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Late-Time Decay of Scalar Perturbations Outside Rotating Black Holes
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We present an analytic method for calculating the late-time tails of a linear scalar field outside a Kerr
black hole. We give the asymptotic behavior at timelike infinity (for fix¢dat future null-infinity, and
along the event horizon (EH). In all three asymptotic regions we find a power-law decay. We show that
the power indices describing the decay of the various modes at fixditfer from the corresponding
Schwarzschild values. Also, the scalar field oscillates along the null generators of the EH (with
advanced-time frequency proportional to the mode’s magnetic numper[S0031-9007(99)09261-3]

PACS numbers: 04.70.Bw, 04.25.Nx, 04.40.Nr

The no hair principle for black holes implies that the = The main difficulty in analyzing perturbations over a
gravitational field outside a generic black hole relaxes aKerr background is the nontrivial dependencefon The
late time to the stationary Kerr-Newman geometry. Forseparation of variables by the Teukolsky equation [15] is
linear test fields (either scalar, electromagnetic, or graviapplicable only to the Fourier-decomposed field, because
tational) outside a spherically symmetric Schwarzschildhe spheroidal harmonics used for the separatiof afid
black hole, it was shown by Price [1] that all radiative ¢ explicitly depend on the frequenay. The final goal
multipoles die off at late time with a~2~3 power-law is to calculate the late-time decay of the field, along with
tail [2], where! is the mode’s multipole number, amds  its angular dependence, in terms of the timge., in the
the Schwarzschild time coordinate. Later, this result wasime domain). Atthe late-time limit — «, we expect the
confirmed using several different techniques, both analytitails to be dominated by the very small Fourier frequencies,
and numerical [3—6]. The relevance of the perturbativew — 0, for which the spheroidal harmonics reduce to the
(linear) results to the fully nonlinear late-time behavior wassphericalharmonicsy;”. This motivates us to carry out
demonstrated in numerical simulations of a fully nonlinearthe entire analysis in terms of the spherical harmonics.
self-gravitating, spherically symmetric scalar field [7,8]. The difficulty is, however, that due to the breakdown of

It is well known, however, that realistic astrophysical spherical symmetry, modes of differeht(but the same
black holes are spinning and not spherically symmetrion) are coupled; namely, there are “interactions” between
[9]. Therefore, for astrophysical applications it is ex- modes. The main challenge is to handle this interaction
tremely important to generalize the above analyses fromand to analyze its effect on the late-time decay.
the Schwarzschild background to the more realistic Kerr In principle, it is possible to carry out the analysis in
background. The first progress in this direction has beethe frequency domain and then Fourier-integrate over all
achieved recently with the numerical simulation of linearfrequencies to recover the late-time behavior in the time
fields in the Kerr background, by Krivaet al.[10,11]. domain, as was done in the Schwarzschild case [4,5]. We
Yet, a thorough analytic treatment of this problem has nofind it simpler, however, to carry out the entire analysis
been carried out so far [12,13]. in the time domain. To overcome the difficulties caused

The goal of this Letter is to present an analytic methodby the interaction between modes, in the first part of the
for calculating the late-time behavior of a linear masslessnalysis we use an iteration scheme in which we iterate
scalar field outside a Kerr black hole. This method wasver the interaction term (along with the other curvature-
recently applied to the simpler Schwarzschild case asduced terms in the field equation). In the second part
a test bed [6], in which case the well known late-timeof the analysis we use thate-time expansionwhich is
inverse-power tails were reproduced. In this Letter weessentially an expansion in inverse powers of advanced
outline the application of this method to the Kerr casetime. (Both methods are generalizations of those used in
and present the main results. In particular, we calculat®efs. [6,16] for the spherical case.)
the power indices characterizing the late-time decay of the The Klein-Gordon field in Kerr geometry obeys
various modes at future null-infinity, at fixed, and at  [(r> + 4a®)*/A — a*sirt]d,, — (AD,), +
the event horizon (EH). Quite interestingly, we find that —1 2 AR
at fixed r these indices are different than those found in4MarA O+ [a7/B = (SIN6) 7] 4 —
the Schwarzschild case. Full details of the calculations (sing) (D ysind)y =0, (1)
are given in Ref. [14]. Throughout this paper we usewhere M and a are, correspondingly, the black hole’s
the standard Boyer-Lindquist coordinates, f, ¢, and mass and specific angular momentum, akd= r? —
relativistic unitsC = G = 1. 2Mr + a*>. Decomposing® into spherical harmonics
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in the standard manne® = 3, " (1,1)Y;"(6,¢), and ¢ — _ (sylywl  _ ; mMar o!
defining®™ = v/r2 + a? ¢, the original field equation " OV (r2 + az)z( w1
(1) becomes (for eact) a2A
T2 3 [coWhoy + e U2 + e W2 T
Wl vt 4 M (r* + a?)
UV K (1’2 + (12)2 N (6)

