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Ferromagnetism in Single-Band Hubbard Models with a Partially Flat Band
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A Hubbard model with a single, partially flat band has ferromagnetic ground states. It is shown
that local stability of ferromagnetism implies its global stability in such a model: The model has only
ferromagnetic ground states if there are no single spin-flip ground states. Since a single-band Hubbard
model away from half filling describes a metal, this result may open a route to metallic ferromagnetism
in single-band Hubbard models. [S0031-9007(99)09222-4]

PACS numbers: 75.10.Lp, 71.10.Fd

Ferromagnetism of itinerant electrons is an old andother hand, it seems to be clear that a strong asymmetry
still unsolved problem in theoretical physics. One of theof the band, together with a large density of states near the
motivations to introduce the Hubbard model [1] moreFermi energy, is a condition that favors ferromagnetism.
than 30 years ago has been to understand this problefrhis view is supported by the variational calculations by
[2]. Conceptually, the Hubbard model is very simple. ItHanischet al. [5] and as well by the dynamical mean field
describes electrons on a lattice interacting via a repulsivegnalysis by Wahlet al. [10]. In this Letter | discuss the
purely local Coulomb interaction. Originally, only a extreme limit of this situation, namely a Hubbard model
single energy band was considered. But it is relativelywith a partially flat band. The main result is that local
easy to generalize the model including more energy bandstability of ferromagnetism implies its global stability in
or further interactions. Despite the simplicity of the such models.
model, there are only few rigorous results concerning At first glance a single, partially flat band seems to
the existence of ferromagnetism. The first rigorous resulbe similar to the flat-band ferromagnetism mentioned
is the so-called Nagaoka theorem [3]. It states that ombove. But there are important differences: As already
certain lattices, for an infinitely large Coulomb repulsion,mentioned, the models with a nearly flat band have a
and close to half filling, the ground state is ferromagneticgap in the single particle spectrum and the band is half
But the problem is that this ferromagnetic state disappearfiled [9]. This is a typical situation for an insulator. In
if the repulsion has realistic values or if the number ofthe flat band case, it was possible to go away from half
electrons is varied [4,5], at least for usual cubic lattices irfilling [8], but if an entire band is flat, single particle
d dimensions [6]. eigenstates may be localized. In fact, the existence of

Ferromagnetic ground states also occur if one of seva localized basis was an essential point in the proofs [8].
eral bands of the Hubbard model is dispersionless (Lieb’éocalized states are as well typical for an insulator. In
ferrimagnetism [7] and the flat-band ferromagnetism [8]).the present case, the energy band is not half filled and
Tasaki [9] was able to show the local stability of ferro- there is no gap in the single particle spectrum. A localized
magnetic ground states in related models with a nearlgigenbasis of single particle states does not exist; instead
flat band. But these models (as well as the flat-band ferthe translational invariance will be important. These are
romagnetism) are already extensions of the single-bantypical properties of a metal.

Hubbard model since they contain more than one band. The Hamiltonian of a single-band Hubbard model
Furthermore, these models show characteristic features oh a d-dimensional translationally invariant lattice with
an insulator: The (nearly) flat band is half filled and thereperiodic boundary conditions is

is a gap in the single-particle spectrum. Other extensions 1 U t 1

of the Hubbard model have been proposed as well, forin- 7 = D €xcioChs + N. > ch+5Tckl>

stance an additional ferromagnetic interaction between the ko Pok

electrons [10] or degenerate bands with Hund’s coupling

between the bands [11]. X (% C"‘lc’”‘”)' (1)

