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Interplay of Disorder and Spin Fluctuations in the Resistivity near a Quantum Critical Point
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The resistivity in metals near an antiferromagnetic quantum critical point (QCP) is strongly affected
by small amounts of disorder. In a quasiclassical treatment, we show that an interplay of strongly
anisotropic scattering due to spin fluctuations and isotropic impurity scattering leads to a large regime
where the resistivity varies &*, with an anomalous exponerit,< « =< 1.5, depending on the amount
of disorder. | argue that this mechanism explains in some detail the anomalous temperature dependence
of the resistivity observed in CepPsi,, CeNiLGe,, and Celg near the QCP. [S0031-9007(99)09253-4]

PACS numbers: 72.10.Di, 71.27.+a, 75.30.Mb, 75.50.Ee

In the last five years, an increasing number of heavyThe above line of argumentation can be made more quan-
fermion metals near an antiferromagnetic (AFM) quantuntitative: Near the hot lines the scattering rdtérs of
critical point was shown to display striking deviations the quasiparticles due to the quantum-critical spin fluctua-
from conventional Fermi-liquid behavior [1-4]. A few tions is linear in temperaturey,/7s = t = T/I" where
of the dirtier systems (e.g., [4]) appeared to show thd’ is a characteristic energy scale ang a typical scat-
T3/2 behavior of the resistivityp(7), as predicted by the tering time. The width of these hot lines is given by
Hertz-Millis spin-fluctuation theory for such a quantum /¢ (see below). In the “cold regions,” we expect Fermi-
critical point (QCP) [5—7]. In other cleaner single-crystal liquid behavior withry, /75 = t>. Weak disorder leads to
systems, such as Cef3h, CeNbGe,, and Cels [2,3], an isotropic scattering raté,/r.; = x/7y, Wherex is a
p(T) varies asT® with exponentsa betweenl.l and small dimensionless number measuring the effectiveness
1.5. It has been argued [8] that such a behavior signals af impurity compared to magnetic scattering { = kr!
fundamental breakdown of Fermi-liquid theory. for spin-fluctuation scattering in the strong coupling “uni-

In this Letter we propose a simple theoretical explanatarity” limit; [ is the elastic mean free path). The con-
tion for this anomalous behavior which covers both dirtyductivity o is proportional to the average ef over the
and clean systems. Our main result is that the resistiviFermi surface withl /7, = 1/7.; + 1/75(k):
ity anomalies mentioned above can be attributed to the Ji 1 — 7
interplay between quantum-critical AFM spin fluctuations o % (TK)Fs & PR 1)

5,6] and impurity scattering in a conventional Fermi lig- . o
[5.6] punty 9 q The two terms describe the contributions from “hot”

uid. In fact, the resistivity can be described in semiquan- 4 “cold” ; tively. For < 12 < 1 cold
titative terms in the context of the simplest semiclassicaf"¢ Cold" regions, respectively. For < 1 co
regions short circuit the hot ones and from the second

Boltzmann equation approach. Here, we will have noth- . . ) i .
ing to say about the striking linear behavior of7") near term in (1) we obtalng > t* [10]; while fqr r<xs
the QCP in CeCyi,Au, [1] in which the neutron scatter- 1, the hot spots dominate and the resistivityo is
ing experiments suggest a more unconventional behavior o4

t=

of the spin fluctuations [9]. t=1

The temperature dependencepdf’) can already be un- ‘ [ AL <L
derstood from the following qualitative argument: First, Ql >)7 /
we recall that scattering off AFM spin fluctuations is o < ( Z/
N—— liNddlals

most effective near “hot lines,” i.e., points at the Fermi
surface (FS) connected by the ordering wave veQor [
(see Fig. 1) where gaps would open up in the antiferro- ) » > > DD
magnetically ordered (metallic) phase. As explained by (< =0
Hlubina and Rice [10], the strong scattering near these I
lines is short circuited by the “cold” regions on the Fermip|g_ 1. Near the transition to an antiferromagnet with order-
surface, where the scattering rates are small. In cleaing vectorQ, the scattering on the Fermi surface is enhanced
systems the latter dominate the transport and resistivitglong “hot lines” connected bQ. The width of this region is
acquires the usual Fermi-liquid behavipkT) ~ T2 at  given by Ak =~ goy/T/I'. The out-of-equilibrium distribution
sufficiently low temperatures. Impurity scattering leads®¢ Of the quasiparticles for a current parallel @ is shown

