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Interplay of Disorder and Spin Fluctuations in the Resistivity near a Quantum Critical Point

A. Rosch
Serin Laboratory, Rutgers University, Piscataway, New Jersey 08854-0849

(Received 20 October 1998)

The resistivity in metals near an antiferromagnetic quantum critical point (QCP) is strongly affected
by small amounts of disorder. In a quasiclassical treatment, we show that an interplay of strongly
anisotropic scattering due to spin fluctuations and isotropic impurity scattering leads to a large regime
where the resistivity varies asTa , with an anomalous exponent,1 & a & 1.5, depending on the amount
of disorder. I argue that this mechanism explains in some detail the anomalous temperature dependence
of the resistivity observed in CePd2Si2, CeNi2Ge2, and CeIn3 near the QCP. [S0031-9007(99)09253-4]

PACS numbers: 72.10.Di, 71.27.+a, 75.30.Mb, 75.50.Ee
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In the last five years, an increasing number of heav
fermion metals near an antiferromagnetic (AFM) quantu
critical point was shown to display striking deviation
from conventional Fermi-liquid behavior [1–4]. A few
of the dirtier systems (e.g., [4]) appeared to show t
T3y2 behavior of the resistivity,rsT d, as predicted by the
Hertz-Millis spin-fluctuation theory for such a quantum
critical point (QCP) [5–7]. In other cleaner single-crysta
systems, such as CePd2Si2, CeNi2Ge2, and CeIn3 [2,3],
rsT d varies asTa with exponentsa between1.1 and
1.5. It has been argued [8] that such a behavior signal
fundamental breakdown of Fermi-liquid theory.

In this Letter we propose a simple theoretical explan
tion for this anomalous behavior which covers both dir
and clean systems. Our main result is that the resis
ity anomalies mentioned above can be attributed to
interplay between quantum-critical AFM spin fluctuation
[5,6] and impurity scattering in a conventional Fermi liq
uid. In fact, the resistivity can be described in semiqua
titative terms in the context of the simplest semiclassic
Boltzmann equation approach. Here, we will have not
ing to say about the striking linear behavior ofrsT d near
the QCP in CeCu62xAux [1] in which the neutron scatter-
ing experiments suggest a more unconventional behav
of the spin fluctuations [9].

The temperature dependence ofrsT d can already be un-
derstood from the following qualitative argument: Firs
we recall that scattering off AFM spin fluctuations i
most effective near “hot lines,” i.e., points at the Ferm
surface (FS) connected by the ordering wave vectorQ
(see Fig. 1) where gaps would open up in the antiferr
magnetically ordered (metallic) phase. As explained
Hlubina and Rice [10], the strong scattering near the
lines is short circuited by the “cold” regions on the Ferm
surface, where the scattering rates are small. In cle
systems the latter dominate the transport and resistiv
acquires the usual Fermi-liquid behaviorrsT d , T2 at
sufficiently low temperatures. Impurity scattering lead
essentially to an averaging of the scattering rate over
Fermi surface reducing the effectiveness of the Hlubin
Rice mechanism and emphasizing the role of the hot lin
280 0031-9007y99y82(21)y4280(4)$15.00
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The above line of argumentation can be made more qu
titative: Near the hot lines the scattering rate1ytS of
the quasiparticles due to the quantum-critical spin fluctu
tions is linear in temperaturetMytS ø t ­ TyG where
G is a characteristic energy scale andtM a typical scat-
tering time. The width of these hot lines is given bp

t (see below). In the “cold regions,” we expect Ferm
liquid behavior withtMytS ø t2. Weak disorder leads to
an isotropic scattering rate,1ytel ­ xytM , wherex is a
small dimensionless number measuring the effectiven
of impurity compared to magnetic scattering (x21 ø kFl
for spin-fluctuation scattering in the strong coupling “un
tarity” limit; l is the elastic mean free path). The con
ductivity s is proportional to the average oftk over the
Fermi surface with1ytk ­ 1ytel 1 1ytSskd:

s ~ ktklFS ~

p
t

x 1 t
1

1 2
p

t
x 1 t2 . (1)

The two terms describe the contributions from “hot
and “cold” regions, respectively. Forx , t2 , 1 cold
regions short circuit the hot ones and from the seco
term in (1) we obtainr ~ t2 [10]; while for t , x ,

