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We consider the role of weak interatomic interactions on the fluctuations of the number of condensed
atoms within canonical and microcanonical ensembles. Unlike the corresponding case of the ideal
gas this is not a clean, well-defined problem of mathematical physics. Two related reasons are the
following: there is no unique way of defining the condensate fraction of the interacting system and no
exact energy levels of the interacting system are known. [S0031-9007(99)09269-8]

PACS numbers: 03.75.Fi, 05.30.Jp

The recent achievement of Bose-Einstein condensatiothe condensate fraction on temperature was measured [13]
(BEC) in the collection of trapped atoms [1] has re-and found to be in good agreement with the theory. The
newed interest [2] in the theory of cold bosons. In par-experimentalists use a pragmatic approach, defining the
ticular, statistical properties of the condensate fractiorcondensed subsystem by fitting a two-component formula
have been thoroughly investigated using the microcanonito the measured probability distribution either in position
cal and canonical ensembles of statistical physics. Aler in momentum space. This method does not translate
though much more complicated than the celebrated granelasily into a clear theoretical tool.
canonical ensemble, these more restricted ones are necesOf several possible theoretical definitions of the
sary since grand canonical ensemble predicts unphysicalljondensate proposed over the years [14] we favor
large fluctuations of the number of condensed atoms. Ithe one based on the properties of the spectral de-
a series of papers [3—9] the fluctuations of the condensamposition of the single particle density matrix:
fraction were calculated in both ensembles by a variety (ry,r;) = Zj(nj>gp7(r1)gpj(r2). The Bose-Einstein con-
of approximate methods: both numerical (based on recurdensation manifests itself by the macroscopic occupation
rence formulas and on contour integration) and analytiof one of the eigenmodes. It is very difficult to compute
(asymptotic formulas based on the notion of the Maxwellthe eigenmodes. The symmetry of the Hamiltonian helps.
demon ensemble), for various trapping potentials and imNote, however, that in the physically most interesting
different numbers of dimensions. All of the above re-case of the harmonic binding potential, even in its most
sults, however, were obtained for ideal Bose gas. In thisegular, spherically symmetric case, symmetry determines
case the condensed fraction is just the number of atoms ithe angular dependence of the eigenmodes, but tells
the (single particle) ground state. Also all single particlenothing about their radial dependence. The exceptionally
energy levels in simple trapping potentials are knownsimple, and hence the best studied, is the case of the
For this reason statistical properties of the ideal Bose gasystem confined in the box with periodic boundary
require solving a well-posed combinatorial problem. Inconditions. In this case the single particle density matrix
fact in one case—that of 1D harmonic potential—findingis translationally invariant and periodic, so its spectral
the microcanonical partition function is identical with the decomposition is just the Fourier series labeled by the
classical number theory problem of computing the numbequantized momentum = (27 /L) (ny, ny, n;), whereL
of unrestricted partitions of an integer, solved by matheis the size of the box.
maticians in 1918 [10]. We are interested in the statistics of a weakly interact-

The purpose of this Letter is to present the first resultsng Bose gas for temperatures below the condensation tem-
for the fluctuations of weakly interacting condensate inperature. In this regime, the system may be viewed as
the perfectly isolated system of a finite number of atomdeing composed of two macroscopic subsystems, a con-
described by the microcanonical ensemble. We commenttensate oy ~ O(N) particles occupying thp = 0 state,
briefly on the recent Letter reporting fluctuations ofand an excited part d¥., = >, 1, particles. Since in
the interacting Bose gas in canonical ensemble in theur approach no distinction is made between a condensate
thermodynamic limit [11] and on the earlier attempt [12]. at rest and a condensate in a state of collective motion,

The problem of condensate fluctuations of the weaklythe labelp = 0 refers to an effective mean momentum of
interacting Bose gas is not well defined. It is not obviousthe condensate, rather than a specific single-particle state.
how to identify a condensed subsystem in an unambiguousor isolated systems, particle number conservation implies
way for the interacting system. And yet the dependence aV.,x = N — ny.
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After splitting the system into its condensed and excitep # 0, ngp = N — N, particles residing in the conden-
parts we have to define the approximate dynamics. Thisate, the totality of particles sharing an enefgy Apart
can be done in a number of ways and one of oufrom normalization this is just a probability of finding
conclusions is that the fluctuations sensitively depend oV, excited atoms oN — N, atoms in the condensate.
the details of this approximation. Hence the microcanonical fluctuations are just a second

