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Fixing Einstein’s Equations
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Einstein’s equations are not a well-posed system of evolution equations for the spatial metric, except
in special coordinates. A remarkable first-order symmetrizable hyperbolic formulation is found that is
surprisingly close to Einstein’s original equations yet does not require such coordinates. This system
has only physical characteristic directions, the light cone and the normal to the spacelike foliation, and
serves to unify all the physical hyperbolic formulations. [S0031-9007(99)09273-X]

PACS numbers: 04.20.Cv, 04.25.—g

Einstein’s theory of general relativity has not only as in the collision of two black holes (cf., e.g., [22]), has
proven to be physically accurate [1], it also sets a standarthotivated much of the recent effort on hyperbolic formu-
for mathematical beauty and elegance—geometricallylations: well-posed underlying equations make stable nu-
When viewed as a dynamical system of equations fomerical evolution much more likely than otherwise would
evolving initial data, however, these equations have a sée the case, and formulations cast in first-order symmetriz-
rious flaw: they cannot be proven to be well posed (exable form are especially suited to numerical implementa-
cept in special coordinates [2—4]). That is, they do notion. In addition, physical characteristic speeds make it
produce unique solutions that depend smoothly on the inieasier to impose good boundary conditions, crucial to a
tial data. Because of this failing, there has been widesuccessful numerical scheme. We amplify this point by
spread interest recently in reformulating Einstein’s theorynoting that Einstein’s equations contain many unphysical
as a hyperbolic system of differential equations [5—20](“gauge”) variables among its unknowns, angriori they
The physical and geometrical content of the originalcan travel at any speed. A formulation with only physical
theory remain unchanged, but dynamical evolution ischaracteristic speeds has significant advantages because no
made sound. Here we present a new hyperbolic forexplicit separation of physical and unphysical degrees of
mulation that is strikingly close to the space-plus-timefreedom is required. The physical and unphysical vari-
(*3 + 17) form of Einstein’s original equations. Indeed, ables propagate at the same speeds and therefore satisfy
the familiarity of its constituents make the existence ofboundary conditions on the same characteristic surfaces.
this formulation all the more unexpected. This is theThis is particularly important, for example, at the hori-
most economical “physical” first-order symmetrizable hy-zon of a black hole, which is a characteristic boundary for
perbolic formulation presently known to us. By physi- physical variables but not for unphysical ones, unless the
cal, we mean that the only characteristic directions for allatter propagate at the speed of light.

(nonmatter) variables are the light cone and the normal to The following system of thirty equations will be shown
the spacelike hypersurfaces. Our new system also servésbe symmetrizable hyperbolic [23]
as a foundation for unifying previous proposals. R

The source of the imperfection in Einstein’s theory lies 0 = dogij + 2NKij, (1)
in the fact that it is a constrained theory. Physical initial
data cannot be freely specified, yet even infinitesimally
perturbed data that violate the physical constraints can
lead to results so wildly divergent that they spoil the + KK;; — 2Ky K", 2)
desired smooth dependence on initial data. This is
particularly troublesome in numerical evolution where A &
such violations are unavoidable. The lack of well- 28Rk = doLuij + 6;(NKii) + 9;(NKy;)
posedness is also a serious problem when addressing such — 0(NK;j) — 28NV (Kim — gimK)  (3)

a basic question as the global nonlinear stability of flat

Minkowski spacetime. In fact, the proof of such stability (notation elaborated below). This form suggests the name
[21] employs the hyperbolic wave equation of [7] which “Einstein-Christoffel system.” It is convenient to replace
we discuss below. A well-posed formulation of Einstein’sthe third equation by the equivalent equation

equations would also seem to be an essential starting R
point for the conventional approach to quantum gravity 4gkiRpo = doGrij + 9x(2NKi))

in which one firs_t quantizes the (unc_onstrained) classical — 4gk<iNV'"(Kj)m — gjmK), (4)
theory and then imposes the constraints.

The desire to simulate numerically the full nonlinearwhere A;Bj) = (1/2) (A;B; + A;B;) denotes symmetri-
evolution of Einstein’s equations in three dimensions, suctzation.

5 (e)

R,‘j = —N_la()K,'j + Rij - N_I?,V]N
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To establish notation, we assume that spacetime has That the system (1), (2), (4) is hyperbolic is not obvi-
topology = X R with metric given in the foliation- ous, but its content is easy to grasp. The first equation
adapted cobasis, (1) is simply a definition of the extrinsic curvatui;.