. . . as a function of the azimuthal anglefor temperatures ranging
esser]tlally to an averaging of the'scatterlng rate over theom 1 = (qo/kp)2(T/T)? = 1 (left) down tor = 10~ (right)
Fermi surface reducing the effectiveness of the Hlubinaand for both a clean system (lower curves) and a small amount
Rice mechanism and emphasizing the role of the hot linesf disorder,x = 0.01 (upper curves).

x=0.01
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proportional tox + r3/2. At intermediate temperatures, h ﬁik—ik,l Fr (P — Dyi)?

x <t < \/x, we expect a crossover regime, in which we p[®x] = 102 Y > — min, (5)

can define an effective resistivity exponemf in terms ¢ [§ w (Vin) Py

of the logarithmic difference ofAp(T) = p(T) — p(0) ) 2g§ o

at the crossover temperaturBs = I'x and7s = I'/x, Fxk = &imp + ﬁfo wn,ln, + 1]1Imykx-—k(w)dow.
_InAp(T5) = InAp(Tf) _ Inx — Inx¥? (6)
- InNT§ — InT§ T ndx — Inx 1. The physical resistivity is given by the minimum of

) p[®x] regarded as a functional df,. At this minimum
dy is directly proportional to the true distribution function

In a very clean system this crude estimate implies a nearl{ft @n electric field applied in the direction of the unit
linear crossover behavior in temperature as measured ¥fCtor n. In the above expression only integrals over
clean samples of CeP8li, and CeNiGe [2,3]. the Fermi surfape enter, as we have alrgady integrated
We now proceed with a more precise argument base?ut the perpendicular componentsloby using [ dk =

on the semiclassical Boltzmann equation treatment of d€k § dk/vi wherevy is the velocity of quasiparticles
electrons interacting with spin fluctuations and impurities &t the Fermi surface. o . . .
The former are described by a theory above the upper N the following, we simplify the discussion by (i)
critical dimension [5,6] and, due to the Ohmic dampingConsidering a spherical Fermi surface and (i) lim-
of the magnetic excitations in a metal, is characterizedting ourselves to transport parallel to the ordering
by a dynamical exponent = 2. As a result, the spin- Wwave vector Q = (0,0,2kr co¥y), in which case

fluctuation spectrum can be modeled by [5,6] = dy is only a function of the azimuthal angle
0. The equationsd = 6y and 0 = 7 — 0y define

the hot lines shown in Fig. 1. The geometry [11] and
Xq(@) = x—q(@) precise value offy are not very important as long
1 3) as one stays away fromy = 0 (“2kg” ordering) or
= 2 27 2 . , 0y = /2 (ferromagnetic ordering) where our approach
V(o) +(a = QP/qp — iw/T breaks down [6]; in our numerical calculations we use
whereg, and T are characteristic momentum and energy?s = /6. As in [10] we approximate the second term
scales; and¢ is the AFM correlation length which, at in Ed. (6) by 2g5I[y] with I[y] = #2/[y(3y + 2m)]
the QCP, diverges as/&2 ~ cgd(T/T)¥? [5,6). For and y = (I'/T)[1/(qé)* + (q@ = Q)*/q5] which is
the purposes of our numerical calculations we set  asymptotically exact for large and small
1 (below, ¢ does not influence the low-temperature After performing the integration ovep and the polar

properties). anglego in Eq (5) we obtain
Our starting point is the Boltzmann equation p(T) = min(pimp[Ps] + ps[Py]), (7
with a quasiparticle distribution function fx = _ _ '
/v — ®k(9fp/9e) linearized around the Fermi distribu- ~ _ xpu g (®g, — Py,)* sinG; d0, sind, d6>
tion f1 with a collision term Pimp 6 [ /5 co®d, sing dOT2 ’
8)
9 01 = £ (
Ifx =ka(T fk)(CI)k—CI)k/) ] | |
ot coll k’ _ TPM ffO Fglgz(q)gl - (I)gz)z sinfd; d6 sinf, do,
x | g2 8k — ew) 3 [[5 cod®, sing do]? ’

