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Phase Diagram of Traffic States in the Presence of Inhomogeneities
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We present a phase diagram of the different kinds of congested traffic that are triggered b
disturbances when passing ramps or other spatial inhomogeneities of a freeway. The simulation resu
obtained by the nonlocal, gas-kinetic-based traffic model are in good agreement with empirical findings
They allow one to understand the observed transitions between free and various kinds of congest
traffic, among them localized clusters, stop-and-go waves, and different types of “synchronized
traffic. We also give analytical conditions for the existence of these states which suggest tha
the phase diagram is universal for a class of different microscopic and macroscopic traffic models
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For some years now, the various observed nonline
states of freeway traffic flow, including traffic jams an
stop-and-go waves, have attracted the interest of a rap
growing community of physicists [1,2]. The same applie
to simulation approaches that allow one to reprodu
the transitions between the different collective states
motion [2–5]. Particular attention has been given
the recent discovery of a first-order phase transition
“synchronized” congested traffic [6,7], which stimulate
an intense investigation of the complex phenome
associated with ramps, yielding an explanation of the hy
teretic phase transition [5,8]. It is also known from othe
effectively one-dimensional many-body systems wi
short-range interactions that localized inhomogeneiti
can cause a variety of phenomena, including pha
transitions [9] and spontaneous symmetry breaking [10

To characterize the parameter dependence of the p
sible states of a system resulting in the long run, pha
diagrams are a very powerful method. They are of gre
importance in thermodynamics with various application
in metallurgy, chemistry, etc. Moreover, they allow on
to compare very different kinds of systems like equilib
rium and nonequilibrium ones, or microscopic and macr
scopic ones, whose equivalence cannot simply be sho
by transformation to normal forms [11,12]. Defining
universality classes by mathematically equivalent pha
diagrams, one can even classify so different systems
physical, chemical, biological, and social ones, as done
systems theory.

In the following, we will present and explain the phas
diagram that we obtained for the nonlocal, gas-kineti
based traffic model [5], when we studied a freewa
with a ramp in the presence of a single perturbatio
(Fig. 1). By systematical variation of the inflow at the
upstream freeway boundaryand the ramp, we were able
to reproduce the observed transitions between differe
traffic states, some of which have not been explain
before. We will also present analytical conditions fo
the existence of the various traffic states. Since we a
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interested in the generic properties of the model, we w
formulate it in dimensionless quantities [13] by measurin
times in units of the relaxation timet ø 40 s, and
distances in units of the inverse1yrmax of the maximum
vehicle densityrmax ø 140 vehiclesykm. The equation
for the vehicle densityrsx, td at positionx and timet is a
continuity equation with a sink/source term and reads

≠r

≠t
1

≠srV d
≠x

­
Qrmpsx, td

Lrmp
. (1)

V denotes the average vehicle velocity,Lrmp is the length
of the ramp,Qrmp is the flow of vehicles entering the
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FIG. 1. Phase diagram of the traffic states in the vicinity
an on-ramp as a function of the inflowsQin and Qrmp on the
main road and the on-ramp for fixed ramp lengthL ­ 56. The
different states are classified att ­ 135, i.e., after a sufficiently
long transient period. Displayed are homogeneous conges
traffic srd, oscillatory congested traffics3d, triggered stop-and-
go traffic s1d, moving localized clusterssjd, pinned localized
clusterss

J
d, and free trafficsmd. The states are triggered by a

fully developed localized cluster traveling upstream and pass
the ramp (cf. Fig. 3). Solid lines indicate the theoretical pha
boundaries. The dashed line represents the conditionsQin 1
Qrmpd ­ Qmax that characterizes the maximum downstrea
flow for which a (possibly unstable) equilibrium solution exist
Above this line, extended congestion develops even without a
perturbation.
© 1999 The American Physical Society
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freeway sQrmp . 0d or leaving it sQrmp , 0d along the
ramp of lengthLrmp, divided by the numbern of freeway
lanes. The velocity equation contains a convection ter
(due to the movement of the velocity profile with velocity
V ), a pressure term (reflecting dispersion effects due to
finite velocity varianceu), a relaxation term (describing
an adaptation to a desired velocityV0), and an interaction
term (corresponding to braking maneuvers) [13]:

≠V
≠t

1 V
≠V
≠x

­ 2
1
r

≠srud
≠x

1 sV0 2 V d

2 PAsrad
sraVad2

s1 2 rad2 BsdV d . (2)

V0 has a meaning similar to the Reynolds number (sin
it allows for traffic instabilities when it exceeds the valu
Vc ­ 61). In addition,P is a scaled cross section.

