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We consider the role of weak interatomic interactions on the fluctuations of the number of condense
atoms within canonical and microcanonical ensembles. Unlike the corresponding case of the idea
gas this is not a clean, well-defined problem of mathematical physics. Two related reasons are th
following: there is no unique way of defining the condensate fraction of the interacting system and no
exact energy levels of the interacting system are known. [S0031-9007(99)09269-8]
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The recent achievement of Bose-Einstein condensat
(BEC) in the collection of trapped atoms [1] has re
newed interest [2] in the theory of cold bosons. In pa
ticular, statistical properties of the condensate fracti
have been thoroughly investigated using the microcano
cal and canonical ensembles of statistical physics. A
though much more complicated than the celebrated gra
canonical ensemble, these more restricted ones are ne
sary since grand canonical ensemble predicts unphysic
large fluctuations of the number of condensed atoms.
a series of papers [3–9] the fluctuations of the condens
fraction were calculated in both ensembles by a varie
of approximate methods: both numerical (based on rec
rence formulas and on contour integration) and analy
(asymptotic formulas based on the notion of the Maxwe
demon ensemble), for various trapping potentials and
different numbers of dimensions. All of the above re
sults, however, were obtained for ideal Bose gas. In th
case the condensed fraction is just the number of atoms
the (single particle) ground state. Also all single partic
energy levels in simple trapping potentials are know
For this reason statistical properties of the ideal Bose g
require solving a well-posed combinatorial problem. I
fact in one case—that of 1D harmonic potential—findin
the microcanonical partition function is identical with th
classical number theory problem of computing the numb
of unrestricted partitions of an integer, solved by math
maticians in 1918 [10].

The purpose of this Letter is to present the first resu
for the fluctuations of weakly interacting condensate
the perfectly isolated system of a finite number of atom
described by the microcanonical ensemble. We comm
briefly on the recent Letter reporting fluctuations o
the interacting Bose gas in canonical ensemble in t
thermodynamic limit [11] and on the earlier attempt [12]

The problem of condensate fluctuations of the weak
interacting Bose gas is not well defined. It is not obviou
how to identify a condensed subsystem in an unambiguo
way for the interacting system. And yet the dependence
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the condensate fraction on temperature was measured
and found to be in good agreement with the theory. T
experimentalists use a pragmatic approach, defining
condensed subsystem by fitting a two-component form
to the measured probability distribution either in positio
or in momentum space. This method does not trans
easily into a clear theoretical tool.

Of several possible theoretical definitions of th
condensate proposed over the years [14] we fa
the one based on the properties of the spectral
composition of the single particle density matrix
rsr1, r2d ­

P
jknjlwp

j sr1dwjsr2d. The Bose-Einstein con-
densation manifests itself by the macroscopic occupat
of one of the eigenmodes. It is very difficult to compu
the eigenmodes. The symmetry of the Hamiltonian hel
Note, however, that in the physically most interestin
case of the harmonic binding potential, even in its mo
regular, spherically symmetric case, symmetry determi
the angular dependence of the eigenmodes, but t
nothing about their radial dependence. The exceptiona
simple, and hence the best studied, is the case of
system confined in the box with periodic bounda
conditions. In this case the single particle density mat
is translationally invariant and periodic, so its spectr
decomposition is just the Fourier series labeled by
quantized momentump ­ s2p h̄yLd snx , ny , nzd, whereL
is the size of the box.

We are interested in the statistics of a weakly intera
ing Bose gas for temperatures below the condensation t
perature. In this regime, the system may be viewed
being composed of two macroscopic subsystems, a c
densate ofn0 , OsNd particles occupying thep ­ 0 state,
and an excited part ofNex ;

P
pfi0 np particles. Since in

our approach no distinction is made between a conden
at rest and a condensate in a state of collective moti
the labelp ­ 0 refers to an effective mean momentum
the condensate, rather than a specific single-particle s
For isolated systems, particle number conservation imp
Nex ­ N 2 n0.
© 1999 The American Physical Society
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After splitting the system into its condensed and excite
parts we have to define the approximate dynamics. T
can be done in a number of ways and one of o
conclusions is that the fluctuations sensitively depend
the details of this approximation.