The question, if and under which conditions a simple, 4 . . .
singleband Hubbard model can show ferromagnetism, i€k, (ko) creates (annihilates) an electron with spin
still open. Ferromagnetism is a strong coupling phenome? _!" @ single particle eigenstate given by (x) =
non. To obtain ferromagnetism within usual mean fieldVs '~ explikx), and N, is the number of sites of the
theory the dimensionless parametgrU has to be large, lattice, which is equal to the number of single particle
wherepr is the density of states at the Fermi level. Butitstates in the band. The interaction is usually written
should be noted that a large valuemfU is not sufficient in the form U, CITCLCxlch- It is repulsive,U > 0.
for the existence of ferromagnetism (counterexample§he Hamiltonian has the usual 1) spin symmetry.
with pr = o andU = « can be found in [12]). On the Furthermore, due to translational invariance, the total
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momentum is a good quantum number. The wave vectors;,..; ...k, are antisymmetric in the firstz and in the

k are elements of the first Brillouin zone (BZ). More lastn indices. ¢ should be a state with spifi = S, =
precisely, k is a representative of a class of equivalentN,/2 — m. This is the case if + ¢ = 0 whereS+ =
wave vectors each belonging to a different BZ. A%, c,}ckl,wmch yieldsY; ag ...k, = 0. Since the
statement likek + 6 = k' means thak + 6 andk’ are  Hamiltonian is translationally invariant, the eigenstates
both representatives of the same class of wave vectorsf g are also eigenstates of the momentum operator.
| assume that the single particle band is partially flat, g et ¢ be a state with momenturp. This means that
finite fraction of the band energies, is degenerate. | @j,..1,, -k, VaNishes 'me—ll Z"_l kj # p. Sincey
assume that the set of degenerate band energies is sﬂuatgda ground state of the kinetic energy;,..;, .x,.«, has

at the bottom of the band, but some comments on othep vanish if some indice$; are not inL . Furthermore,
situations are given as well. Shifting the energy scale ong let «;,..;, 4,..,, = O if some indicesk; are not in L.

can always take;, = 0. As aconsequencél = 0. Let 4 s a ground state of the interaction if and only if
L be the subset of wave vectdrsvith e, = 0. Nyisthe ¥ ¢, 50— = 0 forall 5. This yields a condition for
degeneracy, i.e., the number of element<in Insucha o, namely

situation the Hamiltonian has ferromagnetic ground states

if N, = Ny. Let
¢ ¢ Z (_l)Pall‘"lm—lﬁkP(nH)+5;kP(1)"'kP(n) = 0’ (5)

dor = 1_[ CZHO) ) PES,+1
kel for all k;, 1;, 6. S,+1 is the group of all permutations

be the (only) ground state d with § = S, 2 = Ng/2, P of n + 1 objects and(—1)" denotes the sign of the
N, = Ng4. For N, < Ny one can constructy’) ferro-  permutationP; (—1)" = 1 |f P is even and—1 if P is

magnetic ground states with = 5. = N,/2 by replac-  odd. |lets = >/ ki — " "1, + p, since otherwise

ing the product in (2) by a product over an arbitrary (5) is trivial. Using the fact that is antisymmetric in the

subset of £ with N, elements. Using the SD) invari-  |astx indices, one can rewrite (5) in the form

ance of the Hamiltonian one can construct further ground .

states withS, < § = N./2. The question is the follow- Z( 1D g » -

ing: Are there ground states with< N, /2? ~ blyeasp+ D0 k=D ki ki
yor has zero energy. Any other ground state with ' =0. (6)

N. = N; must have zero energy as well. Since both

parts of the Hamiltonian, the kinetic energy, and theThe sum runs now over all cyclic permutations of the
interaction, are non-negative, the ground state&/cdre  indicesk;. | define

simultaneously ground states of the kinetic energy and of

the interaction. This simplifies the situation considerably. &Ly o Zak1+pla Lk 8 (7)
Let us assume thall has a ground state wittv, = ki

Ny — n + m electrons £ = m) and a spin§ = §, =

N,/2 — m. Such a state can be written in the form wherep # 0 is chosen such thdt is not identically zero.

