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We present an analytic method for calculating the late-time tails of a linear scalar field outside a
black hole. We give the asymptotic behavior at timelike infinity (for fixedr), at future null-infinity, and
along the event horizon (EH). In all three asymptotic regions we find a power-law decay. We show
the power indices describing the decay of the various modes at fixedr differ from the corresponding
Schwarzschild values. Also, the scalar field oscillates along the null generators of the EH (
advanced-time frequency proportional to the mode’s magnetic numberm). [S0031-9007(99)09261-3]
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The no hair principle for black holes implies that the
gravitational field outside a generic black hole relaxes
late time to the stationary Kerr-Newman geometry. Fo
linear test fields (either scalar, electromagnetic, or grav
tational) outside a spherically symmetric Schwarzschi
black hole, it was shown by Price [1] that all radiative
multipoles die off at late time with at22l23 power-law
tail [2], wherel is the mode’s multipole number, andt is
the Schwarzschild time coordinate. Later, this result w
confirmed using several different techniques, both analy
and numerical [3–6]. The relevance of the perturbativ
(linear) results to the fully nonlinear late-time behavior wa
demonstrated in numerical simulations of a fully nonlinea
self-gravitating, spherically symmetric scalar field [7,8].

It is well known, however, that realistic astrophysica
black holes are spinning and not spherically symmetr
[9]. Therefore, for astrophysical applications it is ex
tremely important to generalize the above analyses fro
the Schwarzschild background to the more realistic Ke
background. The first progress in this direction has be
achieved recently with the numerical simulation of linea
fields in the Kerr background, by Krivanet al. [10,11].
Yet, a thorough analytic treatment of this problem has n
been carried out so far [12,13].

The goal of this Letter is to present an analytic metho
for calculating the late-time behavior of a linear massle
scalar field outside a Kerr black hole. This method wa
recently applied to the simpler Schwarzschild case
a test bed [6], in which case the well known late-tim
inverse-power tails were reproduced. In this Letter w
outline the application of this method to the Kerr cas
and present the main results. In particular, we calcula
the power indices characterizing the late-time decay of t
various modes at future null-infinity, at fixedr, and at
the event horizon (EH). Quite interestingly, we find tha
at fixed r these indices are different than those found
the Schwarzschild case. Full details of the calculatio
are given in Ref. [14]. Throughout this paper we us
the standard Boyer-Lindquist coordinatest, r , u, w, and
relativistic unitsC ­ G ­ 1.
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The main difficulty in analyzing perturbations over
Kerr background is the nontrivial dependence onu. The
separation of variables by the Teukolsky equation [15]
applicable only to the Fourier-decomposed field, becau
the spheroidal harmonics used for the separation ofu and
w explicitly depend on the frequencyv. The final goal
is to calculate the late-time decay of the field, along wi
its angular dependence, in terms of the timet (i.e., in the
time domain). At the late-time limitt ! `, we expect the
tails to be dominated by the very small Fourier frequencie
v ! 0, for which the spheroidal harmonics reduce to th
sphericalharmonicsYm

l . This motivates us to carry out
the entire analysis in terms of the spherical harmonic
The difficulty is, however, that due to the breakdown o
spherical symmetry, modes of differentl (but the same
m) are coupled; namely, there are “interactions” betwe
modes. The main challenge is to handle this interacti
and to analyze its effect on the late-time decay.

In principle, it is possible to carry out the analysis i
the frequency domain and then Fourier-integrate over
frequencies to recover the late-time behavior in the tim
domain, as was done in the Schwarzschild case [4,5]. W
find it simpler, however, to carry out the entire analys
in the time domain. To overcome the difficulties cause
by the interaction between modes, in the first part of t
analysis we use an iteration scheme in which we itera
over the interaction term (along with the other curvatur
induced terms in the field equation). In the second p
of the analysis we use thelate-time expansion,which is
essentially an expansion in inverse powers of advanc
time. (Both methods are generalizations of those used
Refs. [6,16] for the spherical case.)

