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Turbulence in Mode-Locked Lasers
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We show that the well-known instability in actively mode-locked lasers with detuning between the
resonator round-trip time and the modulator period exhibits a transition to turbulence analogous to fluid
flow. We derive a universal normalized detuning of the laser that plays the same role as Reynolds
number in fluid flow. This is the first time that the recently proposed theory for the onset of turbulence
in hydrodynamics is verified in a system outside of hydrodynamics. [S0031-9007(99)09268-6]

PACS numbers: 42.65.5f, 47.27.—i

The transition from laminar to turbulent flow in hydro- theoretical approach was never presented. The reason for
dynamics has puzzled physicists for more than a hundrethis lack in analytical approaches to this problem seems
years [1]. During the last 5 to 10 years a scenario for theéo be precisely due to the kind of instability that arises in
transition to turbulence has been put forward by Trefethetthe detuned system. This type of instability cannot be de-
and others [2]. This model does not only give a quan+tected by a linear stability analysis which is widely used in
titative description of the kind of instability that leads to laser theories to prove stable pulse formation. The case
a transition from laminar, i.e., highly ordered dynamics,studied here might be not only of fundamental interest
to turbulent flow, i.e., chaotic motion, but it also gives but might give also an analytical insight into the stabil-
an intuitive physical picture of why turbulence is occur- ity problems associated with asynchronously mode-locked
ring. According to this theory, turbulence is due to stronglasers and soliton storage rings which will be important
non-normal transient growth of deviations from a stablefor future high-speed optical communication systems [11].
stationary point of the system together with a nonlinear The equation of motion for the pulse envelope in an
feedback mechanism. The nonlinear feedback mechanisectively mode-locked laser with detuning can be written
couples part of the amplified perturbation back into theas [7]

initial perturbation. Therefore, the perturbation experi-  §A(T, 1) 92

ences the strong growth repeatedly. Once the non-norm&y — —~— = |8(I) = [ + Dy =5

transient growth is large enough, a slight perturbation

from the stable stationary point renders the system dy- — M[1 — codwyt)] + Ty B}A(T,z).
namics turbulent. Small perturbations are always present at

in real systems in the form of system intrinsic noise or en- Q)

vironmental noise and in computer simulations due to th(Here,A(T 1) is the slowly varying field envelope whose
finite precision. The predictions of the linearized stabilityshape is studied on two time scales. There is the fime
analysis become meaningless in this case. The model caggiich is coarse grained on the time scale of the resonator
studied here also gives insight into the drifting pulse dy-oyng-trip time 7; and the timer, which resolves the
namics in complex Ginzburg-Landau equations [3], whichyegyiting pulse shape. The saturated gain is denoted by
were discovered in convection experiments Wl_th blnaryg, the curvature of the intracavity losses in the frequency
liquids [4]. The analysis laid out in this Letter might also gomain, which limit the bandwidth of the laser, is given
Iead_to an |mprove.d unde_rstandlng of noise-sustained Oy D;. M is the depth of the loss modulation introduced
vective structures in nonlinear optics [5]_. by the modulator with angular frequeneyy, = 27 /Ty,

In this Letter, we show for the first time that the sce-yherer,, is the modulator period. The detuning between
nario for a transition to turbulence, or chaotic motion inagonator round-trip time and the modulator period is

general, as presented in [2], is not bound to hydrodynamy — 7, — 7, The saturated gaig obeys a separate
ics but occurs in other systems as well. In particular, W&rdinary differential equation

show that the detuned actively mode-locked laser is an ex- 0
cellent example for such a system which in addition can 9@ _ _ 8l ~ g _ g WD) ) (2)
be studied analytically. The dynamics of actively mode- o L P

locked lasers is a rather old topic and has been studied idere, g° is the small signal gain due to the pumping,
great detail theoretically as well as experimentally [6,7].P; the saturation power of the gain medium, the gain
However, the detuned case has been studied only eitheglaxation time, andV(7T) = [|A(T, )| dt the total field
experimentally [8,9] or by numerical simulations [10]. A energy stored in the cavity at tinfe
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The pulses, we expect, have a pulse width much shorter— 2,/D,M; (n + 0.5) where g, = g°(1 + %)71,
than the round-trip time in the cavity and will be placedwith w, = [lu,(t)>dt. The eigenvalues prove that
in time at the position where the modulator introducesfor a given pulse energy the mode with= 0, which
low loss. Furthermore, we restrict our considerationsye call the ground mode, experiences the largest gain.
to the case where the modulation depi, of the  Consequently, the ground mode will saturate the gain to a
modulator is large, such that only during the time of lowvalue so that\, = 0 in steady state and all other modes
intracavity loss, which is much shorter than the round-experience net lossy, < 0 for n > 0. This is a stable
trip time, radiation can build up. In that case, we cansjtuation, as can be shown rigorously by a linearized
approximate the cosine by a parabola and obtain thetability analysis [7]. Thus active mode locking with

simplified evolution equation perfect synchronization produces Gaussian pulses with a
A 02 5 0 1/e half-width of the intensity profile given by,. This
T ar |87 I+ Dy 012 Mst™ + Tq ot A ( has been well known since the early work of Siegman [6].