a’A
(r2 + a?)?
where cg, c—, andc4 are certain coefficients depending

on! andm (with ¢c- =0 for m = 1,1 — 1; no other
coefficients vanish), and where

along with the initial conditiona?) = ¥/ and¥4~; = 0
atv =0 andu = uy. Here, V{(r.) is the Minkowski-
like potential defined in Ref. [6] as a function of.
[Egs. (8), (60) therein], andVk(r) = Vk — V§. Formal
summation oveN recovers the original field equation and
initial data for the complete field¥".
4vim = A(r* + a7 M + a*r? — 4Md®r + a®) The field equation (5), together with the above initial
2 N-2F 2 2 conditions, constitutes a hierarchy of initial-value prob-
(r® + a?) " Im’a W+ DA]. (3) lems for the various function®%", which, in principle,
The coordinates: andv are defined by =t — r. and W€ may solve one by one (first fof = 0, then forv = 1,
v =1t + ry, With r.(r) obeyingdr./dr = (a®> + r?)/A.  €tc.). Notice that the potentialy(r.) (and hence the en-
[In Eg. (2), and also in most of the equations below, wefire N = 0 equation) is independent of the spin parameter
omit the indexm for brevity. Note that due to the axial @ The solution of this equation, the functidny, is given
symmetry, modes with differemt do not interact_] eXplICItly in Ref. [6] (See Sec. IV therein). This function
Equation (2) is an infinite set of coupled equations fordecays exponentially at late time, so it does not contribute
the various modes of the field, with the last two termsto the power-law tail. Rather, it serves as a source for
in the square brackets describing the interactions betwed8ms¥y=1, which do provide power-law tails. For each
modes of different. N = 1, the field equation can be formally solved in terms
The setup of initial data for the evolution problem is of & Green’s function:
similar to that used in Ref. [6] for the Schwarzschild case u v
[see Fig. 2 and Eq. (7) therein]. That is, we assume that W (u, v) = f du’f dv' G'(u,v;u',v")SL ' v'),
® is specified along a pair of hypersurfaces= 0 and "o 0
u = ug. For convenience we consider a situation of an (7)
outgoing .pulse av = 0, which starts immediately after |,pere G'(u,v;u',v") is the (retarded) Green's function
the outgoing ray: = uo. \We further assume thatuo > gggociated with the zero-order operaigp, + V.. An
M and thgt the pglse is arpltrar'll.y shaped but _relat'Velyanalytic expression forG was derived in Sec. V of
short, which considerably simplifies the analysis [6,16].R¢f 6], This, in principle, enables the solution of the
Althoyg_h this type of initial data is not the most generalia|q equation (5) for alv and!.
one, it is nevertheless lreasonat_)ly generic, and we e.XpeCtThe functions‘l’{ will primarily concern us here, be-
the resultgnt_asy_mptotlc behavior to be characterlst_lc_ %ause it is the terrV = 1 which dominates the late-time
the generic situation. We also assume here that the initiglepayior of W at null-infinity in the generic situation.
outgoing pulse has a rather generic angular distribution, sg js convenient to consider separately the contributions

it includes all the spherical harmonics (and especially the., . the various terms in Eq. (6) [through Eq. (7)] to
component = 0). w! ' .