1, the hot spots dominate and the resistivity1ys is

FIG. 1. Near the transition to an antiferromagnet with orde
ing vectorQ, the scattering on the Fermi surface is enhanc
along “hot lines” connected byQ. The width of this region is
given by Dk ø q0

p
TyG. The out-of-equilibrium distribution

Fu of the quasiparticles for a current parallel toQ is shown
as a function of the azimuthal angleu for temperatures ranging
from t ­ sq0ykFd2sTyGd2 ­ 1 (left) down to t ­ 1024 (right)
and for both a clean system (lower curves) and a small amo
of disorder,x ­ 0.01 (upper curves).
© 1999 The American Physical Society
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proportional tox 1 t3y2. At intermediate temperatures
x , t ,

p
x, we expect a crossover regime, in which w

can define an effective resistivity exponenta, in terms
of the logarithmic difference ofDrsT d ­ rsT d 2 rs0d
at the crossover temperaturesTc

1 ­ Gx andTc
2 ­ G

p
x,

a ø
lnDrsTc

2 d 2 lnDrsTc
1 d

lnTc
2 2 lnTc

1
ø

lnx 2 lnx3y2

ln
p

x 2 lnx
­ 1 .

(2)

In a very clean system this crude estimate implies a nea
linear crossover behavior in temperature as measured
clean samples of CePd2Si2 and CeNi2Ge2 [2,3].

We now proceed with a more precise argument bas
on the semiclassical Boltzmann equation treatment
electrons interacting with spin fluctuations and impuritie
The former are described by a theory above the upp
critical dimension [5,6] and, due to the Ohmic dampin
of the magnetic excitations in a metal, is characteriz
by a dynamical exponentz ­ 2. As a result, the spin-
fluctuation spectrum can be modeled by [5,6]

xqsvd ­ x2qsvd

ø
1

1ysq0jd2 1 sq 6 Qd2yq2
0 2 ivyG

, (3)

whereq0 andG are characteristic momentum and energ
scales; andj is the AFM correlation length which, at
the QCP, diverges as1yj2 ø cq2

0sTyGd3y2 [5,6]. For
the purposes of our numerical calculations we setc ­
1 (below, c does not influence the low-temperatur
properties).

Our starting point is the Boltzmann equatio
with a quasiparticle distribution function fk ­
f0

k 2 Fks≠f0
ky≠ekd linearized around the Fermi distribu-

tion f0
k with a collision term

≠fk

≠t

É
coll

­
X
k0

f0
k0s1 2 f0

kd
T

sFk 2 Fk0d

3

"
g2

impdsek 2 ek0d

1
2g2

S

G
n0

ek2ek0 Imxk2k0sek 2 ek0d
∏

.

(4)

Hereg2
imp andg2

S are transition rates for isotropic impurity
scattering and inelastic scattering from spin fluctuation
respectively, andn0

v is the Bose function. Equation (4)
tacitly assumes that the spin fluctuations stay in equili
rium, an approximation valid if the spin fluctuations ca
loose their momentum effectively by umklapp or impu
rity scattering. Instead of solving the Boltzmann equ
tion directly, it is instructive to consider a mathematicall
equivalent variational principle [12]. Following Hlubina
and Rice [10], we define a functionalr of Fk
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rfFkg ­
h̄

4e2

HH dkdk0

ykyk0
Fkk0sFk 2 Fk0d2

f
H dk

yk
svkndFkg2

! min, (5)

Fkk0 ­ g2
imp 1

2g2
S

GT

Z `

0
vn0

vfn0
v 1 1g Imxk2k0svd dv .

(6)

The physical resistivity is given by the minimum o
rfFkg regarded as a functional ofFk. At this minimum
Fk is directly proportional to the true distribution function
in an electric field applied in the direction of the un
vector n. In the above expression only integrals ove
the Fermi surface enter, as we have already integra
out the perpendicular components ofk by using

R
dk ­R

dek
H

dkyyk whereyk is the velocity of quasiparticles
at the Fermi surface.

In the following, we simplify the discussion by (i)
considering a spherical Fermi surface and (ii) lim
iting ourselves to transport parallel to the orderin
wave vector Q ­ s0, 0, 2kF cosuHd, in which case
Fk ­ Fu is only a function of the azimuthal angle
u. The equationsu ­ uH and u ­ p 2 uH define
the hot lines shown in Fig. 1. The geometry [11] an
precise value ofuH are not very important as long
as one stays away fromuH ­ 0 (“2kF” ordering) or
uH ­ py2 (ferromagnetic ordering) where our approac
breaks down [6]; in our numerical calculations we us
uH ­ py6. As in [10] we approximate the second term
in Eq. (6) by 2g2

SIfyg with Ifyg ø p2yfys3y 1 2pdg
and y ­ sGyT d f1ysq0jd2 1 sq 6 Qd2yq2

0g which is
asymptotically exact for large and smally.

