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Ferromagnetism in Single-Band Hubbard Models with a Partially Flat Band
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A Hubbard model with a single, partially flat band has ferromagnetic ground states. It is shown
that local stability of ferromagnetism implies its global stability in such a model: The model has only
ferromagnetic ground states if there are no single spin-flip ground states. Since a single-band Hubbard
model away from half filling describes a metal, this result may open a route to metallic ferromagnetism
in single-band Hubbard models. [S0031-9007(99)09222-4]

PACS numbers: 75.10.Lp, 71.10.Fd
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Ferromagnetism of itinerant electrons is an old an
still unsolved problem in theoretical physics. One of th
motivations to introduce the Hubbard model [1] mor
than 30 years ago has been to understand this probl
[2]. Conceptually, the Hubbard model is very simple.
describes electrons on a lattice interacting via a repulsiv
purely local Coulomb interaction. Originally, only a
single energy band was considered. But it is relative
easy to generalize the model including more energy ban
or further interactions. Despite the simplicity of the
model, there are only few rigorous results concernin
the existence of ferromagnetism. The first rigorous res
is the so-called Nagaoka theorem [3]. It states that
certain lattices, for an infinitely large Coulomb repulsion
and close to half filling, the ground state is ferromagneti
But the problem is that this ferromagnetic state disappea
if the repulsion has realistic values or if the number o
electrons is varied [4,5], at least for usual cubic lattices
d dimensions [6].

Ferromagnetic ground states also occur if one of se
eral bands of the Hubbard model is dispersionless (Lieb
ferrimagnetism [7] and the flat-band ferromagnetism [8]
Tasaki [9] was able to show the local stability of ferro
magnetic ground states in related models with a nea
flat band. But these models (as well as the flat-band fe
romagnetism) are already extensions of the single-ba
Hubbard model since they contain more than one ban
Furthermore, these models show characteristic features
an insulator: The (nearly) flat band is half filled and ther
is a gap in the single-particle spectrum. Other extensio
of the Hubbard model have been proposed as well, for
stance an additional ferromagnetic interaction between t
electrons [10] or degenerate bands with Hund’s couplin
between the bands [11].

The question, if and under which conditions a simple
single-band Hubbard model can show ferromagnetism,
still open. Ferromagnetism is a strong coupling phenom
non. To obtain ferromagnetism within usual mean fie
theory the dimensionless parameterrFU has to be large,
whererF is the density of states at the Fermi level. But
should be noted that a large value ofrFU is not sufficient
for the existence of ferromagnetism (counterexampl
with rF ­ ` andU ­ ` can be found in [12]). On the
0031-9007y99y82(21)y4312(4)$15.00
d
e
e
em
It
e,

ly
ds

g
ult
on
,
c.
rs
f
in

v-
’s
).
-
rly
r-
nd
d.
of

e
ns
in-
he
g

,
is
e-

ld

it

es

other hand, it seems to be clear that a strong asymme
of the band, together with a large density of states near t
Fermi energy, is a condition that favors ferromagnetism
This view is supported by the variational calculations b
Hanischet al. [5] and as well by the dynamical mean field
analysis by Wahleet al. [10]. In this Letter I discuss the
extreme limit of this situation, namely a Hubbard mode
with a partially flat band. The main result is that loca
stability of ferromagnetism implies its global stability in
such models.

At first glance a single, partially flat band seems to
be similar to the flat-band ferromagnetism mentione
above. But there are important differences: As alread
mentioned, the models with a nearly flat band have
gap in the single particle spectrum and the band is ha
filled [9]. This is a typical situation for an insulator. In
the flat band case, it was possible to go away from ha
filling [8], but if an entire band is flat, single particle
eigenstates may be localized. In fact, the existence
a localized basis was an essential point in the proofs [8
Localized states are as well typical for an insulator. I
the present case, the energy band is not half filled a
there is no gap in the single particle spectrum. A localize
eigenbasis of single particle states does not exist; inste
the translational invariance will be important. These ar
typical properties of a metal.

The Hamiltonian of a single-band Hubbard mode
on a d-dimensional translationally invariant lattice with
periodic boundary conditions is

H ­
X
ks

ekc
y
kscks 1

U
Ns

X
d

√X
k

c
y
k1d"c

y
2k#

!

