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Phase Diagram of Traffic States in the Presence of Inhomogeneities
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We present a phase diagram of the different kinds of congested traffic that are triggered by
disturbances when passing ramps or other spatial inhomogeneities of a freeway. The simulation results
obtained by the nonlocal, gas-kinetic-based traffic model are in good agreement with empirical findings.
They allow one to understand the observed transitions between free and various kinds of congested
traffic, among them localized clusters, stop-and-go waves, and different types of “synchronized”
traffic. We also give analytical conditions for the existence of these states which suggest that
the phase diagram is universal for a class of different microscopic and macroscopic traffic models.
[S0031-9007(99)09232-7]
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For some years now, the various observed nonlineanterested in the generic properties of the model, we will
states of freeway traffic flow, including traffic jams and formulate it in dimensionless quantities [13] by measuring
stop-and-go waves, have attracted the interest of a rapidlymes in units of the relaxation time = 40 s, and
growing community of physicists [1,2]. The same appliesdistances in units of the inverde pmax Of the maximum
to simulation approaches that allow one to reproducerehicle densitypmax = 140 vehiclegkm. The equation
the transitions between the different collective states ofor the vehicle density (x, ¢) at positionx and timer is a
motion [2-5]. Particular attention has been given tocontinuity equation with a sink/source term and reads
the recent discovery of a first-order phase transition to ap  a(pV)  Omplx,1)

“synchronized” congested traffic [6,7], which stimulated o o L : (1)

an intense investigation of the complex phenomena ) e )
associated with ramps, yielding an explanation of the hysY denotes the average vehicle veloCityy,, is the length
teretic phase transition [5,8]. It is also known from otherf the ramp,Qum, is the flow of vehicles entering the
effectively one-dimensional many-body systems with

short-range interactions that localized inhomogeneities 18 [B B s w rTe e e e TRy xTe e e e 3]
can cause a variety of phenomena, including phase 3o e soelxox x x Rie e e o e
. . uuuo»TSthxxxxxo‘\\oooo
transitions [9] and spontaneous symmetry breaking [10]. BENE ¢ o+ o+ oo+ os|x ox x x x|e g o e
. 17 Fe B8 BN@ + + + + +|x x x x x|e o oo oo
To characterize the parameter dependence of the pos- B Lo BNG ot e X xox x x[e e o se
sible states of a system resulting in the long run, phase N oo To2 ol DG EDEN
diagrams are a very powerful method. They are of great & 16 Fs X0 & 2 o oy ¥ s v e o oo
importance in thermodynamics with various applications A NG o DA 1 03 I
in metallurgy, chemistry, etc. Moreover, they allow one TR PLC o og = x[s o 0 0 2]
to compare very different kinds of systems like equilib- 4 4 44 a4 Dg 0000 Ng|e e o
. . . A A A A A ANO0 ©0 © 0 o ® © o o o
rium and nonequilibrium ones, or microscopic and macro- aa FT i i L A NG 000 0% o o o9
scopic ones, whose equivalence cannot simply be shown 1413 2 2 0 20 211 OR0 o oo X v
by transformation to normal forms [11,12]. Defining 0 1 2 3 4
universality classes by mathematically equivalent phase Qrmp

diagr.ams, Onelcan e_ven _Classify SO Qifferent systems %G. 1. Phase diagram of the traffic states in the vicinity of
physical, chemical, biological, and social ones, as done i@n on-ramp as a function of the inflowg;, and Q,,, on the
systems theory. main road and the on-ramp for fixed ramp length= 56. The

In the following, we will present and explain the phasediffel‘ent states are classifiedsat= 135, i.e., after a sufficiently

diagram that we obtained for the nonlocal, gas—kinetic—long transient period. Displayed are homogeneous congested

i : traffic (®), oscillatory congested traffic<), triggered stop-and-
based traffic model [5], when we studied a freewaygo traffic (+), moving localized clusterél), pinned localized

with a ramp in the presence of a single perturbatiortjusters((9), and free traffidA). The states are triggered by a
(Fig. 1). By systematical variation of the inflow at the fully developed localized cluster traveling upstream and passing
upstream freeway boundagnd the ramp, we were able the ramp (cf. Fig. 3). Solid_lines indicate the theoretical phase
to reproduce the observed transitions between differer%ounda”es- The dashed line represents the conditipn +