- . - Consider first the contribution from the term pro-
To evolve these initial data and analyze the Iate—tlmeportional to 8V.. This potential can be expressed as
behavior, we shall proceed in two steps. In the first ste K-

Psvl = 5VL + 5V!, where 5V. is the @-inde

. . ] e S . S pendent)
we calculate the_le_\te time (i.a, > M) form of the field corresponding Schwarzschild contribution, ahd’ is an
at future null-infinity ¢ — «). In the second step we 4

derive an expression for the field at a fixedat r > M ﬁ;gf gfrniini/lcog‘?ftg)er::;ersn}és?eE'trﬁ;é ;?IEUIa;'?ZCfQ:)WS
(and also along the EH at > M). 1o a y s by

Asymptotic behavior at future null-infinity-We now proportional toa®/Mr.. An explicit evaluation of the in-

P o Sceme o R, 3.6, anf£ 07 X, 1) 1 s it i ot i e o
decomposeél™ as ymp

" P! at null-infinity [14]. Thus, the dominant contribution
Ppim — z pim (4) to ! from 8V} at null-infinity, which we denote bW{,
=N is the same as in the Schwarzschild case [cf. Eq. (58) in
Im

The componentsVy” are defined by the hierarchy of Ref. [6]]:
equations Gl > M) = Au 2, @)

! Iyl — ¢l
(Wx)aw + VoWy = Sy ©) whereA; is given explicitly in [6] as a linear functional of
whereS) = 0 and (forN = 1) thel component of the initial pulse.

[CO\I},IU + C—\I},Itt_2 + C+\I,,l;2] =0, (2
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Consider next the contribution t&| due to the other infinity is given by
part of S!, i.e., the part containingderivatives in Eq. (6). W= A2 (null infinity, « 3> M) (9)

A direct evaluation of the integrals in Eq. (7) shows that . . _
the late-time contribution of this part at null-infinity is Where the coefficients, coincide with those of Eg. (8) to
the leading order id4 /uy.

proportional tox /=3 or smaller [14] and is hence neg-
ligible. The only exception is the contribution froW)
(for I = 2), which is proportional ta: /=2, too, so it does

not cause a qualitative change in the asymptotic decay (8

Moreover, the coefficient of this term is reduced by a factor_ . .
tively. To that end we employ the late-time expansion

« (a/up)® < 1 compared ta4;, so the overall tail ampli-
tudes are still given by Eq. (8) at the leading order.
We still need to consider the terms= 2. A complete

analysis of these terms has not been carried out yet. Inthe

Schwarzschild case, simple considerations suggest that at . . L , , !
As it turns out, this expansion is consistent with the field

null-infinity all these terms decay like /=2, though with
coefficients smaller than that 8, by a factor(M /uy)V .

Derivation of & at r = const the late-time expan-
sion—We now derive an expression for the late-time be-

H, accurate to the leading orderAn/: or M /v, respec-

Eavior at any fixed- outside the black hole and along the

used in the Schwarzschild case (cf. Ref. [6]):

" (r,v) = Z F"(ryp 0ok, (10)
k=0

equation, with the regularity condition at the EH, and

[This was also verified by numerical simulations [6], which With the form of the field at null-infinity. The parameter

also suggested convergence of the sum (4) at null-infinity.

Hence theN = 2 terms do not alter the power index,
and, moreover, in the caseuy, > M considered here,

they do not significantly affect the coefficients. All these
considerations apply to the Kerr case as well [14,17].

o > 0 is by definition/ independent and will later be
etermined through matching to null-infinity. [Fbr> 0
some of the first terms in the sum (10) vanish, as will
become apparent below.]
Substituting the expansion (10) in the field equation (2)

Assuming that the term&/ = 2 indeed behave in that and collecting terms of the same poweriinthe partial

manner, we find that at late time, the scalar field at anII

differential equation becomes an infinite coupled set of
ordinary equations for the unknown functiod (r),

[A(FD'T + [a®m?/A — 11 + DIFL = Z} = 2(ko + k — D[(+> + a®) (Fi_)) + (r — 2imMar/A)F}_,

+ 2a%(ko + k — 2)(coFh_y + ¢+ Fi*% + c_FIZ3)],
(11)

where a prime denoted/dr (and whereF} -, = 0). !
Here, too, the source terd, exhibits interactions with
modes!’ # [. However, sinceZ, depends only on terms
F,’(/, with ¥’ < k, the system (11) is effectively decoupled,

