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Fixing Einstein’s Equations
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(Received 18 February 1999)

Einstein’s equations are not a well-posed system of evolution equations for the spatial metric, excep
in special coordinates. A remarkable first-order symmetrizable hyperbolic formulation is found that is
surprisingly close to Einstein’s original equations yet does not require such coordinates. This system
has only physical characteristic directions, the light cone and the normal to the spacelike foliation, an
serves to unify all the physical hyperbolic formulations. [S0031-9007(99)09273-X]

PACS numbers: 04.20.Cv, 04.25.–g
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Einstein’s theory of general relativity has not only
proven to be physically accurate [1], it also sets a standa
for mathematical beauty and elegance—geometrical
When viewed as a dynamical system of equations f
evolving initial data, however, these equations have a s
rious flaw: they cannot be proven to be well posed (e
cept in special coordinates [2–4]). That is, they do n
produce unique solutions that depend smoothly on the i
tial data. Because of this failing, there has been wid
spread interest recently in reformulating Einstein’s theo
as a hyperbolic system of differential equations [5–20
The physical and geometrical content of the origina
theory remain unchanged, but dynamical evolution
made sound. Here we present a new hyperbolic fo
mulation that is strikingly close to the space-plus-tim
(“3 1 1”) form of Einstein’s original equations. Indeed,
the familiarity of its constituents make the existence o
this formulation all the more unexpected. This is th
most economical “physical” first-order symmetrizable hy
perbolic formulation presently known to us. By physi
cal, we mean that the only characteristic directions for a
(nonmatter) variables are the light cone and the normal
the spacelike hypersurfaces. Our new system also ser
as a foundation for unifying previous proposals.

The source of the imperfection in Einstein’s theory lie
in the fact that it is a constrained theory. Physical initia
data cannot be freely specified, yet even infinitesimal
perturbed data that violate the physical constraints c
lead to results so wildly divergent that they spoil th
desired smooth dependence on initial data. This
particularly troublesome in numerical evolution wher
such violations are unavoidable. The lack of wel
posedness is also a serious problem when addressing s
a basic question as the global nonlinear stability of fl
Minkowski spacetime. In fact, the proof of such stability
[21] employs the hyperbolic wave equation of [7] which
we discuss below. A well-posed formulation of Einstein’
equations would also seem to be an essential start
point for the conventional approach to quantum gravi
in which one first quantizes the (unconstrained) classic
theory and then imposes the constraints.

The desire to simulate numerically the full nonlinea
evolution of Einstein’s equations in three dimensions, su
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as in the collision of two black holes (cf., e.g., [22]), ha
motivated much of the recent effort on hyperbolic formu
lations: well-posed underlying equations make stable n
merical evolution much more likely than otherwise woul
be the case, and formulations cast in first-order symmetr
able form are especially suited to numerical implement
tion. In addition, physical characteristic speeds make
easier to impose good boundary conditions, crucial to
successful numerical scheme. We amplify this point b
noting that Einstein’s equations contain many unphysic
(“gauge”) variables among its unknowns, anda priori they
can travel at any speed. A formulation with only physic
characteristic speeds has significant advantages becaus
explicit separation of physical and unphysical degrees
freedom is required. The physical and unphysical va
ables propagate at the same speeds and therefore sa
boundary conditions on the same characteristic surfac
This is particularly important, for example, at the hor
zon of a black hole, which is a characteristic boundary f
physical variables but not for unphysical ones, unless t
latter propagate at the speed of light.

The following system of thirty equations will be shown
to be symmetrizable hyperbolic [23]

0  ≠̂0gij 1 2NKij , (1)

Rij  2N21≠̂0Kij 1 R̄
sed
ij 2 N21=̄i=̄jN

1 KKij 2 2KikKk
j , (2)

2gijRk0  ≠̂0Ḡkij 1 ≠jsNKkid 1 ≠isNKkjd

2 ≠ksNKijd 2 2gijN=̄msKkm 2 gkmKd (3)

(notation elaborated below). This form suggests the na
“Einstein-Christoffel system.” It is convenient to replac
the third equation by the equivalent equation

4gksiRjd0  ≠̂0Gkij 1 ≠ks2NKijd

2 4gksiN=̄msKjdm 2 gjdmKd , (4)

where AsiBjd  s1y2d sAiBj 1 AjBid denotes symmetri-
zation.
© 1999 The American Physical Society



VOLUME 82, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 31 MAY 1999

i-
ion

sor.
in-

at
y-
.

s

se
ut
al

not

l-
n-

-
-

er
n

].
nd
e

of

ial

e

c-
tial
To establish notation, we assume that spacetime h
topology S 3 R with metric given in the foliation-
adapted cobasis,

ds2  2N2sdtd2 1 gijsdxi 1 bidtd sdxj 1 bjdtd .