3

√X
k

c2k#ck1d"

!
. (1)

c
y
ks (cks) creates (annihilates) an electron with spin

s in a single particle eigenstate given bycksxd ­
N

21y2
s expsikxd, and Ns is the number of sites of the

lattice, which is equal to the number of single particle
states in the band. The interaction is usually writte
in the form U

P
x c

y
x"c

y
x#cx#cx". It is repulsive,U . 0.

The Hamiltonian has the usual SUs2d spin symmetry.
Furthermore, due to translational invariance, the tot
© 1999 The American Physical Society
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momentum is a good quantum number. The wave vect
k are elements of the first Brillouin zone (BZ). More
precisely,k is a representative of a class of equivale
wave vectors each belonging to a different BZ.
statement likek 1 d ­ k0 means thatk 1 d and k0 are
both representatives of the same class of wave vecto
I assume that the single particle band is partially flat,
finite fraction of the band energiesek is degenerate. I
assume that the set of degenerate band energies is situ
at the bottom of the band, but some comments on oth
situations are given as well. Shifting the energy scale o
can always takeek $ 0. As a consequence,H $ 0. Let
L be the subset of wave vectorsk with ek ­ 0. Nd is the
degeneracy, i.e., the number of elements inL . In such a
situation the Hamiltonian has ferromagnetic ground sta
if Ne # Nd . Let

c0F ­
Y

k[L

c
y
k"j0l (2)

be the (only) ground state ofH with S ­ Sz ­ Ndy2,
Ne ­ Nd. For Ne , Nd one can constructs Nd

Ne
d ferro-

magnetic ground states withS ­ Sz ­ Ney2 by replac-
ing the product in (2) by a product over an arbitrar
subset ofL with Ne elements. Using the SUs2d invari-
ance of the Hamiltonian one can construct further grou
states withSz , S ­ Ney2. The question is the follow-
ing: Are there ground states withS , Ney2?

c0F has zero energy. Any other ground state wi
Ne # Nd must have zero energy as well. Since bo
parts of the Hamiltonian, the kinetic energy, and th
interaction, are non-negative, the ground states ofH are
simultaneously ground states of the kinetic energy and
the interaction. This simplifies the situation considerabl
Let us assume thatH has a ground state withNe ­
Nd 2 n 1 m electrons (n $ m) and a spinS ­ Sz ­
Ney2 2 m. Such a state can be written in the form

c ­ Sn,m
2 sadc0F , (3)

where

Sn,m
2 sad ­

X
l1···lm;k1···kn

al1···lm ;k1···kn

Y
j

c
y
lj #

Y
j

ckj " . (4)
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al1···lm;k1···kn are antisymmetric in the firstm and in the
last n indices. c should be a state with spinS ­ Sz ­
Ney2 2 m. This is the case ifS 1 c ­ 0 whereS1 ­P

k c
y
k"ck#, which yields

P
k ak,l2···lm;k,k2···kn ­ 0. Since the

Hamiltonian is translationally invariant, the eigenstate
of H are also eigenstates of the momentum operat
Let c be a state with momentump. This means that
al1···lm;k1···kn vanishes if

Pm
j­1 lj 2

Pn
j­1 kj fi p. Sincec

is a ground state of the kinetic energy,al1···lm;k1···kn has
to vanish if some indiceslj are not inL . Furthermore,
I let al1···lm;k1···kn ­ 0 if some indiceskj are not inL .
c is a ground state of the interaction if and only iP

k ck1d"c2k#c ­ 0 for all d. This yields a condition for
a, namelyX

P[Sn11

s21dPal1···lm21,2kPsn11d1d;kPs1d···kPsnd ­ 0 , (5)

for all kj , lj, d. Sn11 is the group of all permutations
P of n 1 1 objects ands21dP denotes the sign of the
permutationP; s21dP ­ 1 if P is even and21 if P is
odd. I letd ­

Pn11
j­1 kj 2

Pm21
j­1 lj 1 p, since otherwise

(5) is trivial. Using the fact thata is antisymmetric in the
lastn indices, one can rewrite (5) in the form

n11X
i­1

s21dnsi21dal1···lm21,p1
Pn11

j­1
kj2

Pm21

j­1
lj2ki ;ki11···kn11,k1···ki21

­ 0 . (6)