The Klein-Gordon fieldF in Kerr geometry obeys
fsr2 1 a2d2yD 2 a2 sin2ugF,tt 2 sDF,r d,r 1

4MarD21F,tw 1 fa2yD 2 ssinud22gF,ww 2

ssinud21sF,u sinud,u ­ 0 , (1)
where M and a are, correspondingly, the black hole’s
mass and specific angular momentum, andD ; r2 2

2Mr 1 a2. DecomposingF into spherical harmonics
© 1999 The American Physical Society
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in the standard manner,F ­
P

lm flmst, rdYm
l su, wd, and

definingClm ;
p

r2 1 a2 flm, the original field equation
(1) becomes (for eachm)

Cl
,uy 1 V lm

K srdCl 1 i
mMar

sr2 1 a2d2 Cl
,t 1

a2D

sr2 1 a2d2 fc0Cl
,tt 1 c2Cl22

,tt 1 c1Cl12
,tt g ­ 0 , (2)

wherec0, c2, and c1 are certain coefficients depending
on l and m (with c2 ­ 0 for m ­ l, l 2 1; no other
coefficients vanish), and where

4V lm
K ­ Dsr2 1 a2d24s2Mr3 1 a2r2 2 4Ma2r 1 a4d

2 sr2 1 a2d22fm2a2 2 lsl 1 1dDg . (3)

The coordinatesu and y are defined byu ­ t 2 rp and
y ­ t 1 rp, with rpsrd obeyingdrpydr ­ sa2 1 r2dyD.
[In Eq. (2), and also in most of the equations below, w
omit the indexm for brevity. Note that due to the axial
symmetry, modes with differentm do not interact.]

Equation (2) is an infinite set of coupled equations fo
the various modes of the field, with the last two term
in the square brackets describing the interactions betwe
modes of differentl.

The setup of initial data for the evolution problem i
similar to that used in Ref. [6] for the Schwarzschild cas
[see Fig. 2 and Eq. (7) therein]. That is, we assume th
F is specified along a pair of hypersurfacesy ­ 0 and
u ­ u0. For convenience we consider a situation of a
outgoing pulse aty ­ 0, which starts immediately after
the outgoing rayu ­ u0. We further assume that2u0 ¿
M and that the pulse is arbitrarily shaped but relative
short, which considerably simplifies the analysis [6,16
Although this type of initial data is not the most genera
one, it is nevertheless reasonably generic, and we exp
the resultant asymptotic behavior to be characteristic
the generic situation. We also assume here that the ini
outgoing pulse has a rather generic angular distribution,
it includes all the spherical harmonics (and especially t
componentl ­ 0).

To evolve these initial data and analyze the late-tim
behavior, we shall proceed in two steps. In the first ste
we calculate the late time (i.e.,u ¿ M) form of the field
at future null-infinity (y ! `). In the second step we
derive an expression for the field at a fixedr at t ¿ M
(and also along the EH aty ¿ M).

Asymptotic behavior at future null-infinity.—We now
apply the iteration scheme introduced in Refs. [6,16], a
decomposeClm as

Clm ­
X̀

N­0

Clm
N . (4)

The componentsClm
N are defined by the hierarchy of

equations

sCl
N ,d,uy 1 V l

0Cl
N ­ Sl

N , (5)

whereSl
0 ; 0 and (forN $ 1)
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Sl
N ; 2 sdVl

K dCl
N21 2 i

mMar
sr2 1 a2d2 sCl

N21d,t

2
a2D

sr2 1 a2d2 fc0Cl
N21 1 c1Cl12

N21 1 c2Cl22
N21g,tt ,

(6)

along with the initial conditionsCl
0 ­ Cl andC

l
N$1 ­ 0

at y ­ 0 and u ­ u0. Here, V l
0srpd is the Minkowski-

like potential defined in Ref. [6] as a function ofrp

[Eqs. (8), (60) therein], anddVl
K srd ; V l

K 2 V l
0. Formal

summation overN recovers the original field equation and
initial data for the complete fieldsCl .