. . - rmp) = Omax that characterizes the r_naximum dqwnstr_eam
traffic states, some of which have not been explaine ow for which a (possibly unstable) equilibrium solution exists.

before. We will also present analytical conditions for Above this line, extended congestion develops even without any
the existence of the various traffic states. Since we arperturbation.
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freeway (Qmp > 0) or leaving it (Qmp < 0) along the  where the dimensionless velocity differengg = (V —
ramp of lengthL,,,,, divided by the numben of freeway V,)/\/0 + 6, is a Boltzmann factor arising from the
lanes. The velocity equation contains a convection ternvehicle interactions. An index “a” indicates that the
(due to the movement of the velocity profile with velocity respective quantity is evaluated at the advanced “inter-
V), a pressure term (reflecting dispersion effects due to action point” x, = x + y(1 + TV) rather than at the
finite velocity variancef), a relaxation term (describing actual positionx. The related nonlocality reflects the
an adaptation to a desired velocity), and an interaction anticipative driver behavior and is essential for the real-

term (corresponding to braking maneuvers) [13]: istic properties of the model and its robust and efficient
oV oV 1 9(p8) numerical soluti_on. v is an anticipation facto_r and is
—tV—=—-——"—+ (Vo —V) about the safe time headway. In our simulations, we used
ot dx p 0x the parameter value, = 171, P = 0.31, y = 1.2, and
(paVa)? T = 0.043, which are typical for Dutch freeways [13],
— PA(pa) (1 — p,)? B(év). (2) but our results are not very sensitive to their particu-
lar choice.

Vo has a meanirjg.simila_r_ to the Reynolds number (since The nonlocal, gas-kinetic-based traffic model repro-
kt/all_ovgf fo: tra;f:jg '|nstab'|I|t|es Wlh%n It exceedg the Valueduces the characteristic properties of traffic flows [13]
c = 61). Inaddition,P is a scaled cross section. formulated by Kerner and Rehborn [14]. Furthermore,
A(p) = 0.171 + 0.417{tanH10(p — 0.27)] + 1} (3) for a homogeneous freewayithout ramps, it shows the

o . hase (“instability”) diagram [13] that was postulated by
represents a structure factor, which is of order unity anqkerner and Konhauser on the basis of macroscopic simu-
determines the variance via the constitutive relafor  |ations [4]: For a given density, there exists a state of
A(p)V?, but also the form of the flow-density relation in homogeneous traffic with equilibrium velocitg (p) and
equilibrium [13] (see Fig. 2). Finally, equilibrium flow Q.(p) = pV.(p) (see Fig. 2), and there

e 5v/2 by o2 are four critical densitiep.;. For densitiep < p.; and
B(y) = 2|:5v Nl + (1 + 53)[ dy Nor } p > pes, homogeneous traffic is stable with respect to lo-
. o T calized perturbations, and for a rangg < p < p.3 of
(4)  intermediate densities, it is linearly unstable, giving rise
to cascades of traffic jams (“stop-and-go traffic”). For the
20F A T ] two density regimeg.; = p =< per andpz = p =< pey
= between the stable and the linearly unstable regions, it
is metastable; i.e., it behaves nonlinearly unstable with
: . respect to perturbations exceeding a certain critical ampli-
10 1 | tude, but otherwise stable. For the discussion of the phase
h diagram, an additional range., < p =< p.3 of convec-
tive stability will be important, where homogeneous traf-
_— fic is linearly unstable, but the growing perturbations are
0 02040608 1 convected away from any fixed location [11].
We will denote by Q.; = Q.(p.;) the equilibrium
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) flows corresponding to the critical densities introduced
A (d) . L