After performing the integration overv and the polar
anglew in Eq. (5) we obtain

rsT d ­ minsrimpfFug 1 rSfFugd , (7)

rimp ­
xrM

6

RRp

0 sFu1 2 Fu2 d2 sinu1 du1 sinu2 du2

f
Rp

0 cosuFu sinu dug2 ,

(8)

rS ­
prM

3

RRp

0 Fu1u2 sFu1 2 Fu2 d2 sinu1 du1 sinu2 du2

f
Rp

0 cosuFu sinu dug2 ,

(9)

whererM ­ 3h̄g2
Syse2y

2
Fd is a typical resistivity due to

scattering from spin fluctuations at approximately th
temperature scaleG and x ­ g2

impys2g2
Sd measures the

relative strength of impurity scattering. The prefacto
are chosen in such a way thatxrM ­ 3h̄g2

impys2e2y
2
Fd is

the residual resistivity. The dimensionless scattering r
Fu1u2 averaged over the polar anglew is given by

Fu1u2 ø
Z 2p

0

dw

2p
If ysu1, u2, wdg

ø
pt2ys2 sinuHd

jDq j f2t 1
3
p fsDq d2 1 jDq j

q
sDq d2 1

2pt
3 gd

,

sDq d2 ­ q 2
1 1 q 2

2 1 2q1q2 cos2uH 1 1yskFjd2 . (10)
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q1 ­ u1 2 uH and q2 ­ u2 2 sp 2 uH d measure the
distances from the hot lines andt ­ sTyGd sq0ykFd2 is the
dimensionless temperature. Our numerical calculatio
use the full polar integral in (10), even though at low
temperatures [1ysjkFd2, t ø 1] the correct behavior is
also contained in the approximate form.

From Eqs. (7)–(10) one can easily deduce the qua
tative behavior of the low-temperature resistivity. W
first consider the case of very low temperatures in
dirty metal. In this regime the resistivity is dominated b
the disorder contributionrimp . FromdrimpfFugydFu ­
0 we find the usual quasiparticle distribution for im
purity scatteringFu ­ cosu. The leading temperature
dependent correction to the residual resistivityr0 ­
xrM is then given byrSfcosug. The main contribu-
tion to rS arises in a small region around the hot spot
where sFu1 2 Fu2 d2 ø fcosuH 2 cossp 2 uHdg2 is fi-
nite. Scalingq1y2 in Eq. (10) with

p
t, one recognizes

that in the regimet . 1yskFjd2 ~ t3y2 the finite correla-
tion length can be neglected and at lowest temperatu
the resistivity is given by

rsT ! 0d ­ rM

24x 1

s
3p7

8
q3

0 cosuH

k3
F

µ
T
G

∂3y2
35 .

(11)

On the other hand, if the system is clean (x ­ 0), we
have to minimizerSfFug. As pointed out by Hlubina
and Rice [10], the ansatzFu ­ cosu is far from the
true minimum. We can considerably reducerS by
using a distribution function where the hot lines ar
excluded, e.g.,Fu ­ 0 for ju 2 uH j , ucut and ju 2

sp 2 uHdj , ucut. With such an ansatz the For this
ansatz, the temperature dependence in the numerato
the scattering rate (10) can be neglected forucut ¿

p
t

and the resistivity is given by

rsx ­ 0, T ! 0d ­ crMsq0ykFd2sTyGd2 , (12)

where c is a nonuniversal number of order1 which
depends on the details of the scattering mechanism in
cold regions of the Fermi surface.

To obtain the crossover behavior, we calculate t
distribution functionFu and the resistivityrsT d within
our model numerically by solving the integral equatio
drfFugydFu ­ 0, which is equivalent to solving the
linearized Boltzmann equation directly. For a clean sy
tem, Fu is shown in the lower part of Fig. 1. At high
temperatures the distribution function is structureless a
all parts of the Fermi surface (besides those perpendicu
to the current) contribute more or less equally to the res
tivity. However, for lower temperatures the region aroun
the hot lines (dashed lines in Fig. 1) are short circuite
and the distribution function vanishes. Accordingly, th
resistivity is much lower and drops~T2 (dashed line in
Fig. 2).