The field equation (5), together with the above initia
conditions, constitutes a hierarchy of initial-value prob
lems for the various functionsClm

N , which, in principle,
we may solve one by one (first forN ­ 0, then forN ­ 1,
etc.). Notice that the potentialV0srpd (and hence the en-
tire N ­ 0 equation) is independent of the spin paramet
a. The solution of this equation, the functionC

l
0, is given

explicitly in Ref. [6] (see Sec. IV therein). This function
decays exponentially at late time, so it does not contribu
to the power-law tail. Rather, it serves as a source f
termsCN$1, which do provide power-law tails. For each
N $ 1, the field equation can be formally solved in term
of a Green’s function:

Cl
N su, yd ­

Z u

u0

du0
Z y

0
dy0 Glsu, y; u0, y0dSl

N su0, y0d ,

(7)

where Glsu, y; u0, y0d is the (retarded) Green’s function
associated with the zero-order operator≠u≠y 1 V l

0. An
analytic expression forG was derived in Sec. V of
Ref. [6]. This, in principle, enables the solution of th
field equation (5) for allN andl.

The functionsC
l
1 will primarily concern us here, be-

cause it is the termN ­ 1 which dominates the late-time
behavior of Cl at null-infinity in the generic situation.
It is convenient to consider separately the contributio
from the various terms in Eq. (6) [through Eq. (7)] to
C

l
1. Consider first the contribution from the term pro

portional to dVl
K . This potential can be expressed a

dVl
K ­ dVl

S 1 dVl
a, where dVl

S is the (a-independent)
corresponding Schwarzschild contribution, anddVl

a is an
a-dependent correction term. A direct calculation show
that atr ¿ M, dVl

a decays faster thandVl
S by a factor

proportional toa2yMrp. An explicit evaluation of the in-
tegral in Eq. (7) then yields that this extra factor leads
an extrau21 factor in the late-time asymptotic behavior o
C

l
1 at null-infinity [14]. Thus, the dominant contribution

to C
l
1 from dVl

K at null-infinity, which we denote bŷCl
1,

is the same as in the Schwarzschild case [cf. Eq. (58)
Ref. [6] ]:

Ĉl
1su ¿ Md > Alu

2l22, (8)

whereAl is given explicitly in [6] as a linear functional of
the l component of the initial pulse.
4389
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Consider next the contribution toCl
1 due to the other

part ofSl
1, i.e., the part containingt derivatives in Eq. (6).

A direct evaluation of the integrals in Eq. (7) shows th
the late-time contribution of this part at null-infinity is
proportional tou2l23 or smaller [14] and is hence neg
ligible. The only exception is the contribution fromCl22

0,tt
(for l $ 2), which is proportional tou2l22, too, so it does
not cause a qualitative change in the asymptotic decay
Moreover, the coefficient of this term is reduced by a fact
~ sayu0d2 ø 1 compared toAl, so the overall tail ampli-
tudes are still given by Eq. (8) at the leading order.

We still need to consider the termsN $ 2. A complete
analysis of these terms has not been carried out yet. In
Schwarzschild case, simple considerations suggest tha
null-infinity all these terms decay likeu2l22, though with
coefficients smaller than that ofC1 by a factorsMyu0dN21.
[This was also verified by numerical simulations [6], whic
also suggested convergence of the sum (4) at null-infinit
Hence theN $ 2 terms do not alter the power index
and, moreover, in the case2u0 ¿ M considered here,
they do not significantly affect the coefficients. All thes
considerations apply to the Kerr case as well [14,1
Assuming that the termsN $ 2 indeed behave in that
manner, we find that at late time, the scalar field at nu
4390
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infinity is given by

Cl > Alu
2l22 snull infinity, u ¿ Md , (9)

where the coefficientsAl coincide with those of Eq. (8) to
the leading order inMyu0.