One commonly made assumption is to neglect the
teratomic interaction within the excited subsystem. Thu
the states of the excited atoms are still single partic
states in a box, since the condensate is uniform. Acco
ingly, the energy of the excited subsystem is given b
Eexshnpjd ­

P
pfi0sp2y2mdnp .

To fully define the problem, we need to specify th
relation between the total energy of the systemE and
Eex. This may be done in a number of ways as vario
approaches are being used in the literature. Each of th
has both advantages and drawbacks. Therefore, it is v
hard to judgea priori which one is better suited for
studying fluctuations.

If we assume the standard contact interaction betwe
condensed atoms and between condensed atoms
excited atoms, then the single excited orbital version
the Hartree-Fock theory [15] gives

E ­ asN2 2 N2
exd 1 Eexshnpjd , (1)

wherea ­ s2pah̄2ymV d, anda is the scattering length.
A nice feature of this approximation is the exact orthog
nality of the excited orbitals to the condensate wave fun
tion, given by the solution of the Gross-Pitaevski equatio
also in more realistic, harmonic potential. Its drawbac
is the instability as the number of atoms increases. F
the sufficiently large system, the transition to the excite
part becomes energetically favorable—so this model
not suitable for the study of thermodynamic limit.

If we assume a two-gas model obtained by the redu
tion of the Bogolubov approximation [16], then the rela
tion takes the form

E ­ asN2 1 2NNex 2 3N2
exd 1 Eexshnpjd . (2)

This has an obvious weakness: the wave functions d
scribing the quasiparticles for the harmonic potential a
not orthogonal to the condensate wave function. Hen
counting them as particles must incur some error.

If we use the lowest order perturbation theory [17] in it
simplified form again neglecting the terms proportional
the product of excited occupation numbers:

E ­ asN2 1 2NNex 2 N2
exd 1 Eexshnpjd , (3)

we obtain a model which does have a gap in th
thermodynamic limit, which disappears if higher orde
corrections are taken into account [17]. However, in th
case of the finite system and in the weak interaction lim
these higher order terms can be neglected.

In all three cases we may compute now the microcano
ical partition function, GsN , Ed ­

PN
0 GexsN , Nex, Ed,

where GexsN , Nex, Ed is the number of microstates with
Nex particles being distributed over single particle stat
d
his
ur
on

in-
s,
le
rd-
y

e

us
em
ery

en
and
of

o-
c-
n
k
or
d
is

c-
-

e-
re
ce,

s
to

e
r
e
it

n-

es

p fi 0, n0 ­ N 2 Nex particles residing in the conden
sate, the totality of particles sharing an energyE. Apart
from normalization this is just a probability of finding
Nex excited atoms orN 2 Nex atoms in the condensate
Hence the microcanonical fluctuations are just a seco
moment of this distribution.

Computation ofGexsN , Nex, Ed for any given Nex is
easy, since we haveGexsN , Nex, Ed ­ G0

exsNex, Eexd,
where G0

exsNex, Eexd is the microcanonical partition
function of the excited subsystem of an ideal Bose g
Useful numerical techniques based on the recurren
relations were developed in connection with the ide
Bose gas for computation of the microcanonical partitio
function. They are easily applied to systems with seve
hundred particles.

