinant for quasi-1D

discuss later the contribution of this renormalization. graphs. By solving the diffusion equation on each link,
Using standard properties of Laplace transforms, thend then imposing Kirchoff-type conditions on the nodes

above time integrals can be written as integrals of theof the graph, the problem is reduced to the solution of a

spectral determinant, so that the magnetizations read  system ofN linear equations relating the eigenvalues at

) 1 +o0 92 R the N nodes. Let us introduce thé X N matrix M [21]:
My =53 jy dyi(y — 71)@ InSa(yDly, (6)

eifap
Myo = ZCOtr(naﬁ)a Myp = —— . (12)
Ao +eo 0 B Smh’]aﬁ
) =2 [ an Ems. @
T J, B The sum) ; extends to all the nodeg connected to

In the case of a ring or a graph geometry, the integrain® nodea; lqs is the length of the link betweea and
converges at the upper limit. For the case of a magneti@- 7as = lag/Lg. The off-diagonal coefficiend/,
field in a bulk system, this limit should be taken B&,, IS nonzero only if there is 2 link connecting the nodes
wherer, is the elastic time. Finally, we also recall that @ and 8. 8. = (47/¢o) [, Adl is the circulation of
transport properties such as WL or UCF can be alséhe vector potential betweea and 8. The authors of
related to the Spectraj determinant [14] Ref. [13] derived a relation betweeR and the elements

We now wish to emphasize an interesting corresponof the matrixM and its inversd’ = M "
dence between the HF magnetization of a phase coherent

interacting diffusivesystem and the grand canonical mag- 2yP = (N — Np) + Z Naplap
netizationM, of the correspondingoninteracting clean (@h)
system. The latter can also be written in terms of a spec- Fop = COthyas — (Taa + Tpp) (13)
tral determinant. The grand canonical magnetizafin B ap sintPn,
is given quite generally b
guen quiie generaly sy | © 2ReleierTy,) SOMas.
Q) d F Bal Ginre ’
MO = _(‘)_B = _a_B dGN(G), (8) sin naﬁ
) ) 0 whereNp is the number of links in the graph. Using the
where the integrated DoS is equality T(M~'9,M) = o, IndetM and recognizing in

_ 1 _ _ 1 each term of (13) the partial derivative with respectyto
N(e) = - ImEZIn(eM €+) = - IminS(e+), we find that Eq. (13) can be rewritten &3 = % InSy
" ) where the spectral determina$y is given by

Np—N
wheree, = € + i0, S(€) =[1., bu(e, — €)= Sa(y = S, = (L_¢) [1sintmapdets.  (14)
—e€), wheree, are the eigenvalues of the Schrédinger Lo (@p)
equation.

For a clean system, these eigenvalues are the sa
as those of the diffusion equation, with the substitution
D — hi/(2m) and2e — e [20].

Comparing Egs. (8) and (9) with Eqg. (7), we can now
formally relateM, and the HF magnetizatiof@/,.) of the
same diffusive system:

4)- Lo is an arbitrary length. We have thus transformed
he spectral determinant which is an infinite product in a
finite product related to def.

As an example, we consider a disordered ring of
perimeterL, to which one arm of lengtly is attached.
The spectral determinant is equal to

. 1
My = —limy o X Im[{M..)(—er — i0)].  (10) Ss = sinhRy sinhy + 2 costRy[coshy — cod4m¢)],

?gart from a multiplicative factor independent ¢f (or

wherep = ¢ /¢y is the ratio between the flug thread-

ing the ring and the flux quantumy = (L/Ly4) and
R = b/L. Thus the average magnetization is

This limit corresponds to taking the first-order contribu-
tion in Ag. As a simple illustration, consider the orbital
magnetic susceptibility of an infinite disordered plane.

For a disordered conductor, it is the Aslamasov—Larkin<M y — AoeD [~
susceptibilityyar. [18]: ee w2 Jiu,
4 hD |nToT¢ 2 sird d
XaL =~ 5 In; : (11) X : Ty . (15)
3 ¢y InTor, tanhRy sinhy + 2(coshy — costm o)
Ty = epe’/* and ¢y = h/e is the flux quantum. After If there is no arm(R = 0), we retrieve the classi-