Asrd ­ 0.171 1 0.417htanhf10sr 2 0.27dg 1 1j (3)

represents a structure factor, which is of order unity an
determines the variance via the constitutive relationu ­
AsrdV 2, but also the form of the flow-density relation in
equilibrium [13] (see Fig. 2). Finally,

BsdV d ­ 2

"
dV

e2d
2
V y2

p
2p

1 s1 1 d2
V d

Z dV

2`

dy
e2y2y2
p

2p

#
(4)
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FIG. 2. Dynamics in the flow-density space at the fixe
position x ­ 2560 upstream of the ramp. Dashed lines
represent the flow-density diagram (i.e., the equilibrium flow
density relation), dotted lines represent the position of th
critical densitiesrci . (a) Shown is the transition from free
traffic (symbols at the left side of the flow-density diagram
to homogeneous congested traffic (symbols at the right sid
The other illustrations display (b) oscillatory congested traffi
(c) triggered stop-and-go traffic, and (d) a moving localize
cluster.
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where the dimensionless velocity differencedV ­ sV 2

Vady
p

u 1 ua is a Boltzmann factor arising from the
vehicle interactions. An index “a” indicates that th
respective quantity is evaluated at the advanced “int
action point” xa ­ x 1 gs1 1 TV d rather than at the
actual positionx. The related nonlocality reflects the
anticipative driver behavior and is essential for the rea
istic properties of the model and its robust and efficie
numerical solution. g is an anticipation factor andT is
about the safe time headway. In our simulations, we us
the parameter valuesV0 ­ 171, P ­ 0.31, g ­ 1.2, and
T ­ 0.043, which are typical for Dutch freeways [13],
but our results are not very sensitive to their partic
lar choice.

The nonlocal, gas-kinetic-based traffic model repr
duces the characteristic properties of traffic flows [1
formulated by Kerner and Rehborn [14]. Furthermor
for a homogeneous freewaywithout ramps, it shows the
phase (“instability”) diagram [13] that was postulated b
Kerner and Konhäuser on the basis of macroscopic sim
lations [4]: For a given densityr, there exists a state of
homogeneous traffic with equilibrium velocityVesrd and
equilibrium flowQesrd ­ rVesrd (see Fig. 2), and there
are four critical densitiesrci . For densitiesr , rc1 and
r . rc4, homogeneous traffic is stable with respect to l
calized perturbations, and for a rangerc2 , r , rc3 of
intermediate densities, it is linearly unstable, giving ris
to cascades of traffic jams (“stop-and-go traffic”). For th
two density regimesrc1 # r # rc2 andrc3 # r # rc4
between the stable and the linearly unstable regions
is metastable; i.e., it behaves nonlinearly unstable w
respect to perturbations exceeding a certain critical amp
tude, but otherwise stable. For the discussion of the ph
diagram, an additional rangercv # r # rc3 of convec-
tive stability will be important, where homogeneous tra
fic is linearly unstable, but the growing perturbations a
convected away from any fixed location [11].