One of the two coefficientg,, b; is to be determined
from the regularity condition at the EH. Here one must
recall that the Boyer-Lindquist coordinate is singular
at the EH. Using the regularized azimuthal coordinate

as the various ordinary equations may be solved one at @+ = ¢ — .1 [19] instead, one finds

time. It is possible to formally write down the general
solution for anyF} via the Green’s function method [14].
Consider first the termt = 0, which dominates the over-
all late-time asymptotic behavior at fixed The function

Fi_, satisfies a homogeneous equation (actually the st
tionary field equation), whose general solution is given by

Fb=aiP, Y (p) + biP, " (p). Here,a; andb; are (yet)
arbitrary constants,p = 2r — ry — r-)/(r+ — r-),
where r. = M = (M? — a2, and P; 7 are the two
complex-conjugatedassociated Legendre functions of
the first kind[18] with an imaginary indexy = im[2a/
(r+ — r_)]. The functionsP, ” (which are special cases
of the Hypergeometric function) have the form

P (p) =P (p) X [(p + D/(p — DI,

in which ?,iy are (complex) polynomials of ordet
(nonvanishing atr — r;). For m # 0 these functions
oscillate rapidly towards the EH (— r4,p — 1),

P (r—re) x (p — D2 o expFimQary), (13)
whereQ = a/2Mr).
4390

(12)

ime _ [etmgmethJrv]e*tm(Lr*'

(14)

Since the factor in square brackets is regular at the EH
(but the next factor is not), it follows from the regularity

e

gondition thatb, = 0; henceF = a,P, * (p).

The paramete; is to be determined through matching
to null-infinity. The asymptotic form of, asr — « is
Fi(r > M) « r!. Substitution in Eq. (10) (taking into
account the contribution of the terms> 0 as well,
which are not negligible at null-infinity, as explained
in [6]), one obtains at null-infinityl! o« q;u!*!~% [14].
Matching this expression to Eq. (9) for= 0 yieldsky, =

3. This value ofk, yields a consistent matching for ahy
implying a;=1 = 0 (that is, the mode$ = 1 are excited
only atk > 0). One finds that the dominant mode= 0
decays likev = « t73 at fixed r (and larger), as in the
Schwarzschild case.

The interaction between modes has a crucial effect on
the decay rate of modds= 2. Without this interaction,
one can verify that a modem is excited ak = 2/, lead-
ing to a decay rate” >3 (as in the Schwarzschild case).
The interaction changes this situation. Consider, for
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example, the modé = 2,m = 0. This mode has a van- characteristic hypersurfaces of the Kerr geometry slightly
ishing source ternZ; =2 (asF.=3 = 0), and one can show deviate from those of the iteration scheme used above.
that F.=3(r) = 0. On the other hand, & = 2 thereisa  The generalization of the present analysis to electromag-
nonvanishing source tertd,—3 « ¢_F._, which neces- netic and gravitational perturbations will be presented else-
sarily leads to a nonvanishing functii_3(r). Thus, the where [14]. Here we mention only the peculiar behavior
decay rate of this mode at fixeds v %% = y=5 o« y=5 of s > 0 Newman-Penrose fields along the event horizon.
which differs from the corresponding Schwarzschild rate,The late-time behavior far > 0 is generically dominated
+~7. This simple consideration is easily extended to allby modes/ = s. For0 < |m| = s these modes decay at

other modesn, /, and one finds [14] the horizon likev ~>~3, whereas the axisymmetric mode
Im = I—lml=3—q (¢ I = s,m = 0 decays slower, likee =2, This phenome-
W et (fixedr, > M,|r:l),  (15)  nonis demonstrated and explained in Ref. [21].
whereg = 0 for even! + m andg = 1 for odd + m. Note added—After this ma_nus_cript was sub_mitted,
The late-time behavior of a moden at the EH (expressed Hod analyzed the mode coupling in Kerr spacetime [22].
in regular coordinates) is found to be His results for a scalar fiel(k = 0) are fairly similar to

ours; however, fos > 0 Hod’s analysis does not recover
Wimymg, o) « Y0, . )e vy I-Im=3=a  (16) the phenomenon mentioned above.

[This power index may be changed if the relevant function
F1(r) happens to vanish as— ry ]
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