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Persistent Currents on Networks
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We develop a method to calculate persistent currents and their spatial distribution (and tran
properties) on graphs made of quasi-1D diffusive wires. They are directly related to the field deriva
of the determinant of a matrix which describes the topology of the graph. In certain limits, they
obtained by simple counting of the nodes and their connectivity. We relate the average curre
a disordered graphwith interactionsand thenoninteractingcurrent of the same graph with clean 1D
wires. A similar relation exists for orbital magnetism in general. [S0031-9007(99)09102-4]

PACS numbers: 72.20.My, 73.40.Lq
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The existence of persistent currents in mesosco
metallic rings is a thermodynamic signature of pha
coherence [1]. These currents have been calculated us
diagrammatic methods in which disorder and interactio
are treated perturbatively [2–5], in a way very similar t
the calculation of transport quantities such as the wea
localization (WL) correction, or the universal conductanc
fluctuations (UCF). Like transport quantities [6–8], the
have also been derived (after disorder averaging) us
semiclassical calculations, in which they were express
in terms of the classical and interference parts of t
return probability for a diffusive particle [9–12]. This
formalism had made possible the calculation of W
corrections on any type of graph made of diffusive wire
[13]. A diffusion equation was solved on each link o
the graph with current conservation on each node. F
a network with N nodes, the return probability could
be related to the elements of aN 3 N “connectivity”
matrix M and its inverse. This method has also been us
recently to calculate the magnetization of such a netwo
[14], but it required rather lengthy calculations.

In this Letter, we show that the magnetization and th
transport quantities can bedirectly written in terms of
the determinant detM of the connectivity matrix. Besides
being a very powerful method to calculate the abov
quantities, this result leads to a straightforward harmon
expansion of these quantities for any network geomet
The efficiency of this method is shown for simple
geometries of connected rings. In addition, we are able
derive the local distribution of the currents in the links o
the network. Since the persistent current problem has s
to be considered as unsolved, it is of interest to motiva
new experiments in various geometries for which th
magnetization and its distribution can be simply predicte
and related to geometrical or topological parameters.

In the course of this work, we shall obtain a simpl
expression for the spectral determinant of the diffusio
equation, defined as

Sdsgd ­
Y

n
bnsg 1 End , (1)

where En are the eigenvalues of the diffusion equatio
andbn are regularization factors [15]. Using the analog
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between the diffusion and the Schrödinger equation,
will point out a very simple relation between the Hartree
Fock (HF) average magnetization of a diffusive syste
and the grand canonical magnetization of the correspo
ing clean system. As a simple example, we relate t
Aslamasov-Larkin contribution to the magnetization an
the Landau susceptibility.

All quantities of interest in this work can be relate
to the solutionPs$r , $r 0, vd of the diffusion equation in a
magnetic field$B ­ $= 3 $As$rd [16] (h̄ ­ 1 throughout the
paper):

f2iv 1 g 2 Ds=$r 2 2ie $Ad2gPs$r, $r 0, vd ­ ds$r 2 $r 0d .
(2)

D is the diffusion constant. Unless specified, the ma
netic field dependence is implicit.g ­ 1ytf ­ DyL2

f

is the phase coherence rate.Lf and tf are, respec-
tively, the phase coherence length and time. In the fo
lowing, we will need only the space integrated retur
probability Pstd ­

R
dd $r Ps$r , $r, td. It is simply written

in terms of the eigenvaluesEn of the diffusion equation,
Pstd ­

P
n e2sEn1gdt ­ P0stde2gt. The time integral of

Pstd, i.e., the Laplace transform ofP0std, can be straight-
forwardly written in terms of the spectral determinant (1

P ;
Z `

0
dt Pstd ­

X
n

1
En 1 g

­
≠

≠g
lnSdsgd . (3)

Let us now recall how average magnetizations can
written in terms ofPstd. Here, we restrict ourselves to
T ­ 0 K. The fluctuation of the magnetizationMtyp ;
skM2l 2 kMl2d1y2 is given by [11]