We will denote by Qci ­ Qesrcid the equilibrium
flows corresponding to the critical densities introduce
above. Moreover, there exists a characteristic outflo
Qout from traffic jams, stop-and-go waves, etc. [13,14
that is nearly independent of the surrounding dens
and the type of congested traffic, at least if there
no ramp. If traffic relaxes at the location of an on
ramp, the observed outflow is̃QoutsQrmp, Lrmpd # Qout,
but we find Q̃out ! Qout for Lrmp ! ` or Qrmp ! 0
[5]. For our model parameters, we obtainrc1 ­ 0.11,
rc2 ­ 0.12, rcv ­ 0.34, rc3 ­ 0.36, and rc4 ­ 0.40,
related toQc1 ­ 16.2, Qc2 ­ 17.5, Qcv ­ 14.6, Qc3 ­
14.1, and Qc4 ­ 13.2. If L $ 50, we obtain Q̃out ø
Qc2, otherwiseQ̃out decreases with growingQrmp and
decreasingLrmp. For these values (which, with the
exception ofQ̃out, are determined from situationswithout
ramps), the equations for the phase boundaries sugge
below agree quantitatively with the ones in the pha
diagram in Fig. 1.
4361
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In our simulations, we investigated the congested traf
states that formed near an on-ramp when passed b
perturbation on the freeway (Fig. 3). For the perturbatio
we chose a fully developed density cluster that did n
change its amplitude or shape anymore and trave
upstream with constant speed. When the density clus
reached the ramp, it induced different kinds of congest
states (Figs. 1–3), depending on the inflowsQin andQrmp
at the upstream boundary of the freeway and the ram
respectively.

Now, we will explain the different states in the phas
diagram starting with relatively high ramp flows. Whe
traffic breaks down (a sufficient criterium for this is
given bysQout 1 Qrmpd . Qmax, whereQmax denotes the
maximum of the equilibrium flow), we find the formation
of a growing, extended region of congested traffic wi
average flow Qcong ­ sQ̃out 2 Qrmpd in front of the
downstream end of the on-ramp [5]. Because of the fix
downstream end, any perturbation will be convected o
of the congested region, if the homogeneous solution
densityrcong and flowQcong ­ Qesrcongd is convectively
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FIG. 3. Spatiotemporal dynamics of typical representativ
of the states depicted in Fig. 1. The respective states
(a) homogeneous congested traffic, (b) oscillatory conges
traffic, (c) triggered stop-and-go traffic, and (d) a movin
localized cluster.x ­ 0 corresponds to the middle of the ramp
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stable, i.e., if Qcong # Qcv . In this case, we have
homogeneous congested traffic (HCT) [Fig. 3(a)], whic
corresponds to an equilibrium solution on the high
density branch of the flow-density diagram [Fig. 2(a)]
Otherwise, oscillatory congested traffic (OCT) form
[Figs. 3(b) and 2(b)]. Thus, the boundary between HC
and OCT is given by

HCT-OCT: Qrmp ­ Q̃out 2 Qcv . (5)

The oscillation amplitudes grow with decreasing ram
flow, until they reach the low-density part of the flow-
density diagram associated with free traffic [Fig. 2(c)
This means that we have an alternation between free a
congested traffic which defines the state of triggered sto
and-go waves (TSG) [Fig. 3(c)]. It turns out that TSG
is characterized byQTSG $ Qmin

TSG, whereQTSG denotes
the average flow of the TSG state. Hence, the bounda
between TSG and OCT is given by

OCT-TSG: Qrmp ­ Q̃out 2 Qmin
TSG . (6)

However, the precise value ofQmin
TSG is hard to determine.

The minimal inflows to sustain the TSG states ca
be derived from the triggering mechanism illustrated i
Fig. 3(c). When passing the ramp, the initial localize
perturbation causes a secondary perturbation traveli
downstream [15]. Since the amplitude of this seconda
perturbation is always small, regardless of the amplitud
of the primary perturbation, it grows only on the in-
stability conditionQdown . Qc2, whereQdown ­ sQin 1

Qrmpd denotes the flow downstream of the ramp. Wit
growing amplitude, the triggered perturbation changes
propagation speed, reverses its direction, and finally i
duces another small perturbation when passing the ram
etc. In this way, the interplay of the perturbations with
the ramp defines an intrinsic time scale and waveleng
of the triggered stop-and-go waves. If the above instab
ity condition is not fulfilled, instead of TSG we find a
single moving localized cluster (MLC) [Figs. 3(d) and
2(d)], similar to the transition between stop-and-go wave
and localized clusters in homogeneous traffic [4]. The r
spective boundary is given by

TSG-MLC: Qrmp ­ Qc2 2 Qin . (7)