One commonly made assumption is to neglect the inmoment of this distribution.
teratomic interaction within the excited subsystem. Thus, Computation of[' (N, Nex, E) for any given Ny is
the states of the excited atoms are still single particleasy, since we havel'ex (N, Nex, E) = T (Nex, Eex),
states in a box, since the condensate is uniform. Accordwvhere FSX(Nex,EeX) is the microcanonical partition
ingly, the energy of the excited subsystem is given byfunction of the excited subsystem of an ideal Bose gas.
Eex({np}) =Zp¢o(p2/2m)np. Useful numerical techniques based on the recurrence

To fully define the problem, we need to specify therelations were developed in connection with the ideal
relation between the total energy of the systéhand Bose gas for computation of the microcanonical partition
E.. This may be done in a number of ways as varioudunction. They are easily applied to systems with several
approaches are being used in the literature. Each of thehundred particles.
has both advantages and drawbacks. Therefore, it is very The results are compared to the noninteracting case
hard to judgea priori which one is better suited for in Fig. 1 for the temperature dependence of the absolute
studying fluctuations. value of fluctuations5’Ny = {(ng — (no))?) of the num-

If we assume the standard contact interaction betweeber of condensed atoms. The inset displays the mean
condensed atoms and between condensed atoms amdmberN, = (n,) of atoms in the condensate. The tem-
excited atoms, then the single excited orbital version operature is measured in units given by the spacing between
the Hartree-Fock theory [15] gives two lowest levels in the 3D boxA = (27/4)*/(2mL?)

. 2 2 and the scattering length is in units of the box length

E = a(N* — N5) + Ex({n,}), @ 1 We see that all three simplified models give markedly
wherea = (27ahi*/mV), anda is the scattering length. different results. On the basis of these results, it is
A nice feature of this approximation is the exact orthogo-not even possible to say if the correction coming from
nality of the excited orbitals to the condensate wave functhe interatomic interaction decreases or increases the
tion, given by the solution of the Gross-Pitaevski equatiormicrocanonical fluctuations with respect to the ideal gas
also in more realistic, harmonic potential. Its drawbackcase. Condensate fluctuations unlike the mean occupation
is the instability as the number of atoms increases. Foand critical temperature seem to be much more sensitive
the sufficiently large system, the transition to the excitedo the model assumptions. In the case of the harmonic
part becomes energetically favorable—so this model israp the latter computed out of the mean-field two-gas
not suitable for the study of thermodynamic limit. model [18], agree remarkably well with experimental

If we assume a two-gas model obtained by the reducdata of [13]. Theoretical models of the condensate
tion of the Bogolubov approximation [16], then the rela-
tion takes the form

E = a(N? + 2NNex — 3N2) + Ex({n,}).  (2) 40

This has an obvious weakness: the wave functions de-

ey o . : 30
scribing the quasiparticles for the harmonic potential are
not orthogonal to the condensate wave function. Hence,
counting them as particles must incur some error. =" 20

If we use the lowest order perturbation theory [17] inits %
simplified form again neglecting the terms proportional to

the product of excited occupation numbers: 10
E = a'(NZ + 2NNy — Nezx) + Eex({”p})a (3) 0 . . ,
we obtain a model which does have a gap in the 0 2 4 6 8 10 12

thermodynamic limit, which disappears if higher order k. T/A
corrections are taken into account [17]. However, in the B
case of the finite system and in the weak interaction limitFIG. 1. Root-mean-square fluctuations of the ground state oc-
these higher order terms can be neglected. cupation for various models of interaction in the microcanonical

i ensemble. The total number of particl¥s= 500 and scatter-
. IF all tftl?e Ca:cseszve m?choLgante ?/Ol\iv tf}\e[ nl\}lcrczcanorﬁ]g lengtha/L = 0.0004. Curves are labeled (1), (2), and (3)
Ical  parution functon, (N.E) = > éx( »oVexs )*_ in correspondence to Egs. (1)—(3). The solid line refers to the
where I'ex (N, Nex, E) is the number of microstates with jdeal Bose gas. Note the large discrepancy between different
Nex particles being distributed over single particle statesnodels. Inset: Mean number of particles in the condensate.
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fluctuations do not provide any systematic methodof ultraweak interactior: — 0, and the thermodynamic

of evaluations of the quality of different approaches.limit. As expected, these limits do not commute. In