15+ ; . above. Moreover, there exists a characteristic outflow
i Qout from traffic jams, stop-and-go waves, etc. [13,14],
10 1 ] that is nearly independent of the surrounding density
5 5 ’ and the type of congested traffic, at least if there is
no ramp. If traffic relaxes at the location of an on-

0 0 ramp, the observed outflow 8oy (Qrmps Limp) = Qout;

0 02040608 1 0 02040608 1 but we find Qout — Qou for Limp — © OF Qpmp — 0
Density Density [5]. For our model parameters, we obtgin; = 0.11,
FIG. 2. Dynamics in the flow-density space at the ﬂxedlroélzat:edo'ti)zy Pev T6%34, Pe3 1:7%36’ arEj ﬁc‘%: 0'43’
position x = —560 upstream of the ramp. Dashed lines Oc1 = 16.2, Qca = 17.5, Qv = 14.6, Oc3 =
represent the flow-density diagram (i.e., the equilibrium flow-14.1, and Qcq = 13.2. If L = 50, we Ob_tam Qout
density relation), dotted lines represent the position of theQ.», otherwiseQ,,; decreases with growin@.,, and
critical densitiesp;. (&) Shown is the transition from free decreasingL,,,. For these values (which, with the
traffic (symbols at the left side of the flow-density diagram) exception ofQ.u, are determined from situatiomgithout

to homogeneous congested traffic (symbols at the right side}. th i for the ph b dari ted
The other illustrations display (b) oscillatory congested traffic, amps), the equa 1ons for the phase boundaries suggeste
(c) triggered stop-and-go traffic, and (d) a moving localizedPelow agree quantitatively with the ones in the phase

cluster. diagram in Fig. 1.
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In our simulations, we investigated the congested traffistable, i.e., if Qcong = Qcv. In this case, we have
states that formed near an on-ramp when passed by homogeneous congested traffic (HCT) [Fig. 3(a)], which
perturbation on the freeway (Fig. 3). For the perturbatiorcorresponds to an equilibrium solution on the high-
we chose a fully developed density cluster that did nodensity branch of the flow-density diagram [Fig. 2(a)].
change its amplitude or shape anymore and travele@therwise, oscillatory congested traffic (OCT) forms
upstream with constant speed. When the density clustgFigs. 3(b) and 2(b)]. Thus, the boundary between HCT
reached the ramp, it induced different kinds of congestednd OCT is given by
states (Figs. 1-3), depending on the infla¥s and Oy,
at the upstream boundary of the freeway and the ramp,
respectively.

Now, we will explain the different states in the phase
diagram starting with relatively high ramp flows. When

HCT-OCT: Qrmp = Qout - ch . (5)

The oscillation amplitudes grow with decreasing ramp
flow, until they reach the low-density part of the flow-
. - o .. _density diagram associated with free traffic [Fig. 2(c)].
trﬁ/fé'rf bber"’lks fo(;vn )(a>sQuff|C|eV\r/1|2ef2thr|urge;%rtetshltiels This means that we have an alternation between free and
9 Y{Lout mp e max congested traffic which defines the state of triggered stop-

g:‘a:rgnrli)r\?vi(rjlgthe?xteeqnuczllcle%nlrjtgifcl)%wg;‘ Vt\:lgrz:]nedsttgde I?;frz?t'v?lir;hand-go waves (TSG) [Fig. 3(c)]. It turns out that TSG
! i ; min
average flow Qcong = (Qou — Ommp) in front of the > characterized byrsc = Orsg, Where Qrsg denotes

downstream end of the on-ramp [5]. Because of the fixe(%he average flow of the TSG state. Hence, the boundary

downstream end, any perturbation will be convected ou etween TSG and OCT is given by
of the congested region, if the homogeneous solution of

) . OCT-TSG Omp = Q - Qmin . (6)
densitypcong @and flowWQcone = Qc(peong) iS CONVectively P o 186

However, the precise value 6ffag is hard to determine.
The minimal inflows to sustain the TSG states can
be derived from the triggering mechanism illustrated in