M2
typ ­

1
2p2

Z 1`

0
dt

P00st, Bd 2 P00st, 0d
t3 , (4)

whereP00st, Bd ­ ≠2Pst, Bdy≠B2. The main contribution
to the average magnetization is due to electron-electron
teractions [3,4]. Considering a screened interactionUs$r 2
$r 0d ­ Uds$r 2 $r 0d and definingl0 ­ Ur0, wherer0 is
the density of states (DoS) at the Fermi energyeF , the HF
contribution to the magnetization has been written as [1

kMeel ­ 2
l0

p

≠

≠B

Z 1`

0
dt

Pst, Bd
t2 . (5)
© 1999 The American Physical Society
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Considering higher corrections in the Cooper channel lea
to a ladder summation [5,12,17,18], so thatl0 should be
replaced bylstd ­ l0yf1 1 l0 lnseFtdg [19]. We shall
discuss later the contribution of this renormalization.

Using standard properties of Laplace transforms, t
above time integrals can be written as integrals of t
spectral determinant, so that the magnetizations read

M2
typ ­

1
2p2

Z 1`

g

dg1sg 2 g1d
≠2

≠B2 lnSdsg1djB0 , (6)

kMeel ­
l0

p

Z 1`

g

dg1
≠

≠B
lnSdsg1d . (7)

In the case of a ring or a graph geometry, the integ
converges at the upper limit. For the case of a magne
field in a bulk system, this limit should be taken as1yte,
wherete is the elastic time. Finally, we also recall tha
transport properties such as WL or UCF can be al
related to the spectral determinant [14].

We now wish to emphasize an interesting correspo
dence between the HF magnetization of a phase cohe
interacting diffusivesystem and the grand canonical mag
netizationM0 of the correspondingnoninteracting clean
system. The latter can also be written in terms of a spe
tral determinant. The grand canonical magnetizationM0
is given quite generally by

M0 ­ 2
≠V

≠B
­ 2

≠

≠B

Z eF

0
de Nsed , (8)

where the integrated DoS is

Nsed ­ 2
1
p

Im
X
em

lnsem 2 e1d ­ 2
1
p

Im lnS se1d ,

(9)

wheree1 ­ e 1 i0, S sed ­
Q

em
bmsem 2 ed ­ Sdsg ­

2ed, where em are the eigenvalues of the Schrödinge
equation.

For a clean system, these eigenvalues are the sa
as those of the diffusion equation, with the substitutio
D ! h̄ys2md and2e ! e [20].

Comparing Eqs. (8) and (9) with Eq. (7), we can no
formally relateM0 and the HF magnetizationkMeel of the
same diffusive system:

M0 ­ 2 liml0!0
1

l0
ImfkMeel s2eF 2 i0dg . (10)

This limit corresponds to taking the first-order contribu
tion in l0. As a simple illustration, consider the orbita
magnetic susceptibility of an infinite disordered plan
For a disordered conductor, it is the Aslamasov-Lark
susceptibilityxAL [18]:

xAL ­
4
3

h̄D

f
2
0

ln
lnT0tf

lnT0te
. (11)

T0 ­ eFe1yl0 andf0 ­ hye is the flux quantum. After
replacing g by 2eF 2 i0, taking the imaginary part
of the logarithm, and replacingD and 2e, we recover
ds
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the Landau susceptibility for the clean system:x0 ­
2e2y24pm.