Derivation of F at r ­ const: the late-time expan-
sion.—We now derive an expression for the late-time be
havior at any fixedr outside the black hole and along the
EH, accurate to the leading order inMyt or Myy, respec-
tively. To that end we employ the late-time expansio
used in the Schwarzschild case (cf. Ref. [6]):

flmsr, yd ­
X̀
k­0

Flm
k srdy2k02k . (10)

As it turns out, this expansion is consistent with the fiel
equation, with the regularity condition at the EH, an
with the form of the field at null-infinity. The parameter
k0 . 0 is by definition l independent and will later be
determined through matching to null-infinity. [Forl . 0
some of the first terms in the sum (10) vanish, as wi
become apparent below.]

Substituting the expansion (10) in the field equation (2
and collecting terms of the same power iny, the partial
differential equation becomes an infinite coupled set
ordinary equations for the unknown functionsFl

ksrd,
fDsFl
kd0g0 1 fa2m2yD 2 lsl 1 1dgFl

k ­ Zl
k ; 2sk0 1 k 2 1d fsr2 1 a2d sFl

k21d0 1 sr 2 2imMaryDdFl
k21

1 2a2sk0 1 k 2 2d sc0Fl
k22 1 c1Fl12

k22 1 c2Fl22
k22dg ,

(11)
st

te

H

on

.
or
where a prime denotesdydr (and whereFl
k0,0 ; 0).

Here, too, the source termZl
k exhibits interactions with

modesl0 fi l. However, sinceZl
k depends only on terms

Fl0

k0 with k0 , k, the system (11) is effectively decoupled
as the various ordinary equations may be solved one a
time. It is possible to formally write down the genera
solution for anyFl

k via the Green’s function method [14]
Consider first the termk ­ 0, which dominates the over-
all late-time asymptotic behavior at fixedr. The function
Fl

k­0 satisfies a homogeneous equation (actually the s
tionary field equation), whose general solution is given
Fl

0 ­ alP
2g

l srd 1 blP
1g

l srd. Here,al and bl are (yet)
arbitrary constants, r ; s2r 2 r1 2 r2dysr1 2 r2d,
where r6 ; M 6 sM2 2 a2d1y2, and P

6g

l are the two
complex-conjugatedassociated Legendre functions o
the first kind[18] with an imaginary indexg ­ imf2ay
sr1 2 r2dg. The functionsP

6g
l (which are special cases

of the Hypergeometric function) have the form

P
6g
l srd ­ P

6g
l srd 3 fsr 1 1dysr 2 1dg6gy2, (12)

in which P
6g

l are (complex) polynomials of orderl
(nonvanishing atr ! r1). For m fi 0 these functions
oscillate rapidly towards the EH (r ! r1, r ! 1),

P
6g

l sr ! r1d ~ sr 2 1d7gy2 ~ exps7imV1rpd , (13)

whereV1 ; ays2Mr1d.
,
t a
l

.

ta-
by

f

One of the two coefficientsal , bl is to be determined
from the regularity condition at the EH. Here one mu
recall that the Boyer-Lindquist coordinatew is singular
at the EH. Using the regularized azimuthal coordina
w̃1 ; w 2 V1t [19] instead, one finds

eimw ­ feimw̃1 eimV1yge2imV1rp . (14)

Since the factor in square brackets is regular at the E
(but the next factor is not), it follows from the regularity
condition thatbl ­ 0; henceFl

0 ­ alP
2g
l srd.

The parameteral is to be determined through matching
to null-infinity. The asymptotic form ofFl

0 as r ! ` is
Fl

0sr ¿ Md ~ rl. Substitution in Eq. (10) (taking into
account the contribution of the termsk . 0 as well,
which are not negligible at null-infinity, as explained
in [6]), one obtains at null-infinityCl ~ alul112k0 [14].
Matching this expression to Eq. (9) forl ­ 0 yieldsk0 ­
3. This value ofk0 yields a consistent matching for anyl,
implying al$1 ­ 0 (that is, the modesl $ 1 are excited
only at k . 0). One finds that the dominant model ­ 0
decays likey23 ~ t23 at fixed r (and larget), as in the
Schwarzschild case.