) 2, 2 ; ; ; ; The second equation (2) is ti#e+ 1 decomposition of

ds® = =N*(dt)” + gijldx’ + Bdt) (dx’ + pldt). the space-space components of the spacetime Ricci tensor.
(5)  As such, these are the basic geometric ingredients of Ein-
stein’s original equations and of &l + 1 formulations of

spatial shift vector, freely specifiable on the spacelikedeneral relativity [24,25,29]. The remarkable fact is that
slicest = constant. The laps# is determined through Eq. (4) completes the first two into a symmetrizable hy-

N = ag1/2’ wherea(x, 1) is a freely specified “slicing” perbolic system without altering the initial value problem.

density (of weight—1) andg = detg;; is the determinant The content pf I;q. (4) is also readily understood. _
of the spatial metricg;;. The spatial derivatives of the _ If One appliesd to (6) and uses (8) and (1), one obtains

metric are denoted by the identity

Here, N(a,g) is the lapse scalar, angi(x,t) is the

(6) d0Gri; = —9k(2NK;)). 9)

This is the right-hand side of (4) aside from tBe+
1 decomposition of4gy;R;p. Ordinarily in Einstein’s

Grij = 9kg&ij -

This is a subtle element, as it will transpire that while
this relation is imposed initially, it may not hold for the

evolved quantities (see below). The spatial Christoffeltheory’ .
symbols in this metric are, with”}; = g"*T;;, Roj = ~NV"(Kjy — gjmK) (10)
Fkij(g) = (1/2) (Gjxi + Girj — Grij) - (7) is a constraint—the “momentum” constraint—because

it involves no time derivatives. What is special about
4) is that it makes the momentum constraint dynamical
y combining it with the identity (9) involving a time
erivative. This defines a modified evolution@®f;; when
the constraint is not satisfied, that is, when (10) does not
hold afterry; is replaced by its matter expression.

The identity (9) is closely related to metric compatibil-
ity of the connection. In a general spatial frame, a con-
nection is metric compatible if and only If;jx + I'jix =

To focus attention oi;;, we will not use the Christoffel
symbols here as independent variables, though we coul
but only as a compact notation for this expression in term%
of Gij. Finally, K;; denotes the extrinsic curvature of the
sliceX, andk = K is its trace.

The derivativeV, is the spatial covariant derivative
operator in3. The derivative do = 9, — £5, where
9, = d/dr and £ is the Lie derivative along the shift

vector B in a ¢ = constant slice, is the natural time drgi;- Taking the time derivative of this condition and ap-

derivative for evolving time-dependent spatial tensors. 'tplying (4) shows that, if the momentum constraint is vio-

is the extension to tensors of the (noncoordinate) basig ey metric compatibility of is lost during evolution.
vector dg = 9, — B*a; (9x = 9/9x¥) that is normal to

) ) While 21'; i« = Gy always holds, the evolve§y;; is no
the s;{hceE. Note that while[do, d;]1 = 909, — 9,00 = |gnger th(ej)spatial d]erivativek of the evolvedy;;. !
(9;8%)x # 0, we have the operator commutation rule To motivate the system (1), (2), (4) further, we consider
[90,9x] = 0. (8) two of its predecessors, the Einstein-Ricci formulation
. [7,12—14,18] and the Frittelli-Reula formulation [10,16].
On the left-hand sides of (2) and (3) or (4;; and  The third-order Einstein-Ricci system consists of (1) and
Rjo are spacetime Ricci curvature tensors and are 19 waye equation built from (2) and (10) through the
be replaced by their appropriate expressions |_n( terms Qfombination
matter stress tensors from Einstein’s equatios; is R - _ A
the spatial Ricci curvature tensor of the spaceﬁke slice 90Rij = ViRjo = V;Rio = NUKy; + Ji + Si;. (11)
3. Itis essential to manipulate the standard fakm = It is called third-order because of the effective number of
Tk, — ;T + Tt — T%,,T" into a distinct  derivatives ofg;; in (11). Hered = —N"'3oN '3, +
but (initially) equivalent form, indicated below, and the V¥V,. J;; is a nonlinear function of;;, N, their first
superscript (e)” reflects this change. derivatives, and the second derivatives of S;; is a
Einsteinian initial data for the system (1), (2), (4) potentially troublesome term involving a second spatial
are g;;, Kij, and Gy;; (= dxgij), specified on an initial derivative ofK and a third derivative oN. The behavior
slice %, and presumed to satisfy the Einstein constraintsof S;; is tamed by usingv = a(x,1)g"? [7,12] (or by
G’ = 8x7TY% andR’, = 8#T%. This system of initial imposing generalized harmonic slicing [18] with a gauge
constraints is well understood as a semilinear ellipticsource [4]). Note that the use @f permits any time
system [24-26]. A mathematically well-posed form of slicing to be employed.
the twice-contracted Bianchi identities [27,28] shows This system can be put in first-order form by introduc-
that these initial-value constraints remain satisfied if théng new variables to represent the temporal and spatial
equations of motion are equivalent #; = 8x[7;; —  derivatives ofK;; and of N. Together with (1) and the