)
285 } where py, = 3hig3/(e>vF) is a typical resistivity due to
T 5 e IMyk—k(€x — €x) |. : - : :
| L scattering from spin fluctuations at approximately the
(4) temperature scald’ andx = gizmp/(zgg) measures the
relative strength of impurity scattering. The prefactors
Hereg?mp andg? are transition rates for isotropic impurity are chosen in such a way thgt,, = 3ﬁgi2mp/(262v12r) is
scattering and inelastic scattering from spin fluctuationsthe residual resistivity. The dimensionless scattering rate
respectively, and:® is the Bose function. Equation (4) F,, ¢, averaged over the polar angteis given by
tacitly assumes that the spin fluctuations stay in equilib- 27 dg
rium, an approximation valid if the spin fluctuations can *:6: %[0 EI[Y(QI’HZ’Q")]
loose their momentum effectively by umklapp or impu-

rity scattering. Instead of solving the Boltzmann equa- ~ w1/ (2sify)

tion directly, it is instructive to consider a mathematically A9 [21 + é[(Aﬁ)z + AW (AD)? + @ ) ’
equivalent variational principle [12]. Following Hlubina m ;
and Rice [10], we define a functionalof & (A9)? = O + 97 + 2010, c020y + 1/(kpé)*.  (10)
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th =60, — 0y and 9 = 0, — (m — Oy) measure the
distances from the hot lines and= (T /T’) (qo/kFr)? is the
dimensionless temperature. Our numerical calculation
use the full polar integral in (10), even though at low
temperatures 1[/(ékr)?,t < 1] the correct behavior is
also contained in the approximate form.

From Egs. (7)—(10) one can easily deduce the quali
tative behavior of the low-temperature resistivity. We

first consider the case of very low temperatures in a

dirty metal. In this regime the resistivity is dominated by
the disorder contributiopim,. Fromé pimp[®s]/ 6Py =

0 we find the usual quasiparticle distribution for im-
purity scatteringdy = co¥). The leading temperature
dependent correction to the residual resistivipgy =
xpy is then given bypg[co®¥]. The main contribu-

tion to pg arises in a small region around the hot spotsFIG. 2.

where (®y, — ®y,)> = [coFy — cogm — Oy))* is fi-
nite. Scalingdy,, in Eq. (10) with \/7, one recognizes
that in the regime > 1/(kz£)? = 13/2 the finite correla-

1

10
S

= 3
S0
Q
<

(T/T) (afk,)’
Log-log plot of Ap = p(T) — p(0) for a rather

clean system withv = 0.01. Note the large crossover regime

from the resistivity of a clean system (dashed line) at high
temperatures to the resistivity of a dirty system (dot-dashed
line). The inset shows how this crossover evolves for various

tion length can be neglected and at lowest temperaturggpurity concentrations.

the resistivity is given by
[377 ¢} cow
p(T —0) = pyl| x + 7‘1()7}’1(

On the other hand, if the system is clean=t 0), we
have to minimizeps[®4]. As pointed out by Hlubina
and Rice [10], the ansat®, = co9 is far from the
true minimum. We can considerably redugg by
using a distribution function where the hot lines are
excluded, e.g.®y = 0 for |0 — Oy| < 0.y and |60 —