We now calculate the spectral determinant for quasi-1
graphs. By solving the diffusion equation on each lin
and then imposing Kirchoff-type conditions on the nod
of the graph, the problem is reduced to the solution o
system ofN linear equations relating the eigenvalues
theN nodes. Let us introduce theN 3 N matrix M [21]:

Maa ­
X
b

cothshabd, Mab ­ 2
eiuab

sinhhab

. (12)

The sum
P

b extends to all the nodesb connected to
the nodea; lab is the length of the link betweena and
b. hab ­ labyLf. The off-diagonal coefficientMab

is nonzero only if there is a link connecting the node
a and b. uab ­ s4pyf0d

Rb

a A dl is the circulation of
the vector potential betweena and b. The authors of
Ref. [13] derived a relation betweenP and the elements
of the matrixM and its inverseT ­ M21:

2gP ­ sN 2 NBd 1
X

sabd
habFab

Fab ­ cothhab 2
sTaa 1 Tbbd

sinh2hab

(13)

1 2 Reseiuab Tbad
coshhab

sinh2hab

,

whereNB is the number of links in the graph. Using th
equality TrsM21≠gMd ­ ≠g ln detM and recognizing in
each term of (13) the partial derivative with respect tog,
we find that Eq. (13) can be rewritten asP ­

≠

≠g lnSd

where the spectral determinantSd is given by

Sd ­

√
Lf

L0

!NB2N Y
sabd

sinhhab detM , (14)

apart from a multiplicative factor independent ofg (or
Lf). L0 is an arbitrary length. We have thus transforme
the spectral determinant which is an infinite product in
finite product related to detM.

As an example, we consider a disordered ring
perimeterL, to which one arm of lengthb is attached.
The spectral determinant is equal to

Sd ­ sinhRy sinhy 1 2 coshRyfcoshy 2 coss4pwdg ,

wherew ­ fyf0 is the ratio between the fluxf thread-
ing the ring and the flux quantum.y ­ sLyLfd and
R ­ byL. Thus the average magnetization is

kMeel ­
l0eD

p2

Z `

LyLf

3
2 sin4pwydy

tanhRy sinhy 1 2scoshy 2 cos4pwd
. (15)

If there is no armsR ­ 0d, we retrieve the classi-
cal expression for the average magnetization of a dis
dered ring [22]. We notice that, in the limitb ¿ Lf, the
4513
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magnetization remains finite and is equal to2y3 of the
single ring magnetization (forLf & L, which corre-
sponds to typical experimental values).

We want first to outline once more the connectio
between ballistic and disordered regimes. From Eq. (1
and with the mapping (10),g ! 2E 2 i0 andLyLf !
ikL, wherek is the wave vector of the solutions of the
Schrödinger equation, we immediately recover the curre
in a one channel ballistic ring [23].

Let us come back to a diffusive network made o
connected rings. Experimentally, the coherence leng
is of the order of the perimeter of one ring so tha
only a few harmonics of the flux dependence ma
be observed. It is then useful to make a perturbati
expansion. We split the matrix asM ­ D 2 N, where
D is a diagonal matrix:Daa ­ Maa ø za to the lowest
order inLf (za is the connectivity of the nodea); Nab ­
Mab ø 2e2labyLf eiuab . Expanding ln detsI 2 D21Nd ­
TrflnsI 2 D21Ndg, we have

ln detM ­ ln detD 2
X
n$1

1
n

TrfsD21Ndng . (16)

We call “loop” l, a set ofn nodes linked byn wires in a
closed loop. The lengthLl of a loop l is the sum of the
lengths of thensld links. The flux dependent part of lnS
can be expanded as

lnS ­ 22
X
hlj

2
z1

· · ·
2

znsld
e2LlyLf coss4pflyf0d . (17)

fl is the flux enclosed by the loopl.
For example, we consider the cases shown on Fig.

Reducing the above sum to elementary loopsl0 (with two
nodes), so thatnsl0d ­ 2, the first harmonics of the total
magnetization, to the first order inl0, is

kMeel ­ 2G
l0eD

p2 sLyLf 1 1de2LyLf , (18)

whereG ­
P

hl0j 4ysz1z2d. z1 and z2 are the connectiv-
ity of the two nodes of each loop. The sum is mad
over them rings of the structure (see Fig. 1). In par
ticular, it is G ­ sm 1 2dy4 for an open necklace ofm
rings andG ­ my4 for a closed necklace. The same re
duction factors were obtained for weak-localization co
rections after lengthy calculations form ­ 1, 2, 3, ` in
Ref. [13]. For the isolated ring, one recovers the know
first harmonics [11] and the above reduction factor2y3
for the ring with one arm. For a harmonicp of the