In the case of nonzero detuning,, the situation
Here, M; = Mwj,/2 denotes the curvature of the loss becomes more complex. The Liouville operator (5)
modulation at the point of minimum loss and, therefore, itchanges to

characterizes the modulator strength. The timigs now

allowed to range from—o« to +o, since the modulator Lp = g — 1 —2{DsM; [(&T — A)(a + A)
losses make sure that only during the physically allowed

range—Tx/2 < t < Tg/2 radiation can build up. Con- + (1 + AZ)] Q)
sequently, the domain of the partial differential operators 2

appearing on the right side of Eq. (3) is the space of absq/—vith the normalized detuning

lute square integrable complex functions on the real axis.
In the case of vanishing detuning, i.gy; = 0, the A — 1 Tq (10)

differential operator on the right side of (3), which 22D M, 7,

we denote as the Liouville operatat, corresponds Introducing the shifted creation and annihilation oper-

to the Schrodinger operator of the harmonic oscillator. ucing ' ; nrat P

it — ot h— & i
Therefore, it is useful to introduce the creation andators,b at +Aandb =a+ A, respectively, we

annihilation operators obtain
N ftp g
s (0,1 Lp = Ag — 2/D;M, (bTh — 246),  (11)
V2 it T, , .
(4)  Wwith the excess gain
1 d t
~t — - | _ v o 1
a \/§< T“a;+7a)’ Ag=g—-1-2 Dst<E+A2) (12)
with 7, =*yDy/M,. The Liouville operatorL is  que to the detuning. Note, the resulting Liouville opera-
given by tor is no longer Hermitian and even not normal, i.e.,
. 1 [A,At] # 0, which causes the eigenmodes to become
— _ _ ,\1-,\ o ) 1 Y N
L =g~ 1= 2DsM, (“ at+ 2)’ ®) " hon-normal [12]. Nevertheless, it is an easy exercise to

compute the eigenvectors and eigenvalues of the new

and the evolution equation (3) can be written as Liouville operator in terms of the eigenstatesidfh, |1),

T 0A iA 6) which are the Hermite Gaussians centered araund'he
M aT ) eigenvectorsge,) to Lp are found by the ansatz
Consequently, the eigensolutions of this Liouville opera- o) 'Zl m i o n—1 . 13
i i n) = c , with ¢ = —cCy .
tor are the Hermite Gaussians ¢ 2.¢ S AT (13)
_ T[Ty .
An(T.1) = up(D)e T/, (7)  The new eigenvalues ar, = g, — I— 2\/D;M; (A* +

n + 0.5). By inspection, it is again easy to see that the
u, (1) = [L H,(t/7)eC/%70) (8) new eigenstates form a complete basisLi#{R). How-
2nJmnl 1, ever, the eigenvectors are no longer orthogonal to each
where 7, is the pulse width of the Gaussian. The Other. The eigensolutions as a function of time are given

eigenmodes are orthogonal to each other because ti@§ @ product of a Hermite polynomia}tl a\%dAa)zshifted Gauss-
. . . oy . . . — Ta .

Liouville operator is Hermitian in this case. ianu,(t) = (tle,) ~ Hn(t/ra)exd—T]. Again,
The round-trip gain of the eigenmode,(r) is alinearized stability analysis shows that the ground mode,

given by its eigenvalue (or in general by the reali.e.,|¢o), a Gaussian, is a stable stationary solution. Sur-

part of the eigenvalue) which is given by, = g,— prisingly, the linearized analysis predicts stability of the
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" . - The eigenmodes are orthogonal for zero detuning. The
jatlonary Pulse  growing perturbation [ggg:éamr orthogonality vanishes with increased detuning. The re-
l cursion relation (13) tells us that the overlap of the new
sat A B eignemodes with the ground mode is increasing for in-
gain f creasing detuning. This corresponds to the parallelization
y >t of the eigenmodes of the linearized problem which leads

g=| net gain window to large transient gaitle’»’|| in a non-normal situation

- N . [2]. Figure 3(d) shows the transient gain for an initial
FIG. 1. Drifting pulse dynamics in a detuned actively mode- bation f h . d d lculated
locked laser for the situation, where the modulator period i€rturbation from the stationary ground mode calculate

larger than the cavity round-trip time. The displacemaris by numerical simulations of the linearized system using an
caused by the mismatch between the cavity round-trip time anéxpansion of the linearized system in terms of Fock states
the modulator period. The displacemehtis due to unequal g the operatofa. A normalized detuning of = 3 al-

losses experienced by the front and the back of the pulse if,qy |eads to transient gains for perturbations of the order
the modulator. The gain saturates to a level, where a poss|ble]c