This is possible since for somee L, k + p is also

H Y= S @)or, ) in £ and sincea is not identically zero [13]. | put
where Iy = k; + p in(6) and sum ovek;. Using the definition
n,m = t f & and the antisymmetry af in the lastr indices, one
St (a) = A ]k -k Cr. Ck1- (4) 0 a_ Yy y !
llwlm;zk,mk,, U l’ll:[ " | obtains

n+1

(n=1)i-2) g _
Zakl Lolnrp+ Y k=Y = hike ki Z( D"y, - PHY k=Y ik ke kokiey 0. (8)

The first term in this equation vanishes. The reason is that for eathere is a term in the sum oveés with k;

replaced byp + ”*21 kj — l]- — k;. Because of the antisymmetry af in the firstm indices, these two terms
are equal up to a dlfferent S|gn and annihilate each other. This yields
n+1
1)( —
Z( 1)” = 12 Ap-1.p~ P+Z”Hk Zm = kiskie ks nkakicr 0, (9)

which is the same condition as (9) fat instead of | number of electrons and a spph=S, = N,/2 — m +

a. Consequently)s = S" "~ 1(a)yor is also a ground 1. One can now iterate this procedure to obtain finally a
state ofH. This shows that iff has a ground state with single spin-flip state with a spifi = S, = N./2 — 1:

N, = N; — n + m electrons £ = m) and a spinS = Theorem—In a single-band Hubbard model with a
S, = N./2 — m, it has also a ground state with the sameN,-fold degenerate single particle ground state and
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N. = N, electrons local stability of ferromagnetism Nagaoka state [4,5] are complicated and the general sin-

implies global stability. The model has only ferromag-gle spin-flip problem is too difficult to be solved com-

netic ground states with a spifi= N./2, if there are pletely on usual lattices ih < d < o dimensions. In our

no ground states with a single spin flip, i.e., with a spincase the situation is simpler since we already know that

S=N,/2 -1 there are ferromagnetic ground states. The aim is only
Remarks—(i) The existence of single spin-flip ground to show under which conditions there are other ground

states is relatively easy iV, = N,. A general single states. Ifthere are further ground states, one should expect

spin-flip state with momentum is given by that small perturbations are sufficient to destroy ferromag-
+ netism. This would be an instable situation. If there are
U= Z A+ p kCit plCkIYOF - (10)  no other ground states, it is possible that ferromagnetism is
k

stable with respect to small perturbations of the Hamilton-

This state has a spis = N,/2 — 1 if p # 0. The ian. Butitis difficult to investigate this problem since in
condition (5) shows that this state is a ground state if andhe present model there is no gap in the single particle spec-
only if ax+px = apsp forall k,k’ € L. Therefore, trum. This is the main technical difference to the models
it is possible to construct a single spin-flip ground statediscussed in [9].
with momentump if and only if €+, = 0 for all & (vi) As in [14] one can generalize the above result to
with €, = 0. In that situation, the single particle density a situation, where the degenerate single particle states
matrix in [14] is reducible. Thus, faN, = N, our result are not at the bottom of the band. | assume again that
is as well a consequence of the result in [14], but due tahe N,-fold degenerate single particle state has energy O
translational invariance, the condition for the occurrenceand thatL is the subset ok with ¢, = 0. Let L. be
of ferromagnetism is much simpler. Fof, < N, itis  the subset ok with ¢, < 0 and letN- be the number
not possible to obtain a similar (simple) condition for theof elements ofL.. For U =0 and N, = 2N. + Ny
existence of a single spin-flip ground state. the ground states are highly degenerate: Each single

(ii) Let us consider a situation where the degeneratgarticle state witht € L. contains two electrons and
single particle energy lies at the upper band edge of ththe remainingN, — 2N electrons can be distributed
single band, and leN, = 2N, — N4. In this case the arbitrarily among the states with zero energy. Ufis
model has ferromagnetic ground states with a spir  small one can apply degenerate perturbation theory. This
(2N, — N,)/2. Performing a particle-hole transformation means that among these degenerate states one has to find
one obtains a model that fulfills the conditions of thethose with a minimal interaction energy. Since the system
above theorem. Thus local stability of ferromagnetismis translationally invariant the contribution from the single
implies global stability in this case as well. particle states withk € L. is the same for all the