The sum runs now over all cyclic permutations of th
indiceskj . I define

ãl2···lm;k2···kn ­
X
k1

ak11p̃,l2···lm ;k1···kn , (7)

wherep̃ fi 0 is chosen such that̃a is not identically zero.
This is possible since for somek [ L , k 1 p̃ is also
in L and sincea is not identically zero [13]. I put
l1 ­ k1 1 p̃ in (6) and sum overk1. Using the definition
of ã and the antisymmetry ofa in the lastn indices, one
obtains
X
k1

ak1,l2···lm21,p1
Pn11

j­2
kj2

Pm21

j­2
lj2k1;k2···kn11

2

n11X
i­2

s21dsn21dsi22dãl2···lm21,p2p̃1
Pn11

j­2
kj2

Pm21

j­2
lj2ki ;ki11···kn11,k2···ki21

­ 0 . (8)

The first term in this equation vanishes. The reason is that for eachk1 there is a term in the sum overk1 with k1

replaced byp 1
Pn11

j­2 kj 2
Pn21

j­2 lj 2 k1. Because of the antisymmetry ofa in the firstm indices, these two terms
are equal up to a different sign and annihilate each other. This yields

n11X
i­2

s21dsn21dsi22dãl2···lm21,p2p̃1
Pn11

j­2
kj2

Pm21

j­2
lj2ki ;ki11···kn11,k2···ki21

­ 0 , (9)
a

nd
which is the same condition as (9) for̃a instead of
a. Consequently,̃c ­ Sn21,m21

2 sãdc0F is also a ground
state ofH. This shows that ifH has a ground state with
Ne ­ Nd 2 n 1 m electrons (n $ m) and a spinS ­
Sz ­ Ney2 2 m, it has also a ground state with the sam
e

number of electrons and a spinS ­ Sz ­ Ney2 2 m 1

1. One can now iterate this procedure to obtain finally
single spin-flip state with a spinS ­ Sz ­ Ney2 2 1:

Theorem.—In a single-band Hubbard model with a
Nd-fold degenerate single particle ground state a
4313
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Ne # Nd electrons local stability of ferromagnetism
implies global stability. The model has only ferromag
netic ground states with a spinS ­ Ney2, if there are
no ground states with a single spin flip, i.e., with a sp
S ­ Ney2 2 1.

Remarks.—(i) The existence of single spin-flip ground
states is relatively easy ifNe ­ Nd. A general single
spin-flip state with momentump is given by

c ­
X

k

ak1p,kc
y
k1p#ck"c0F . (10)

This state has a spinS ­ Ney2 2 1 if p fi 0. The
condition (5) shows that this state is a ground state if a
only if ak1p,k ­ ak01p,k0 for all k, k0 [ L . Therefore,
it is possible to construct a single spin-flip ground sta
with momentump if and only if ek1p ­ 0 for all k
with ek ­ 0. In that situation, the single particle densit
matrix in [14] is reducible. Thus, forNe ­ Nd our result
is as well a consequence of the result in [14], but due
translational invariance, the condition for the occurren
of ferromagnetism is much simpler. ForNe , Nd it is
not possible to obtain a similar (simple) condition for th
existence of a single spin-flip ground state.

(ii) Let us consider a situation where the degenera
single particle energy lies at the upper band edge of t
single band, and letNe $ 2Ns 2 Nd. In this case the
model has ferromagnetic ground states with a spinS ­
s2Ns 2 Nedy2. Performing a particle-hole transformation
one obtains a model that fulfills the conditions of th
above theorem. Thus local stability of ferromagnetis
implies global stability in this case as well.

(iii) In the above derivation, one uses the fact that th
Hamiltonian is translationally invariant. This is a natura
assumption. But it is also possible to investigate a mo
general case. As forNe ­ Nd in [14], the proof is much
more complicated and less intuitive [15].

(iv) The result is true for anyU . 0. U may be
arbitrarily small. Therefore one may wonder whethe
this model corresponds to a strong coupling situatio
This is indeed the case. The relevant dimensionle
parameter isrFU. It is infinite in our model for any
U . 0, since the Fermi level lies in the region wher
the band is flat. A partially flat band is certainly a
unrealistic situation. Typically, this assumption has th
consequence that the hopping matrix elementstxy ­
N21

s

P
k ek expfiksx 2 ydg have a longer range than usua

On the other hand, one may hope that as in the flat ba
case [9] our result extends to a nearly flat case as long
U is not too small. This would be a realistic situation i
transition metals.