AN : .
stationary pulse does experience no net gain and loss, which 10° within 20000 round-trips which leads to an enor-
opens up a net gain window following the pulse. Perturbationdnous sensitivity of the system against perturbations. An
within that window get amplified while drifting towards the analytical solution of the linearized system neglecting the
stationary pulse. gain saturation shows that the transient gain scales with
the detuning according to e@)\?). This strong super-
ground mode for all values of the detuning in the para_exponentla_l growth with increasing detuning determines
bolic modulation and gain approximation. This result isthe dynamics completely. Figure 4 shows the surface of
even independent from the dynamics of the gain, i.e., théhe transition to turbulence in the parameter space of the
upper state lifetime of the active medium, as long as ther#Ser, i.e., critical detuning, the pumping rate = go//,
is enough gain to support the pulse. Only the position ofNd the ratio between the cavity decay tifig, = Tx/!
the maximum of the ground mode/2 A,, depends on and the upper state lifetimg . In this model, we did not
the normalized detuning. include the spontaneous emission. The transition to tur-
Figure 1 summarizes the results obtained so far. In th@ulence always occurs at a normalized detzunlng ofzabout
case of detuning, the center of the stationary Gaussiafy = 3.7 which gives a transient gain efqi\*) = 10°%.
pulse is shifted away from the position of minimum loss This means that already uncertainties of the numerical in-
of the modulator. Since the net gain and loss withintégration algorithm are amplified to a perturbation as large
one round trip in the laser cavity has to be zero for &S thg statlonary state itself. _Flgure Sshov_vs the Liapunov
stationary pulse, there is a long net gain window followingcoefficient [13] of the dynamics as a function of the nor-
the pulse in the case of detuning due to the necessaﬂ)al'zed detuning. It clearly indicates that the dynamics is
excess gain. Figure 2 shows a few of the resulting lowest
order eigenfunctions for the case of a normalized detuning(a) ®)
A =0in (a) andA = 0.32 in (b). These eigenfunctions A=00 .
are not orthogonal as a result of the non-normality of the |, .-+ = &
evolution operator. The non-normality of the operator, 5
[ip,E5] ~ A, increases with detuning. Figure 3 shows £05{
the scalar products between the eigenmodes for differer ©
values of the detuning

(emlen)
\/<§Dm|§0m> <§Dn|§9n>

5
0
. (14) 55 Oom

C(m,n) =

10°
-
@3 [T o] 03 = iy
g : SN £ / : F10°
s S z : £
~ ~ . ; ek ;(_'100
g g . : - : ‘ & 2 .
2 2 : '7,10’ B K L
0>) q>) s /\ T A § 4 A=0.0: . <
o 5 7\ SNomeo——— ~10
@ 7\ — 6 1_2 3 4 5
i"’) by e S T e Roundtrips  x 10
2 2 M\ a8 | |
0 FIG. 3. Scalar products of eigenvectors as a function of the
time, (arb.u.) time, (arb.u.) eigenvector index for the cases =0 (a), A =1 (b), and

A =3 (c). (d) shows the transient gain as a function of
FIG. 2. Lower order eigenmodes of the linearized system foitime for these detunings computed from the linearized system
zero detuningA = 0 (a) and for a detuningd = 0.32 (b). dynamics.
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same shape for the critical detuning as in Fig. 4; however,
the critical detuning is lowered to aboat = 2.

In conclusion, we have shown that the detuned actively
mode-locked laser exhibits a transition to turbulence simi-
lar to fluid flow. The dimensionless parameter which gov-
erns that transition has been identified as the normalized
detuning. The normalized detuning plays the same role
for the system investigated, as the Reynolds number does

critical detuning A

o= N W H» O O

6

in fluid flow problems. The prerequisites for the transition
to turbulence are much easier to grasp for the detuned ac-
tively mode-locked laser than in hydrodynamics because

7 40 = of the complexity of the Navier-Stokes equations.
” 4 x 10 The authors kindly appreciate helpful discussions with
e T/t Professor U. Keller and Dr. U. Morgner. This work

FIG. 4. Critical detuning obtained from numerical simulations
as a function of the normalized pumping rate and cavity decay

has been supported by the German National Science
FFoundation, the Swiss National Science Foundation, and

time divided by the upper-state lifetime. The critical detuning!n part at MIT by AFOSR.

is almost independent of all laser parameters shown. The mean
critical detuning isA = 3.65.

chaotic above the critical detuning of abdut = 3.7. In

the turbulent regime, the system does not reach a steadiil
state, because it is nonperiodically interrupted by a new
pulse created out of the net gain window, see Fig. 1, fol-
lowing the pulse for positive detuning. This pulse satu-
rates the gain, and the almost formed steady state pulse i&]
destroyed and finally replaced by a new one. The gain
saturation provides the nonlinear feedback mechanism,
which strongly perturbs the system again, once a strong
perturbation has grown by the transient linear amplifica-
tion mechanism.

The critical detuning becomes smaller if additional [3]
noise sources, such as the spontaneous emission noise
of the laser amplifier and technical noise sources, arel
taken into account. However, due to the superexponential
growth, the critical detuning will not depend strongly on
the strength of the noise sources. If the spontaneous
emission noise is included in the simulation, we obtain the

[5]

37
N 1 N

[6]

[7]
(8]

[9]
(10]

(11]

Liapunov coefficient, x 10

(12]

detuning A [13]

FIG. 5. Liapunov coefficient over normalized detuning.
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