(m — 0p)| < 6.c. With such an ansatz the For this
ansatz, the temperature dependence in the numerator
the scattering rate (10) can be neglected dgj > /t
and the resistivity is given by

p(x =0,T = 0) = cpmulqo/kr) (T /T)?, (12)
where ¢ is a nonuniversal number of orddr which

ol

(11)

expect a large crossover regime between the behavior de-
scribed by Egs. (11) and (12). In the variational approach
given here this is due to the effect that the impurity resis-
tivity is not minimized by the distribution functiod§<*"

(the low temperature curve in the lower part of Fig. 1)
and pimp[d)gle"‘“] = (1 + ¢)xpy, wherec’ is a number

of order1 (e.g.,c¢’ = 2.8 in our model). Below a tem-
peratureT;, defined byc’'p(T = 0) = p(x = 0,T5), the
distribution function deviates frorP§'**" and approaches
the co® form which minimizes impurity scattering (see
Fig. 1). Qualitatively, we obtain the same picture as in
the crude estimate discussed at the beginning (up to fac-
toys like c).

The evolution of this crossover regime with impurity
concentration is shown in Fig. 2 and its inset. The depen-
dence of the distribution function (and Afp) on impurity
concentration is a reflection of the complete breakdown of
Matthiessen’s rule in the crossover regime, where it is not

depends on the details of the scattering mechanism in thgossible to separate the different scattering mechanisms

cold regions of the Fermi surface.

contributing to the resistivity. In addition, while not en-

To obtain the crossover behavior, we calculate theirely physically meaningful, theT(-dependent) effective

distribution function®, and the resistivityp (') within
our model numerically by solving the integral equation
Sp[®y]/6Py = 0, which is equivalent to solving the

exponent defined by the logarithmic derivativesdf’) —
p(0) in Fig. 3, when properly interpreted, displays the
various crossovers in a dramatic way. For example,

linearized Boltzmann equation directly. For a clean syseven for a reasonably clean system either asymptotic ex-

tem, ®, is shown in the lower part of Fig. 1. At high
temperatures the distribution function is structureless an

ponents2 and 1.5 are difficult to observe, while effective
dxponents close td dominate over a wide range of pa-

all parts of the Fermi surface (besides those perpendiculaameter values as suggested by our estimate (2).

to the current) contribute more or less equally to the resis- While the behavior for1/(kr&)%,t = 1 is highly
tivity. However, for lower temperatures the region aroundnonuniversal and strongly affected by details of the band
the hot lines (dashed lines in Fig. 1) are short circuitedstructure and scattering mechanisms, this is not the case

and the distribution function vanishes. Accordingly, the
resistivity is much lower and drops7? (dashed line in
Fig. 2).

As shown in the simple calculation discussed in the be

in the opposite limitl /(kr&)?,t < 1, which is of interest
here. In the latter regime crossover effects depend only
very weakly on the precise details of the model.

- We argue that our approach explains the anomalous re-

ginning, in a system with a small amount of disorder, wesistivity at the QCP observed in the very good samples of
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e 1 FIG. 4. Resistivity as a function of''? in CePdSi, taken
0.0 ) ) ) ) ) from 2 (left figure) compared to our calculation (right figure)
10" 10° 10° , 10" 10° for x = 0.01. The insets show the_ co_rres_pondin_g logarithmic
(T/M) (@) derivative of p(T) — p(0). The solid line in the inset of the

theoretical plot displays the logarithmic derivative ofT) —
FIG. 3. Effective exponent of the resistivity, defined as the0.995p(0). Below =400 mK, CePdSi, is superconducting
logarithmic derivative ofAp(T). At very low temperatures, (lower inset). Note the offset of the lirle = 0 in both plots.
the “dirty-limit” exponent3/2 is recovered. However, in the
experimentally accessible low-temperature regime smaller ex-
ponents are to be expected for a rather clean system (.1).

at high temperatures tp =~ py[x + (T/T)*(kp&)] at
lowest temperatures.
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gggddggggﬁggg?tggjt[g? exponent on sample quality has in- reflection or gliding plane and if the band structure is

: . sufficiently simple with negligible interband scattering.
For systems not directly at but still near the QCP Otherwise, the discussion in this paper should be relevant
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