The results are compared to the noninteracting ca
in Fig. 1 for the temperature dependence of the absol
value of fluctuationsd2N0 ; ksn0 2 kn0ld2l of the num-
ber of condensed atoms. The inset displays the me
numberN0 ; kn0l of atoms in the condensate. The tem
perature is measured in units given by the spacing betw
two lowest levels in the 3D box:D ­ s2p h̄d2ys2mL2d
and the scattering lengtha is in units of the box length
L. We see that all three simplified models give marked
different results. On the basis of these results, it
not even possible to say if the correction coming fro
the interatomic interaction decreases or increases
microcanonical fluctuations with respect to the ideal g
case. Condensate fluctuations unlike the mean occupa
and critical temperature seem to be much more sensi
to the model assumptions. In the case of the harmo
trap the latter computed out of the mean-field two-g
model [18], agree remarkably well with experimenta
data of [13]. Theoretical models of the condensa

FIG. 1. Root-mean-square fluctuations of the ground state
cupation for various models of interaction in the microcanonic
ensemble. The total number of particlesN ­ 500 and scatter-
ing lengthayL ­ 0.0004. Curves are labeled (1), (2), and (3
in correspondence to Eqs. (1)–(3). The solid line refers to t
ideal Bose gas. Note the large discrepancy between differ
models. Inset: Mean number of particles in the condensate
4377
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fluctuations do not provide any systematic metho
of evaluations of the quality of different approache
Verification of their predictions in the experiment is th
only and ultimate test. We hope that two-point correlatio
function g2sr1, r2d [19], which depends on fluctuations
would be soon available to the experimental measureme

We turn now to the canonical ensemble. For mode
discussed here we go several steps towards analytic res
for the canonical ensemble. To this end note, that
the interaction energy depends only on the total numb
of atomsN and total number of excited atomsNex (or
equivalentlyN andn0) and not on the detailed distribution
among excited states, as in the cases discussed above,
the canonical partition function of the system composed
N atoms, of which exactlyNex are excited may be writ-
ten as

ZexsN , Nex, bd ­
XP
np­Nex

e2bEint2bEexshnpjd, (4)

where, in principle, functionEintsN , Nexd could be any
of the interaction terms in Eqs. (1)–(3). In the detaile
calculation we shall restrict ourselves to the perturbati
expression (3), for which the thermodynamic limit exist
We see that (4) may be easily expressed in terms of
canonical partition function of the excited subsystem
noninteracting atoms:

ZexsN , Nex, bd ­ exp2bEintsN ,Nexd Z0
exsNex, bd , (5)

for which a good approximate asymptotic formula is we
known [8,9]. Now imposing the constraintN ­ n0 1

Nex to eliminateNex we obtain the probability of finding
exactlyn0 atoms in the condensate:

PCN sn0jNd ­ ZexsN , N 2 n0, bdyZsN , bd . (6)

The mean valueN0 and the mean square fluctuation
d2N0 can be calculated directly from (6) in any regime
Below the critical temperature and for a large numb
of atoms, the distribution is strongly peaked around
most probable value. Assuming that the mean val
and the most probable value coincide, and utilizing
Gaussian approximation for the distribution (6), we fin
the following implicit equation forN0,

N 2 N0 ­ VyslT d3g3y2semN0 d , (7)

where the Bose-Einstein functiongnssd ­
P`

l­1 slyln,
lT ­ s2p h̄2bymd1y2 can be related to the thermal wave
length andm ­ 22ab. In the same approximation the
fluctuations are given by

d2N0 ­

"√X
pfi0

1

4 sinh2s b

2
p2

2m 2
mN0

2 d

!21

1 m

#
21

. (8)

This formula, which is the direct generalization of th
expression for the ideal Bose gas found in [9], is our ma
result. Two limiting cases are of special interest: the lim
4378
d
s.
e
n

,
nt.
ls
ults
if
er

then
of

d
ve
s.
the
of

ll

s
.

er
its
ue
a
d

-

e
in
it

of ultraweak interactiona ! 0, and the thermodynamic
limit. As expected, these limits do not commute. I
the limit of ultraweak interaction we find the well-known
expression of the ideal Bose gas

d2N0sa ! 0d , 15.578s7d fkBTyDg2 (9)

while for fixed a not too small, the thermodynamic limit
of Eq. (8) reads

d2N0 , VyslT d3fg21
1y2semN0 d 2 2aylT g21. (10)

Note that this expression becomes invalid in the lim
of ultraweak interaction. Indeed, according to (10) th
fluctuations are normal, that is they are proportional
the volume, while for the ideal gas they are anomalo
with proportionality ,V 4y3. The different scaling of
fluctuations with the size of the system results in the fa
that thermodynamic limit does not commute with the lim
of zero interactions. Our two first models are not we
suited for studying the thermodynamic limit as they negle
interaction in excited states which makes the ground st
unstable in this case.