The MLC continues the course of the initial perturbatio
which, however, changes its propagation speed at t
ramp, probably because of̃Qout , Qout. If Qin , Qc1,
the upstream flow cannot sustain localized clusters, sin
it is stable to perturbations, and the MLC becomes
pinned (standing) localized cluster (PLC [or SLC]) [15
at the on-ramp [Fig. 3(e)]:

MLC-PLC: Qin ­ Qc1 . (8)

A pinned localized cluster will grow and, thereby, give
rise to an extended form of congested traffic (CT),
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the sumsQin 1 Qrmpd of the inflows exceeds the self-
organized outflowQ̃out from CT behind ramps. The
corresponding boundaries are given by

PLC-CT: Qrmp ­ Q̃out 2 Qin . (9)

They are the same for HCT and OCT, so that there cou
also be stationary and oscillating variants of PLC.

Finally, no congested state can be formed, ifQdown ,

Qc1, since traffic flow is stable to any perturbation then
This defines the boundary between the pinned localiz
cluster state and free traffic (FT):

PLC-FT: Qrmp ­ Qc1 2 Qin . (10)

Because of the metastability betweenrc1 and rc2, the
transition to free traffic depends on the amplitude of th
perturbation. For small perturbation amplitudes, stab
traffic flow associated with free traffic expands up t
Qdown , Qc2. Hence, the MLC and PLC regimes may
disappear in cases of small disturbances, leading
the boundaries FT-TSG, FT-OCT, and FT-HCT. I
conclusion, the transition between free and congest
traffic is of first order (i.e., hysteretic) [5], while the othe
transitions seem to be continuous.

Notice that the triple pointsAsTSG-MLC-PLCd,
BsOCT-TSG-PLCd, and CsHCT-OCT-PLCd must each
satisfy the conditions oftwo boundaries. In particular,
points A and C are determined uniquely by dynamic
properties on a homogeneous roadwithout ramps or
other inhomogeneities:QA

in ­ Qc1, QA
rmp ­ Qc2 2 Qc1,

QC
in ­ Qcv , andQC

rmp ­ Q̃out 2 Qcv ø Qc2 2 Qcv .
Summarizing our results, we have presented a pha

diagram of traffic states developing close to an on-ram
when passed by a perturbation on the freeway. Simi
results are found for disturbances on the ramp (not d
played). Moreover, the same phase diagram is expec
for other kinds of inhomogeneities as caused by gradien
changes in the number of lanes, etc. In such cases,Qrmp
corresponds to the capacity drop along the inhomogene
Despite the complex behavior of the model, it was po
sible to determine the phase boundaries analytically a
in good agreement with numerical investigations. As th
analytical relations for the phase boundaries do not co
tain any details of the nonlocal, gas-kinetic traffic mode
used for the simulations, they are expected to also
valid for other microscopic and macroscopic traffic mod
els which have (a) the same instability diagram or, mo
exactly, critical densitiesrc1, rc2, andrcv , and (b) a char-
acteristic outflowQ̃outsQrmp, Lrmpd that is independent of
the type of congestion at the ramp. A sensitive depe
dence ofQ̃out on the surrounding traffic situation could
lead to different results.
ld

.
ed

e
le
o

to
n
ed
r

se
p

lar
is-
ted
ts,

ity.
s-
nd
e
n-
l

be
-
re

n-

There is some evidence [5,16] that the homogene
congested state can be identified with the observed s
chronized traffic of type (i) according to the classificatio
by Kerner and Rehborn [6], whereas synchronized tra
of types (ii) and (iii) probably corresponds to the osc
lating congested state. Stop-and-go waves and locali
clusters have also their empirical counterparts [6,14]. O
findings suggest that inhomogeneities may be the gen
reason for the formation of the different congested sta
[17]. The dependence of the forming states on the inflo
Qin andQrmp allows one to understand the observed tra
sitions between localized clusters, stop-and-go waves,
and synchronized flow [6,7,14,18]. It is also of impo
tance for designing on-ramp controls. The dependence
the traffic states on the ramp lengthLrmp (because of the
dependence of̃Qout on Lrmp) is relevant for an optimal
dimensioning of ramps and explains why the observa
traffic states are dependent on the observation site.
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