The interaction between modes has a crucial effect
the decay rate of modesl $ 2. Without this interaction,
one can verify that a model, m is excited atk ­ 2l, lead-
ing to a decay ratet22l23 (as in the Schwarzschild case)
The interaction changes this situation. Consider, f
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example, the model ­ 2, m ­ 0. This mode has a van-
ishing source termZl­2

k­1 (asFl­2
k­0 ; 0), and one can show

that Fl­2
k­1srd ; 0. On the other hand, atk ­ 2 there is a

nonvanishing source termZl­2
k­2 ~ c2Fl­0

k­0, which neces-
sarily leads to a nonvanishing functionFl­2

k­2srd. Thus, the
decay rate of this mode at fixedr is y2k02k ­ y25 ~ t25,
which differs from the corresponding Schwarzschild rat
t27. This simple consideration is easily extended to a
other modesm, l, and one finds [14]

Clm ~ t2l2jmj232q sfixed r , t ¿ M, jrpjd , (15)

whereq ­ 0 for evenl 1 m andq ­ 1 for odd l 1 m.
The late-time behavior of a model, m at the EH (expressed
in regular coordinates) is found to be

ClmYm
l su, wd ~ Ym

l su, w̃1deimV1yy2l2jmj232q. (16)

[This power index may be changed if the relevant functio
Fl

ksrd happens to vanish asr ! r1.]
In summary, the late-time behavior of the variou

modes in the three asymptotic regions is given in Eqs. (9
(15), and (16). Our analysis indicates two phenome
special to the Kerr case:

(A) Oscillations along the EH—cf. Eq. (16).
(B) The interaction between modes: Because of th

interaction, the power index at fixedr is l 1 jmj 1 3 1

q. This result was demonstrated numerically forl ­ jmj
in [10], and recently also for severall . jmj modes in
[20]. Note, however, that the significance of the spheric
harmonic functions used here is limited: These function
are related to the specific Boyer-Lindquist coordinate
r , u and not to an underlying symmetry group. Yet, th
separability of the field equation in these coordinates
the late time limit (which concerns us here) signifies th
r , u variables as natural ones.

Throughout this paper we have assumed that the init
pulse includes all the modes (and, in particular, the dom
nant model ­ 0). In nongeneric situations in which the
low-l modes are absent at the initial data, the interacti
between modes may dominate the overall late-time beha
ior already at null-infinity. For example, assume that th
initial pulse is a purel ­ 2, m ­ 0 mode. Then, without
the interactions, at null-infinityC would be dominated by
C

l­2
N­1 ~ u24. However, the interaction excites (atN ­ 2)

an l ­ 0 mode with au22 tail, which dominates the late-
time behavior. This behavior has been observed nume
cally by Krivanet al. [10]. In Ref. [14] this phenomenon
will be discussed in more detail, along with its implication
to the asymptotic behavior at fixedr.

We should emphasize that despite the relative simpl
ity of the calculation scheme presented here, the math
matical question of convergence of the various expansio
involved is still open (though there is evidence for con
vergence). This is the situation even in the Schwarzsch
case. An additional subtlety arises from the fact that th
e,
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characteristic hypersurfaces of the Kerr geometry slightl
deviate from those of the iteration scheme used above.

The generalization of the present analysis to electroma
netic and gravitational perturbations will be presented els
where [14]. Here we mention only the peculiar behavio
of s . 0 Newman-Penrose fields along the event horizon
The late-time behavior fors . 0 is generically dominated
by modesl ­ s. For 0 , jmj # s these modes decay at
the horizon likey22s23, whereas the axisymmetric mode
l ­ s, m ­ 0 decays slower, likey22s24. This phenome-
non is demonstrated and explained in Ref. [21].

Note added.—After this manuscript was submitted,
Hod analyzed the mode coupling in Kerr spacetime [22
His results for a scalar fieldss ­ 0d are fairly similar to
ours; however, fors . 0 Hod’s analysis does not recover
the phenomenon mentioned above.
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