(1/2)g,~jT“,L]. equations obtained by applying, to 1_“",-,», and usinga
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to eliminateN, one finds a system of 66 equations. This This can be put in first-order form in two ways. The
system is spatially covariant, is expressedir 1 geo- easiest is to introduce the derivatives of the dependent
metric variables, and has only physical characteristics. variable as new variables. Introdu¢e= 9,u andV =
One may wonder about the large number of equation$ .« to reach the system
and about a deeper meaning behind the combination in
(11). Regarding the number of equations, the Einstein- du=U, (13)
Ricci system is equivalent (for Einsteinian initial data) o,U — 9,V =0, 9,V —a.U=0.
to the Einstein-Bianchi system [19,20] which also has
66 equations. There, it is evident that this number offhe last equation is an integrability condition reflecting
equations is precisely that needed to incorporate the futhe commutativity of the partial derivatives. This parallels
Bianchi identities and to propagate the Riemann curvaturthe way that the first-order form of the Einstein-Ricci
tensor explicitly in a system having only physical charac-System was obtained from (11).
teristics (otherwise, cf. [15]). The second way to get to first order form is to pull apart
The Frittelli-Reula system [10,16], in contrast, hasthe wave equation to obtain first order pieces
30 equations, is expressed in noncovariant variables,
and admits superluminal characteristic speeds for some

(unphysical) degrees of freedom. Frittelli and ReulaThe first method is essentially one derivative higher. Note
make their construction using a parametrized energyhat the wave equation (12) is reconstructed from system
norm and find a family of hyperbolic systems with (14) py taking a time derivative of the first equation

different characteristics, none wholly physical. Friedrichyng adding a spatial derivative of the second. This
has observed that an equation for the metric constructeghrallels the structure in (11) that leads to the third-order
from (1) and (2), while not of known hyperbolic type, Einstein-Ricci system. This encourages the speculation
has only physical characteristics [15]. A natural questionpat g “pulled-apart” system analogous to (14) is possible.
is whether there are further thirty-variable hyperbolicThe opstacle is that the momentum constraint as usually
systems and if any have only physical characteristics. Thgonstrued is not a dynamical equation, so the obvious
Einstein-Christoffel system is such a system, and from ibulled—apart system is not hyperbolic. The key idea is
one sees how to extend the Frittelli-Reula construction. hat adding a suitably chosen dynamical identity to the

~ The Einstein-Ricci system has only physical charactermomentum constraint overcomes this obstacle and leads
istics, but its equations number more than twice those ofy 3 symmetrizable hyperbolic system.

the Frittelli-Reula system. A natural question is whether 1 pegin, we work withGy;; rather thanl';;. Focus

the third-order form can be put in first-order form 10 on the derivatives of the Christoffel symbols contained in
achieve a thirty-variable system. To see why this mightz . — N~1¥,V;N. These are the essential terms from the

be possible, considezr the V\;ave equation standpoint of hyperbolicity. [Recall th&f = ag'/?, so
dju — dxu =0. (12)  V;N = g'%0ja + I*:(G)g'?a] These terms can be
reorganized as follows:

wIh(G) — 9,T%(G) — a:T(G) = —% (& Guij) + aale"™ (Girstj) — Girrs)]

du — d,v =0, o, v — d,u=20. (14)

+ gkrgsm[gkm(iGj)rx - GkrSG(ij)m] (15)
(where the indices between vertical bars are not symmetrized). Introducing
1 rs h rS(T T
Srij = 5 Gkij — 8k(i&" (glrsm - gj)rs) = F(ij)k + 8ki& (Flrslj) - rj)rs) (16)
puts the leading derivatives of (2) in the familiar form
Rl‘j = _Nilé()Kij — akfk,-j + |.0.,'j s (17)

where |.0;; stands for lower order terms containing no derivatives of unknowns. They are
loj; = KKy — 2KaKY — a7 '[0;0; — TX(@)arle — [T5H(G) + e '9;a][T1(G) + a 'o;a]

+ 2kak(§)f,r;j(6) - kaj(g)f‘”;k(G) + gkrgsm[Gerfmij + GiniGjyrs — Grrs Glijym] - (18)
Turn to consider (4). From (16), one computes
gkiRjo + gkjRio = —dofrij — k(NK;j) + 1.0 . (19)

The lower order terms are

_ 1
L.okij = 2NKii8" (Girslj) — Gjyrs) + 28k([Kjym0™ N — KdjN + NKj),,g"I'".(G) + EN(QJ')” = 2Gr1))K"].
(20)
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