(v) In most cases it is much simpler to study the stab
ity of the ferromagnetic state with respect to single sp
flips than the global stability. In the case of a Hubba
model with a nearly flat band, Tasaki [9] was able to sho
the stability with respect to single spin flips. In mos
variational treatments single spin-flip states are used
well [5]. The variational studies of the stability of the
4314
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Nagaoka state [4,5] are complicated and the general s
gle spin-flip problem is too difficult to be solved com
pletely on usual lattices in1 , d , ` dimensions. In our
case the situation is simpler since we already know th
there are ferromagnetic ground states. The aim is o
to show under which conditions there are other grou
states. If there are further ground states, one should exp
that small perturbations are sufficient to destroy ferroma
netism. This would be an instable situation. If there a
no other ground states, it is possible that ferromagnetism
stable with respect to small perturbations of the Hamilto
ian. But it is difficult to investigate this problem since in
the present model there is no gap in the single particle sp
trum. This is the main technical difference to the mode
discussed in [9].

(vi) As in [14] one can generalize the above result
a situation, where the degenerate single particle sta
are not at the bottom of the band. I assume again t
the Nd-fold degenerate single particle state has energy
and thatL is the subset ofk with ek ­ 0. Let L, be
the subset ofk with ek , 0 and let N, be the number
of elements ofL,. For U ­ 0 and Ne # 2N, 1 Nd

the ground states are highly degenerate: Each sin
particle state withk [ L, contains two electrons and
the remainingNe 2 2N, electrons can be distributed
arbitrarily among the states with zero energy. IfU is
small one can apply degenerate perturbation theory. T
means that among these degenerate states one has to
those with a minimal interaction energy. Since the syste
is translationally invariant the contribution from the sing
particle states withk [ L, is the same for all the
degenerate multiparticle states. It is therefore sufficie
to minimize the interaction energy of the electrons
single particle states withk [ L . This is equivalent
to the above situation, whereek ­ 0 was the bottom of
the band. If the degeneracy is lifted at first order inU,
the ground state is ferromagnetic with a spinS ­ sNe 2

2N,dy2. Depending onNe, the spin varies between0
and Ndy2 and may be extensive ifNd is extensive. If
the degeneracy is not lifted at first order, another grou
state with a smaller spin is usually favored at higher ord
in U. This argument explains, e.g., the results presen
in [16]. But this argument is perturbative and holds on
for (very) smallU. Is it possible that this ferromagnetism
disappears whenU becomes larger? At the moment
am not able to answer this question. But if the followin
conjecture is true, the ferromagnetism is stable for a
finite U.

Conjecture.—Let E0S be the smallest eigenenergy o
H in the subspace of eigenstates with a spinS. Suppose
that for someU ­ U0 the Hamiltonian has a degenerat
ground state with a ground state energyE0S1 ­ E0S2 and
S1 fi S2. Then I claim thatE0S1 # E0S2 for U . U0 if
S1 . S2.

It is sufficient to prove this conjecture forNe # Ns,
since the result for larger electron numbers can
obtained using a particle-hole transformation. I am n
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aware of any (rigorous) result for the Hubbard mod
that is in contradiction to this conjecture. The physic
intuition behind it is simply that if for some valueU0
of the interaction a degeneracy occurs, one should exp
that the state with a higher spin should have a larg
kinetic energy and a smaller interaction energy, so th
for higher values ofU the higher spin is favored. As
far as I know there is no proof for this conjecture. Th
conjecture is trivial ifS1 ­ Ney2, since the energy of a
state with maximal spin (andNe # Ns) does not depend
on U, whereas any other eigenenergy is a monotonou
increasing function ofU.

Let us note that this route to ferromagnetism in singl
band Hubbard models naturally leads to nonsatura
ferromagnetic states if the degeneracy is not situated
a band edge. This is similar to Lieb’s ferrimagnetism
[7]. It is even possible that a single-band Hubbard mod
on a bipartite lattice has a degeneracy somewhere in
(symmetric) band. But if this degeneracy occurs in th
middle of the band Lieb’s theorem tells us that the groun
state hasS ­ 0. This is not a contradiction to the above
result. In such a special situation one can easily see thap
exists such that for eachk [ L , k 1 p is as well inL .
Therefore, as shown in the first remark, the degenera
is not lifted within a first order perturbational treatmen
and a second order perturbational treatment favors
singlet state, as predicted by Lieb’s theorem. The mo
simple bipartite lattice, where this situation occurs,
a bipartite lattice wheretxy ­ t if x and y belong to
different sublattices andt ­ 0 otherwise. Such a lattice
is called a complete bipartite graph.
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