The crossover from anomalous to normal scaling occ
if the scattering length drops below a certain valueac

which is obtained by equating Eqs. (9) and (10). Th
result scalesac , V 1y3yN0. Noteworthy, fora # ac the
pair interaction energy per particle,,aN0, is smaller than
the kinetic energy spacingD , V 22y3 which governs the
statistics of the ideal Bose gas, i.e., fora # ac the gas is
effectively ideal.

In Fig. 2 we plot Eq. (10) as a function of temperatu
for 105 particles andayL ­ 4 3 1024. For this choice
of parametersacyL ­ 1025, i.e., we are well into the
interacting regime. Also shown are the predictions
[11], Eq. (8), which are derived within a nonnumbe
conserving Bogolubov approach. Again we see b
differences. Note, however, that for a small number

FIG. 2. Root-mean-square fluctuations of the ground st
occupation in the canonical ensemble forN ­ 105 andayL ­
0.0004. Displayed are (i) our result (dashed line), (ii) Eq. (8
of Ref. [11] (dotted line), and the ideal Bose gas (full line
Inset: Our result forN ­ 500, a as above, indistinguishable
from the ideal gas.
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particlesN ­ 500 (see inset in Fig. 2) the result of the
present calculation is extremely close to the ideal gas ca

Noteworthy, our result (10) is in sharp disagreeme
with the predictions in [11] where it is argued that within
the Bogolubov approach the fluctuations of the weak
interacting Bose gas in the box remain anomalous [20
This approximation predicts phononlike spectrum of th
lowest excitations of the condensate, however, as sho
in [21], in the case of soluble 1D model it is only a certai
subset of excited states. The phonon spectrum play
crucial role in the approach of [11] because authors cla
that an excitation of a single long wavelength phono
depletes the condensate. In our opinion phonons a
collective excitations which do not necessarily change t
number of condensated particles. Such an excitation
rather a specific distortion of the finite condensate tha
its depletion. Therefore, the absence of phonon sta
in our approach should not result in substantial error
estimation of condensate fluctuations. On the other han
the Bogolubov method does not conserve the number
particles, and configurations with different numbers o
excited atoms coincide with the same condensate, so,
particular, the interaction energy of the condensed ato
remains constant for all members of the ensemble.

However, as we have seen in the present Letter, t
changing interaction energy of the condensate (aN2

0 )
is crucial for the fluctuations. Although our results
were obtained for the system confined in the box
similar method can be used for the harmonic trap.
this case the mutual interaction leads to some effecti
mean field potential felt by excited particles. The lowe
energy levels of this effective potential can be compute
exactly while higher states might be described within, fo
instance, semiclassical approximation.

To summarize: Different ways of describing approxi
mately the weakly interacting Bose gas lead to vast
different predictions concerning the fluctuations of th
condensate both in the microcanonical and the canoni
ensembles. Therefore we consider the problem as op
and unsolved because none of the presented approac
to this difficult many body problem treat all essentia
ingredients of the real physical situation with equal car
More work is needed, perhaps, on the soluble 1D chain
interacting bosons [21]. Fortunately, nature, which do
not know about the theoretical ambiguities, might be ve
helpful. The experimental measurement of theg2sr1, r2d
(as shown in [22] the refractive index of a condensa
is directly related to the two-point spatial correlation
function) which we hope will come soon, could resolv
the problem allowing for better understanding of th
interacting quantum systems.
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