(5)

Here, Nsa, gd is the lapse scalar, andbisx, td is the
spatial shift vector, freely specifiable on the spacelik
slices t  constant. The lapseN is determined through
N  ag1y2, whereasx, td is a freely specified “slicing”
density (of weight21) andg  detgij is the determinant
of the spatial metricgij . The spatial derivatives of the
metric are denoted by

Gkij  ≠kgij . (6)

This is a subtle element, as it will transpire that whil
this relation is imposed initially, it may not hold for the
evolved quantities (see below). The spatial Christoff
symbols in this metric are, with̄Gm

ij  gmkḠkij,

ḠkijsG d ; s1y2d sGjki 1 Gikj 2 Gkijd . (7)

To focus attention onGkij , we will not use the Christoffel
symbols here as independent variables, though we cou
but only as a compact notation for this expression in term
of Gkij . Finally, Kij denotes the extrinsic curvature of the
sliceS, andK  Kk

k is its trace.
The derivative=̄k is the spatial covariant derivative

operator in S. The derivative ≠̂0  ≠t 2 £b , where
≠t  ≠y≠t and £b is the Lie derivative along the shift
vector b in a t  constant slice, is the natural time
derivative for evolving time-dependent spatial tensors.
is the extension to tensors of the (noncoordinate) ba
vector ≠0  ≠t 2 bk≠k (≠k  ≠y≠xk) that is normal to
the sliceS. Note that whilef≠0, ≠jg  ≠0≠j 2 ≠j≠0 
s≠jbkd≠k fi 0, we have the operator commutation rule

f≠̂0, ≠kg  0 . (8)

On the left-hand sides of (2) and (3) or (4),Rij and
Rj0 are spacetime Ricci curvature tensors and are
be replaced by their appropriate expressions in terms
matter stress tensors from Einstein’s equations.R̄

sed
ij is

the spatial Ricci curvature tensor of the spacelike slic
S. It is essential to manipulate the standard formR̄ij 
≠kḠ

k
ij 2 ≠jḠ

k
ik 1 Ḡ

k
mkḠ

m
ij 2 Ḡ

k
mjḠ

m
ik into a distinct

but (initially) equivalent form, indicated below, and the
superscript “sed” reflects this change.

Einsteinian initial data for the system (1), (2), (4
are gij, Kij, and Gkij ( ≠kgij), specified on an initial
slice S0, and presumed to satisfy the Einstein constrain
G0

0  8pT0
0 and R0

k  8pT0
k . This system of initial

constraints is well understood as a semilinear ellipt
system [24–26]. A mathematically well-posed form o
the twice-contracted Bianchi identities [27,28] show
that these initial-value constraints remain satisfied if th
equations of motion are equivalent toRij  8pfTij 2

s1y2dgijT
m
mg.
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That the system (1), (2), (4) is hyperbolic is not obv
ous, but its content is easy to grasp. The first equat
(1) is simply a definition of the extrinsic curvatureKij.
The second equation (2) is the3 1 1 decomposition of
the space-space components of the spacetime Ricci ten
As such, these are the basic geometric ingredients of E
stein’s original equations and of all3 1 1 formulations of
general relativity [24,25,29]. The remarkable fact is th
Eq. (4) completes the first two into a symmetrizable h
perbolic system without altering the initial value problem
The content of Eq. (4) is also readily understood.

If one applieŝ≠0 to (6) and uses (8) and (1), one obtain
the identity

≠̂0Gkij  2≠ks2NKijd . (9)

This is the right-hand side of (4) aside from the3 1

1 decomposition of4gksiRjd0. Ordinarily in Einstein’s
theory,

R0j  2N=̄msKjm 2 gjmKd (10)

is a constraint—the “momentum” constraint—becau
it involves no time derivatives. What is special abo
(4) is that it makes the momentum constraint dynamic
by combining it with the identity (9) involving a time
derivative. This defines a modified evolution ofGkij when
the constraint is not satisfied, that is, when (10) does
hold afterR0j is replaced by its matter expression.