Verification of their predictions in the experiment is the the limit of ultraweak interaction we find the well-known

only and ultimate test. We hope that two-point correlationexpression of the ideal Bose gas

function g,(ry,rz) [19], which depends on fluctuations, 5 5

would be soon available to the experimental measurement. 8°No(a — 0) ~ 15.578(7) [ksT/A] ©)
We turn now to the canonical ensemble. For modelshile for fixed a not too small, the thermodynamic limit

discussed here we go several steps towards analytic resuiEEq. (8) reads

for the canonical ensemble. To this end note, that if 2 3r —1, uN .

the interaction energy depends only on the total number 8°No ~ V/(Ar)[81/2(e"™) = 2a/Ar]"". (10)

of atomsN and total number of excited atoni&, (or  Note that this expression becomes invalid in the limit

equivalentlyN andng) and not on the detailed distribution of ultraweak interaction. Indeed, according to (10) the

among excited states, as in the cases discussed above, tliictuations are normal, that is they are proportional to

the canonical partition function of the system composed othe volume, while for the ideal gas they are anomalous

N atoms, of which exactlyV., are excited may be writ- with proportionality ~V#/3. The different scaling of

ten as fluctuations with the size of the system results in the fact
that thermodynamic limit does not commute with the limit
Zex(N, Nex, B) = Z e BEn—BES(m))  (4)  of zero interactions. Our two first models are not well

S 1p=Nex suited for studying the thermodynamic limit as they neglect

_ o _ interaction in excited states which makes the ground state
where, in principle, functionEi, (N, Nex) could be any ynstable in this case.
of the interaction terms in Egs. (1)—(3). In the detailed The crossover from anomalous to normal scaling occurs
calculation we shall restrict ourselves to the perturbatlvqf the Scattering |ength drops below a certain Vakue
expression (3), for which the 'thermodynam!c limit exists.which is obtained by equating Egs. (9) and (10). The
We see that (4) may be easily expressed in terms of thggylt scales, ~ V!/3/N,. Noteworthy, fora < a. the
cangmcal partition function of the excited subsystem ofpair interaction energy per particle,a Ny, is smaller than
noninteracting atoms: the kinetic energy spaciny ~ V~2/3 which governs the
7 (N.N — exp BEn(NN) 70 (pr 5 Sta’[ISt.ICS of the ideal Bose gas, i.e., o< a. the gas is
ex(V, Nex. B) P exNex, ), (5) effectively ideal.
for which a good approximate asymptotic formula is well In Fig. 2 we plot Eqg. (10) as a function of temperature
known [8,9]. Now imposing the constraid = ny +  for 10° particles anda/L = 4 X 10~*. For this choice
Ne to eliminateN., we obtain the probability of finding of parametersa./L = 107>, i.e., we are well into the
exactlyny atoms in the condensate: interacting regime. Also shown are the predictions of
_ [11], Eg. (8), which are derived within a nonnumber
Pen(nolN) = Zex(N,N = no, B)/Z(N, B) . (6)  conserving Bogolubov approach. Again we see big
The mean valueV, and the mean square fluctuations differences. Note, however, that for a small number of
82Ny can be calculated directly from (6) in any regime.
Below the critical temperature and for a large number

. . . . . 2500 T T T T T T T
of atoms, the distribution is strongly peaked around its @
most probable value. Assuming that the mean value 54599l *f A
and the most probable value coincide, and utilizing a g 0r
Gaussian approximation for the distribution (6), we find 15001 I 1 ]
the following implicit equation fov, > N A N

_ — Py L k,T/4 i

N = No = V/(Arl’gsale™), (7) 1000y '
where the Bose-Einstein functiog,(s) = >, s'/1", 500 - ______ T
Ar = 27h%B/m)"/? can be related to the thermal wave- T
e i i 0 T it W 1 N I N 1 . I . 1
length andu 2aB. In the same approximation the 050 100 150 200 250 300 350

fluctuations are given by KT
A
B

1 -1
1
8°No = |:( . 5 p? Ny ) + Mj| (8) FIG. 2. Root-mean-square fluctuations of the ground state
p#0 4S|nhz(7m - 5°) occupation in the canonical ensemble for= 10° anda/L =

. . . . o 0.0004. Displayed are (i) our result (dashed line), (ii) Eq. (8)
This formula, which is the direct generalization of the ;' ref [11] (dotted line), and the ideal Bose gas (full line).

expression er t_h_e ideal Bose gas four]d i.n [9], is our mai_r]nset: Our result forN = 500, a as above, indistinguishable
result. Two limiting cases are of special interest: the limitfrom the ideal gas.
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