Density

0.6
0.4
0.2

120

800 0
Density

Fig. 3(c). When passing the ramp, the initial localized
perturbation causes a secondary perturbation traveling
downstream [15]. Since the amplitude of this secondary
perturbation is always small, regardless of the amplitude
of the primary perturbation, it grows only on the in-
stability conditionQqown > Qc2, Where Quown = (Qin +
Omp) denotes the flow downstream of the ramp. With
growing amplitude, the triggered perturbation changes its

0.6 ; ML . .
04 propagation speed, reverses its direction, and finally in-
0.2 duces another small perturbation when passing the ramp,

goo
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etc. In this way, the interplay of the perturbations with
the ramp defines an intrinsic time scale and wavelength
of the triggered stop-and-go waves. If the above instabil-
ity condition is not fulfilled, instead of TSG we find a
single moving localized cluster (MLC) [Figs. 3(d) and
2(d)], similar to the transition between stop-and-go waves
and localized clusters in homogeneous traffic [4]. The re-
spective boundary is given by

0 @ 120 TSGMLC: Qmmp = Qcz — O - 7)
Density 800 o ‘ . L .
06 (d) The MLC continues the course of the initial perturbation
0.4 ‘ which, however, changes its propagation speed at the
0.2 ramp, probably because @y < Qoui. If Oin < Qc1,
-goo the upstream flow cannot sustain localized clusters, since

120

0
800 o

FIG. 3. Spatiotemporal dynamics of typical representatives

it is stable to perturbations, and the MLC becomes a
pinned (standing) localized cluster (PLC [or SLC]) [15]
at the on-ramp [Fig. 3(e)]:

MLC-PLC: Qin = Qe - 8

of the states depicted in Fig. 1. The respective states are
(&) homogeneous congested traffic, (b) oscillatory congested ) . . .
traffic, (C) triggered Stop_and_go traffic, and (d) a moving A plnned localized cluster will grow a.nd, thel’eby, give
localized cluster.x = 0 corresponds to the middle of the ramp. rise to an extended form of congested traffic (CT), if
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the sum(Qi, + Omyp) Of the inflows exceeds the self- There is some evidence [5,16] that the homogeneous
organized outflowQ,, from CT behind ramps. The congested state can be identified with the observed syn-

corresponding boundaries are given by chronized traffic of type (i) according to the classification
~ by Kerner and Rehborn [6], whereas synchronized traffic
PLCCT: Omp = Qo — Qin - ©) o types (ii) and (iii) probably corresponds to the oscil-
They are the same for HCT and OCT, so that there couldfting congested state. Stop-and-go waves and localized
also be stationary and oscillating variants of PLC. clusters have also their empirical counterparts [6,14]. Our

Finally, no congested state can be formedQif,, < findings suggest that inhomogeneities may be the generic
0.1, since traffic flow is stable to any perturbation then.reason for the formation of the different congested states

This defines the boundary between the pinned localizeflL7]. The dependence of the forming states on the inflows

cluster state and free traffic (FT): QOin and Oy, allows one to understand the observed tran-
sitions between localized clusters, stop-and-go waves, free
PLCFT: Omp = Qc1 = Qin - (10)  and synchronized flow [6,7,14,18]. It is also of impor-

Because of the metastability betwepp, and p.,, the tance fo.r designing on-ramp controls. The dependence of
transition to free traffic depends on the amplitude of thethe traffic states on the ramp length,, (because of the
perturbation. For small perturbation amplitudes, stablélependence oQou 0N Lm,) is relevant for an optimal
traffic flow associated with free traffic expands up todimensioning of ramps and explains why the observable
Odown < Oc>. Hence, the MLC and PLC regimes may traffic states are dependent on th_e obs_ervatlon site.

the boundaries FT-TSG, FT-OCT, and FT-HCT. InBMBF (research project SANDY, Grant No. 13N7092)
conclusion, the transition between free and congeste@nd by the DFG (Heisenberg scholarship He 2789/1-1).
traffic is of first order (i.e., hysteretic) [5], while the other

transitions seem to be continuous.
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