The identity (9) is closely related to metric compatibi
ity of the connection. In a general spatial frame, a co
nection is metric compatible if and only if̄Gijk 1 Ḡjik 
≠kgij. Taking the time derivative of this condition and ap
plying (4) shows that, if the momentum constraint is vio
lated, metric compatibility ofḠ is lost during evolution.
While 2Ḡsijdk  Gkij always holds, the evolvedGkij is no
longer the spatial derivative≠k of the evolvedgij.

To motivate the system (1), (2), (4) further, we consid
two of its predecessors, the Einstein-Ricci formulatio
[7,12–14,18] and the Frittelli-Reula formulation [10,16
The third-order Einstein-Ricci system consists of (1) a
a wave equation built from (2) and (10) through th
combination

≠̂0Rij 2 =̄iRj0 2 =̄jRi0  NĥKij 1 Jij 1 Sij . (11)

It is called third-order because of the effective number
derivatives ofgij in (11). Here,ĥ  2N21≠̂0N21≠̂0 1

=̄k=̄k. Jij is a nonlinear function ofKij, N , their first
derivatives, and the second derivatives ofN. Sij is a
potentially troublesome term involving a second spat
derivative ofK and a third derivative ofN . The behavior
of Sij is tamed by usingN  asx, tdg1y2 [7,12] (or by
imposing generalized harmonic slicing [18] with a gaug
source [4]). Note that the use ofa permits any time
slicing to be employed.

This system can be put in first-order form by introdu
ing new variables to represent the temporal and spa
derivatives ofKij and of N. Together with (1) and the
equations obtained by applyinĝ≠0 to Ḡ

k
ij, and usinga
4385
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to eliminateN , one finds a system of 66 equations. Thi
system is spatially covariant, is expressed in3 1 1 geo-
metric variables, and has only physical characteristics.

One may wonder about the large number of equatio
and about a deeper meaning behind the combination
(11). Regarding the number of equations, the Einstei
Ricci system is equivalent (for Einsteinian initial data
to the Einstein-Bianchi system [19,20] which also ha
66 equations. There, it is evident that this number
equations is precisely that needed to incorporate the f
Bianchi identities and to propagate the Riemann curvatu
tensor explicitly in a system having only physical charac
teristics (otherwise, cf. [15]).

The Frittelli-Reula system [10,16], in contrast, ha
30 equations, is expressed in noncovariant variable
and admits superluminal characteristic speeds for so
(unphysical) degrees of freedom. Frittelli and Reu
make their construction using a parametrized ener
norm and find a family of hyperbolic systems with
different characteristics, none wholly physical. Friedric
has observed that an equation for the metric construc
from (1) and (2), while not of known hyperbolic type,
has only physical characteristics [15]. A natural questio
is whether there are further thirty-variable hyperboli
systems and if any have only physical characteristics. T
Einstein-Christoffel system is such a system, and from
one sees how to extend the Frittelli-Reula construction.

The Einstein-Ricci system has only physical characte
istics, but its equations number more than twice those
the Frittelli-Reula system. A natural question is whethe
the third-order form can be put in first-order form to
achieve a thirty-variable system. To see why this mig
be possible, consider the wave equation

≠2
t u 2 ≠2

xu  0 . (12)
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This can be put in first-order form in two ways. Th
easiest is to introduce the derivatives of the depend
variable as new variables. IntroduceU  ≠tu and V 
≠xu to reach the system

≠tu  U ,

≠tU 2 ≠xV  0, ≠tV 2 ≠xU  0 .
(13)

The last equation is an integrability condition reflectin
the commutativity of the partial derivatives. This paralle
the way that the first-order form of the Einstein-Ricc
system was obtained from (11).

The second way to get to first order form is to pull apa
the wave equation to obtain first order pieces

≠tu 2 ≠xy  0, ≠ty 2 ≠xu  0 . (14)

The first method is essentially one derivative higher. No
that the wave equation (12) is reconstructed from syst
(14) by taking a time derivative of the first equatio
and adding a spatial derivative of the second. Th
parallels the structure in (11) that leads to the third-ord
Einstein-Ricci system. This encourages the speculat
that a “pulled-apart” system analogous to (14) is possib
The obstacle is that the momentum constraint as usu
construed is not a dynamical equation, so the obvio
pulled-apart system is not hyperbolic. The key idea
that adding a suitably chosen dynamical identity to t
momentum constraint overcomes this obstacle and le
to a symmetrizable hyperbolic system.