As shown in the simple calculation discussed in the b
ginning, in a system with a small amount of disorder, w
4282
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FIG. 2. Log-log plot of Dr ­ rsT d 2 rs0d for a rather
clean system withx ­ 0.01. Note the large crossover regime
from the resistivity of a clean system (dashed line) at hig
temperatures to the resistivity of a dirty system (dot-dash
line). The inset shows how this crossover evolves for vario
impurity concentrationsx.

expect a large crossover regime between the behavior
scribed by Eqs. (11) and (12). In the variational approa
given here this is due to the effect that the impurity resi
tivity is not minimized by the distribution functionFclean

u

(the low temperature curve in the lower part of Fig. 1
and rimpfFclean

u g ­ s1 1 c0dxrM , wherec0 is a number
of order 1 (e.g., c0 ø 2.8 in our model). Below a tem-
peratureTc

2 , defined byc0rsT ­ 0d ø rsx ­ 0, Tc
2 d, the

distribution function deviates fromFclean
u and approaches

the cosu form which minimizes impurity scattering (see
Fig. 1). Qualitatively, we obtain the same picture as
the crude estimate discussed at the beginning (up to f
tors likec0).

The evolution of this crossover regime with impurity
concentration is shown in Fig. 2 and its inset. The depe
dence of the distribution function (and ofDr) on impurity
concentration is a reflection of the complete breakdown
Matthiessen’s rule in the crossover regime, where it is n
possible to separate the different scattering mechanis
contributing to the resistivity. In addition, while not en
tirely physically meaningful, the (T -dependent) effective
exponent defined by the logarithmic derivative ofrsT d 2

rs0d in Fig. 3, when properly interpreted, displays th
various crossovers in a dramatic way. For examp
even for a reasonably clean system either asymptotic
ponents2 and1.5 are difficult to observe, while effective
exponents close to1 dominate over a wide range of pa
rameter values as suggested by our estimate (2).

While the behavior for 1yskFjd2, t * 1 is highly
nonuniversal and strongly affected by details of the ba
structure and scattering mechanisms, this is not the c
in the opposite limit1yskFjd2, t ø 1, which is of interest
here. In the latter regime crossover effects depend o
very weakly on the precise details of the model.

We argue that our approach explains the anomalous
sistivity at the QCP observed in the very good samples
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FIG. 3. Effective exponent of the resistivity, defined as th
logarithmic derivative ofDrsTd. At very low temperatures,
the “dirty-limit” exponent 3y2 is recovered. However, in the
experimentally accessible low-temperature regime smaller e
ponents are to be expected for a rather clean system (x , 0.1).

CePd2Si2, CeNi2Ge2, and CeIn3 [2,3]. In Fig. 4 we show
the measurement by Groscheet al. [2] of the resistivity as
a function ofT1.2 at the critical pressure in CePd2Si2 and
compare them to our model forx ­ 0.01. It is important
to note that not only the same exponent of the resistiv
shows up in the theory, but that it is also observed ov
a similar range0.1r0 & DrsT d & 10r0. This suggests
that standard spin-fluctuation theory [5–7] can be appli
for this system opening the possibility for a theory of th
striking superconducting phase observed below 400 m
In CeNi2Ge2, a similar exponent is observed in the re
sistivity [2], while the effective exponents in samples o
CeIn3 [3] show a behavior reminiscent of our prediction
for x ­ 0.1 in Fig. 3. It is certainly necessary to chec
other predictions of this theory carefully. For example
according to [6], the pressure dependence of the Néel te
perature near the QCP should be given bysp 2 pcd2y3

while experimentally a linear dependence seems to
observed over some range [2]. Also the specific he
should give valuable information on the nature of the sp
fluctuations. The most direct test of the effects describ
in this Letter is, however, a comparison of the critica
resistivity in samples of different quality. According to
our theory, the effective exponent has to change from1.5
for dirty samples to values near1 for very clean samples.
Also, for cleaner and cleaner samples, a “bump” has
show up in plots of the effective exponent (cf. Fig. 3
The dependence of the exponent on sample quality has
deed been reported [2].

For systems not directly at but still near the QC
[kFjsT ­ 0d ¿ 1], we expect again a large crossove
regime in the resistivity with anomalous effective expo
nents due to a pronounced crossover fromr ø rMsTyGd2
e
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FIG. 4. Resistivity as a function ofT1.2 in CePd2Si2 taken
from 2 (left figure) compared to our calculation (right figure
for x ­ 0.01. The insets show the corresponding logarithm
derivative ofrsT d 2 rs0d. The solid line in the inset of the
theoretical plot displays the logarithmic derivative ofrsTd 2
0.995rs0d. Below ø400 mK, CePd2Si2 is superconducting
(lower inset). Note the offset of the lineT ­ 0 in both plots.

at high temperatures tor ø rMfx 1 sTyGd2skFjdg at
lowest temperatures.
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