replacing y by —er — i0, taking the imaginary part cal expression for the average magnetization of a disor-
of the logarithm, and replacing and 2e, we recover dered ring [22]. We notice that, in the limit > L, the
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magnetization remains finite and is equal2@ of the  magnetization, corresponding to a winding numlpem
single ring magnetization (fol.y, = L, which corre- the diffusion process, one should renormalize the inter-
sponds to typical experimental values). action parameter because of the Cooper renormalization
We want first to outline once more the connectionA = Ao/[1 + AgIner/(7E./p?)] [5].
between ballistic and disordered regimes. From Eq. (15) Figure 2 displays a comparison between the magneti-
and with the mapping (10)y — —E — i0 andL/L, —  zation of different networks of connected rings, evaluated
ikL, wherek is the wave vector of the solutions of the numerically using Egs. (7) and (14). The perturbative ex-
Schradinger equation, we immediately recover the currenpansions are in extremely good agreement with exact re-
in a one channel ballistic ring [23]. sults as soon as the coherence length is smaller than the
Let us come back to a diffusive network made ofperimeter of one ring (see dashed lines in Fig. 2).
connected rings. Experimentally, the coherence length Finally, we calculate the distribution of the local current
is of the order of the perimeter of one ring so thaton each link of the graph. On a linfe 8), the average
only a few harmonics of the flux dependence maycurrent is given by the derivative of the Hartree-Fock
be observed. It is then useful to make a perturbativeenergy correctior£yr to the vector potentiad(r), where
expansion. We split the matrix @8 = D — N, where r is any point belonging to the linkx B8):

D is a diagonal matrix:D,, = My, = z, to the lowest SE A T 5Ins
order inL (z, is the connectivity of the node); N,z = (Jap(r)) = —WHF == f dyy < . (19)
Mg =~ 2¢les/Lsei%s  Expanding Indét — D~'N) = )= Jy (r)
Tr[In(Z — D~'N)], we have 5InS s .
1 = r(M‘1 M) = ——ImMz M.p).
IndetM = IndetD — > —Tr(D"'N)"].  (16) SA(r) SA(r) b0 paap
n=1 1 (20)

We call loop” /, a set ofn nodes linked by: wires in @ £)cryations of the current corresponding to Eq. (6) can
closed loop. The length, of a loop!/ is the sum of the 4 gptained similarly [24].

lengths of then(/) links. The flux dependent part of $h In the limit L, = L considered above, the current
can be expanded as distribution can also be derived quite simply. Indeed, in
_ 2 2 this approximation, the total magnetization can be written
In§ = 2% o Zn(l) ¢ ¢ cosdm /o). (17) as a sumM,,) ~ >, (my), where{m;) is identified as the
_ magnetization of a plaquetteand depends on the position
¢ is the flux enclosed by the lodp of this plaquette in the array. It is given by the rules of

For example, we consider the cases shown on Fig. Jgq. (17) and is shown on Fig. 3 for a regular square lattice.

Reducing the above sum to elementary logpgvith two  The average persistent current flowing in one link is the
nodes), so that(ly) = 2, the first harmonics of the total

magnetization, to the first order iy, is

(L/L¢ + 1)€_L/L¢, (18) 1.0 1 Q

whereG = > ;14/(z1z2). z1 andz, are the connectiv-
ity of the two nodes of each loop. The sum is made

over them rings of the structure (see Fig. 1). In par- = |-——————— 2/3
ticular, it is G = (m + 2)/4 for an open necklace of: A
rings andG = m/4 for a closed necklace. The same re- SPos A_C 4/9
duction factors were obtained for weak-localization cor- Vv T —O0—0—0—
rections after lengthy calculations for = 1,2,3,% in 1/4 o0
Ref. [13]. For the isolated ring, one recovers the known —
first harmonics [11] and the above reduction facigB 16/81 TII1L
for the ring with one arm. For a harmonie of the 00 . . . .
0.0 1.0 2.0 3.0 4.0
L,
G@ G G { ) FIG. 2. Magnetization per ring for networks of connected
y * \ + + rings normalized to the single ring magnetization, calculated
exactly (solid lines) and with the loop expansion (dashed lines).
2.2, 2.2, ...,.2.2 2.2 2.2 _ ! .
2 S i S ) 272 23 The perimeter of all rings and sidearm lengths are equdl.to

The three bottom curves correspond to regular networks made
FIG. 1. Connectivity factor§2/z;) (2/z,) entering in the loop  of an infinite number of rings (only three are represented). In
expansion (17), for a series of identical connected rings, dhese cases, the magnetization has been divided by the number
single ring, and a ring with one arm. of rings. The flux threading all rings i = ¢/8.
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