To begin, we work withGkij rather thanḠkij . Focus
on the derivatives of the Christoffel symbols contained
R̄ij 2 N21=̄i=̄jN. These are the essential terms from th
standpoint of hyperbolicity. [Recall thatN  ag1y2, so
=̄jN  g1y2≠ja 1 Ḡ

k
jksG dg1y2a.] These terms can be

reorganized as follows:
≠kḠk
ijsGd 2 ≠jḠ

k
iksG d 2 ≠iḠ

k
jksG d  2

1
2

≠ksgkmGmijd 1 ≠sifgrssGjrsjjd 2 Gjdrsdg

1 gkrgsmfGkmsiGjdrs 2 GkrsGsijdmg (15)

(where the indices between vertical bars are not symmetrized). Introducing

fkij ;
1
2

Gkij 2 gksig
rssGjrsjjd 2 Gjdrsd  Ḡsijdk 1 gksig

rssḠjrsjjd 2 Ḡjdrsd (16)

puts the leading derivatives of (2) in the familiar form

Rij  2N21≠̂0Kij 2 ≠kfkij 1 l.o.ij , (17)

where l.o.ij stands for lower order terms containing no derivatives of unknowns. They are

l.o.ij  KKij 2 2KikKk
j 2 a21f≠i≠j 2 Ḡk

ijsG d≠kga 2 fḠk
kisG d 1 a21≠iag fḠm

mjsGd 1 a21≠jag

1 2Ḡ
k
mksG dḠm

ijsG d 2 Ḡk
mjsG dḠm

iksG d 1 gkrgsmfGkrsfmij 1 GkmsiGjdrs 2 GkrsGsijdmg . (18)

Turn to consider (4). From (16), one computes
gkiRj0 1 gkjRi0  2≠̂0fkij 2 ≠ksNKijd 1 l.o.kij . (19)

The lower order terms are

l.o.kij  2NKksig
rssGjrsjjd 2 Gjdrsd 1 2gksifKjdm≠mN 2 K≠jdN 1 NKjdmgrsḠm

rssG d 1
1
2

NsGjdrs 2 2GjrsjjddKrsg .
(20)
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The system (17) and (19) [completed by (1)] is ob
viously symmetrizable hyperbolic because it has the f
miliar structure of a wave equation in first-order form
It is also clear that to build a wave equation inKij

from (17) and (19), one forms a combination simila
to (11). This reveals the meaning behind this com
bination. The characteristic speed in the system (1
(19) is the speed of light, so the extrinsic curvature a
the connection propagate at the speed of light. Fro
(1), the metric propagates at speed zero. In the e
one need use only (say)fkij to express all three-index
symbols.

It should be emphasized that the wave equation o
tained from (17), (19) is not exactly the same as th
third-order Einstein-Ricci system. They differ by lowe
order terms proportional to constraints. This means th
they will agree for Einsteinian initial data, but may dis
agree when the constraints are violated. Likewise, a thi
order wave equation, equivalent for Einsteinian data
that above, can be constructed easily from the first-ord
Einstein-Bianchi system. One sees that “ĥKij” is the cen-
tral element of unification.

The energy norm for the system (1), (17), (19)
the integral overS of KijKij 1 fkijfkij , where fkij 
gkmgirgjsfmrs. When the energy norm is expressed
terms of their variables, the result can be compar
to the ansatzof Frittelli-Reula [16]. Additional terms
are present beyond those that they considered. Th
energy normansatz can be readily generalized. One
finds a larger many-parameter family of symmetriz
able hyperbolic systems equivalent to Einstein’s equ
tions. Some of these other systems also have o
physical characteristics; for example, a multiple of th
Hamiltonian constraintG0

0 can be added to (2) if a
multiple of the momentum constraintR0k is added to (3)
and (4).

The Einstein-Christoffel system discussed here is
well-posed system of 30 equations that has only phy
cal characteristics and can be expressed in standard3 1 1
geometric variables. Spatial covariance of the syste
is not explicit, but present nonetheless. This formul
tion clarifies the relationships among Einstein’s origin
equations and the Einstein-Ricci, Einstein-Bianchi, an
Frittelli-Reula hyperbolic formulations. One can see fu
ther links to the Friedrich [5,6,8,15] and Bona-Mass
[9,11] formulations. It will be interesting to implemen
this system numerically. Having only physical chara
teristics should prove useful when imposing bounda
conditions on the horizon of a black hole since no info
mation, physical or otherwise, can leave the black ho
and all information will enter the black hole in a physi
cal way.