(iii) In the above derivation, one uses the fact that thedegenerate multiparticle states. It is therefore sufficient
Hamiltonian is translationally invariant. This is a naturalto minimize the interaction energy of the electrons in
assumption. But it is also possible to investigate a moreingle particle states wittk € £. This is equivalent
general case. As fa¥, = N, in [14], the proof is much to the above situation, wherg, = 0 was the bottom of
more complicated and less intuitive [15]. the band. If the degeneracy is lifted at first orderlin

(iv) The result is true for anyU > 0. U may be the ground state is ferromagnetic with a sfir= (N, —
arbitrarily small. Therefore one may wonder whether2N.)/2. Depending onN,, the spin varies betweed
this model corresponds to a strong coupling situationand N,/2 and may be extensive iV, is extensive. If
This is indeed the case. The relevant dimensionlesthe degeneracy is not lifted at first order, another ground
parameter isprU. It is infinite in our model for any state with a smaller spin is usually favored at higher order
U > 0, since the Fermi level lies in the region wherein U. This argument explains, e.g., the results presented
the band is flat. A partially flat band is certainly anin [16]. But this argument is perturbative and holds only
unrealistic situation. Typically, this assumption has thefor (very) smallU. Is it possible that this ferromagnetism
consequence that the hopping matrix elements=  disappears whe®/ becomes larger? At the moment |
N>, exexdik(x — y)] have a longer range than usual. am not able to answer this question. But if the following
On the other hand, one may hope that as in the flat bancbnjecture is true, the ferromagnetism is stable for any
case [9] our result extends to a nearly flat case as long dmite U.
U is not too small. This would be a realistic situation in  Conjecture—Let E,s be the smallest eigenenergy of
transition metals. H in the subspace of eigenstates with a sfinSuppose

(v) In most cases it is much simpler to study the stabil-that for someU = U, the Hamiltonian has a degenerate
ity of the ferromagnetic state with respect to single spinground state with a ground state enefgfy, = Eos, and
flips than the global stability. In the case of a HubbardS, # S,. Then | claim thatEys, = Egs, for U > Uy if
model with a nearly flat band, Tasaki [9] was able to shows; > S,.
the stability with respect to single spin flips. In most It is sufficient to prove this conjecture fav, = Ny,
variational treatments single spin-flip states are used asince the result for larger electron numbers can be
well [5]. The variational studies of the stability of the obtained using a particle-hole transformation. | am not
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Let us note that this route to ferromagnetism in single- 25, 4335 (1991); H. Tasaki, Phys. Rev. Le@9, 1608
band Hubbard models naturally leads to nonsaturated (1992); A. Mielke and H. Tasaki, Commun. Math. Phys.
ferromagnetic states if the degeneracy is not situated at 158 341 (1993).

a band edge. This is similar to Lieb’s ferrimagnetism [9] H. Tasaki, J. Stat. Phy84, 535 (1996).
[7]. Itis even possible that a single-band Hubbard modelt®) J: Wahle, N. Blumer, J. Schlipf, K. Held, and D.

on a bipartite lattice has a degeneracy somewhere in the ;g:gﬁ:dt, Phys. Rev. B8, 12749 (1998), and references

(symmetric) band. But if this degeneracy occurs in th 11] K. Held and D. Vollhardt, Eur. Phys. J. B 473 (1998);
middle of the band Lieb’s theorem tells us that the groun K. Kubo, D. M. Edwards, A.C.M. Green, T. Momoi, and
state hass = 0. This is not a contradiction to the above H. Sakamoto, cond-mat/9811286 (1998); and references
result. In such a special situation one can easily seepthat therein.
exists such that foreache L,k + pisaswellinL. [12] A. Mielke, J. Phys. A25, 6507 (1992).
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