.2 2
2 2

....2 2
2 4

.2 2
4 4

.2 2
4 2

.2 2
2 3

FIG. 1. Connectivity factorss2yz1d s2yz2d entering in the loop
expansion (17), for a series of identical connected rings,
single ring, and a ring with one arm.
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magnetization, corresponding to a winding numberp in
the diffusion process, one should renormalize the int
action parameter because of the Cooper renormaliza
l ­ l0yf1 1 l0 lneFyspEcyp2dg [5].

Figure 2 displays a comparison between the magn
zation of different networks of connected rings, evaluat
numerically using Eqs. (7) and (14). The perturbative e
pansions are in extremely good agreement with exact
sults as soon as the coherence length is smaller than
perimeter of one ring (see dashed lines in Fig. 2).

Finally, we calculate the distribution of the local curren
on each link of the graph. On a linksabd, the average
current is given by the derivative of the Hartree-Foc
energy correctionEHF to the vector potentialAsrd, where
r is any point belonging to the linksabd:

kJabsrdl ­ 2
dEHF

dAsrd
­

l

p

Z 1`

g

dg1
d lnS

dAsrd
, (19)

d lnS

dAsrd
­ Tr

√
M21 d

dAsrd
M

!
­

16p

f0
ImsM21

baMabd .

(20)

Fluctuations of the current corresponding to Eq. (6) c
be obtained similarly [24].

In the limit Lf & L considered above, the curren
distribution can also be derived quite simply. Indeed,
this approximation, the total magnetization can be writt
as a sumkMeel ,

P
kkmkl, wherekmkl is identified as the

magnetization of a plaquettek and depends on the position
of this plaquette in the array. It is given by the rules o
Eq. (17) and is shown on Fig. 3 for a regular square lattic
The average persistent current flowing in one link is t

FIG. 2. Magnetization per ring for networks of connecte
rings normalized to the single ring magnetization, calculat
exactly (solid lines) and with the loop expansion (dashed line
The perimeter of all rings and sidearm lengths are equal toL.
The three bottom curves correspond to regular networks m
of an infinite number of rings (only three are represented).
these cases, the magnetization has been divided by the num
of rings. The flux threading all rings isf ­ f0y8.
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FIG. 3. Current distribution (left: average current; right: vari
ance) for a square network, in the limitLf # L, i.e., when
the flux dependence of the current is harmonic. The numbe
show the amplitude of the average and typical magnetizati
per plaquette, in units of the magnetization of the single rin
It is maximum at the corner plaquettes. The thickness of ea
link is proportional to the amplitude of the current on this link
obtained by difference (sum) of the average (typical square
magnetizations of the plaquettes neighboring the link.

difference of the two plaquette currents neighboring
The distribution of average current is sketched on Fig. 3

The fluctuations can be described in the same wa
namely, as a sum of terms which can be interpreted
fluctuations of the magnetization of one plaquette. Th
the fluctuations of plaquettes are independent, and
fluctuations of current in one link are the sum of th
fluctuations of its two nearby plaquette currents.

In conclusion, we have developed a formalism whic
relatesdirectly the persistent current, and the transpo
properties (although not detailed in this Letter) to th
determinant of a matrix which describes the connectivi
of the graph. From a loop expansion of this determinan
simple predictions for the magnetization and the spat
distribution of the persistent current in any geometr
can now be compared with forthcoming experiments o
connected and disconnected rings. We have also foun
correspondence between the phase coherent contribu
to the orbital magnetism of a disordered interactin
system and the orbital response of the corresponding cle
noninteracting system.

We acknowledge useful discussions with E. Akke
mans, A. Benoit, E. Bogomolny, H. Bouchiat, D. Mailly,
and L. Saminadayar.
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