A. A. thanks Mark Hannam for discussions, an
J. W. Y. thanks Y. Choquet-Bruhat. This work wa
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No. PHY-9413207.
-
a-
.

r
-

7),
nd
m

nd,

b-
e

r
at
-
rd-
to
er

is

in
ed

eir

-
a-

nly
e

a
si-

m
a-
al

d
r-
ó

t
c-
ry
r-
le,
-

d
s
nt

[1] C. M. Will, Theory and Experiment in Gravitational
Physics(Cambridge University Press, Cambridge, 1993)
revised ed.

[2] Y. Choquet (Fourès)-Bruhat, Acta Math.88, 141 (1952).
[3] A. Fischer and J. Marsden, Commun. Math. Phys.28, 1

(1972).
[4] H. Friedrich, Commun. Math. Phys.100, 525 (1985).
[5] H. Friedrich, Proc. R. Soc. London A375, 169 (1981).
[6] H. Friedrich, Proc. R. Soc. London A378, 401 (1981).
[7] Y. Choquet-Bruhat and T. Ruggeri, Commun. Math. Phys

89, 269 (1983).
[8] H. Friedrich, J. Diff. Geom.34, 275 (1991).
[9] C. Bona and J. Massó, Phys. Rev. Lett.68, 1097 (1992).

[10] S. Frittelli and O. Reula, Commun. Math. Phys.166, 221
(1994).

[11] C. Bona, J. Massó, E. Seidel, and J. Stela, Phys. Rev. Le
75, 600 (1995).

[12] Y. Choquet-Bruhat and J. W. York, C.R. Acad. Sci. Paris
t. 321, Série I, 1089 (1995).

[13] A. Abrahams, A. Anderson, Y. Choquet-Bruhat, and J. W
York, Phys. Rev. Lett.75, 3377 (1995).

[14] A. Abrahams, A. Anderson, Y. Choquet-Bruhat, and J. W
York, C.R. Acad. Sci. Paris,t. 323, Série IIb, 835 (1996).

[15] H. Friedrich, Classical Quantum Gravity13, 1451 (1996).
[16] S. Frittelli and O. Reula, Phys. Rev. Lett.76, 4667 (1996).
[17] M. H. P. M. van Putten and D. M. Eardley, Phys. Rev. D

53, 3056 (1996).
[18] A. Abrahams, A. Anderson, Y. Choquet-Bruhat, and J. W

York, Classical Quantum Gravity14, A9 (1997).
[19] Y. Choquet-Bruhat and J. W. York,Mathematics of Gravi-

tation, Banach Center Publications (Polish Academy o
Science, Warszawa, 1997), Vol. 41, Pt. 1, p. 119.

[20] A. Anderson, Y. Choquet-Bruhat, and J. W. York, Topol
Meth. Nonlinear Anal.10, 353 (1997).

[21] D. Christodoulou and S. Klainerman,The Global Nonlin-
ear Stability of the Minkowski Space(Princeton University
Press, Princeton, NJ, 1993).

[22] A. Abrahamset al., Phys. Rev. Lett.80, 1812 (1998).
[23] A symmetrizable hyperbolic system is a system tha

can be put in the following form by an invertible
transformation:

At≠tu 1 Ak≠ku  B ,

whereu is a vector of unknowns,At is a positive definite
symmetric matrix,Ak are symmetric matrices, andB is a
vector of sources.At , Ak, and B may depend on space
and time and onu but not its derivatives. Such systems
are well posed.

[24] J. W. York, in Sources of Gravitational Radiation,edited
by L. Smarr (Cambridge University Press, Cambridge
1979), p. 83.

[25] Y. Choquet-Bruhat and J. W. York, inGeneral Relativity
and Gravitation, I,edited by A. Held (Plenum, New York,
1980), p. 99.

[26] J. W. York, Phys. Rev. Lett.82, 1350 (1999).
[27] S. Frittelli, Phys. Rev. D55, 5992 (1997).
[28] A. Anderson and J. W. York, Phys. Rev. Lett.81, 1154

(1998).
[29] Y. Choquet (Fourés)-Bruhat, J. Rat. Mechanics Anal.5,

951 (1956).
4387


