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Generalized Fokker-Planck Equation for Multichannel Disordered Quantum Conductors
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The Dorokhov-Mello-Pereyra-Kumar (DMPK) equation, which describes the distribution of transmis-
sion eigenvalues of multichannel disordered conductors, has been enormously successful in describing
a variety of detailed transport properties of mesoscopic wires. However, it is limited to the quasi-one-
dimensional regime only. We derive a one parameter generalization of the DMPK equation, which
should broaden the scope of the equation. [S0031-9007(99)09230-3]

PACS numbers: 72.10.Bg, 05.60.—k, 72.15.Rn

Quantum transport in a disordered N-channel mesotransition [18,19] cannot be studied within the powerful
scopic conductor can be described in the scatterin@MPK framework, because the transition exists only in
approach, initiated by Landauer [1], in terms of the jointhigher dimensions.
probability distribution of the transfer matrices [2,3]. In this work we argue that the generalization of the
Under very general conditions based on the symmetr{PpMPK equation to higher dimensions requires the relax-
properties of the transfer matrices and within the randonation of certain approximations made in the derivation
matrix theory framework [3], the joint probability density and suggest a phenomenological way to implement them
of the transmission eigenvalues can be expressed as aithin the random matrix framework. This allows us to
evolution with increasing length of the system accordingobtain a simple generalization using a phenomenological
to a Fokker-Planck equation known as the Dorokhov-parameter and the conservation of the total probability.
Mello-Pereyra-Kumar (DMPK) equation [4,5]. Such a We obtain corrections to the mean and variance of con-
random matrix approach has been found to be very usefuluctance as a function of the parameter using the general-
in our understanding of the universal properties in a widgzed equation and discuss the implications of the results.
variety of physical systems in condensed matter as welWe argue that the generalized equation should be valid
as nuclear and particle physics [6]. In particular, thebeyond quasi-one-dimension.

DMPK equation has been shown to be equivalent [7,8] In the scattering approach, the conductor of length
to the description of a disordered conductor in terms of & is placed between two perfect leads of finite width.
nonlinear sigma model [9] obtained from the microscopicThe scattering states at the Fermi energy defivie
tight binding Anderson Hamiltonian for noninteracting channels. The&N X 2N transfer matrixM relates the
electrons and is consistent with perturbative calculationflux amplitudes on the right of the system to that on the
and experiments [3,10,11]. The equation has been solvddft [2,3]. Flux conservation and time reversal symmetry
exactly [12], and level correlation functions can be ob-(in this paper, for simplicity, we will restrict ourselves
tained [7] using the method of biorthogonal functions [13].to the case of unbroken time reversal symmetry only)
Because it is extremely difficult to evaluate any higherrestricts the number of independent parametera/ofo
order correlation function in the sigma model approachN(2N + 1) and can be represented as [4]

the DMPK equation is more suitable to study the conduc-

tance distribution in mesoscopic systems. In recent years, _ (u 0 VAR VA v 0 (1)

it has been applied to a variety of physical phenomena, \ 0 u* VA V142 0 v )’

including conductance fluctuations, weak localization,

Coulomb blockade, sub-Poissonian shot noise, etc. [11ivhereu,v are N X N unitary matrices, and is a di-
One major limitation of the DMPK equation, however, is agonal matrix, with positive elemensts,i = 1,2,...,N.

that it is valid only in the quasi-one-dimensional regimeThe physically observable conductance of the system is
(quasi-1D), where the length of the system is much largegiven by ¢ = > (1 + A;)~!. Thus the distribution of
than its width [11,14]. While the dependence on geometronductance can be obtained from the distribution of the
of some of the transport properties has been obtainedariables);.

perturbatively [15] in the metallic regime, only limited In order to understand the nature of the approximation
progress has been made on the extension of the DMPKsed in DMPK and to motivate our generalization, we will
equation to higher dimensions [16,17]. Currently, therebriefly review the derivation of DMPK following Ref. [4].
exists no theory for the statistics of transmission leveldn this approach, an ensemble of random conductors of
for all strengths of disorder beyond quasi-1D. This is amacroscopic lengthh > [, wherel is the mean free path,
particularly severe shortcoming; the important question ofs described by an ensemble of random matrices, whose
the nature of the expected novel kind of universality ofdifferential probability depends parametrically énand

the distribution of conductance near the metal-insulatocan be written agP; (M) = pyp(M)du(M). Hered u(M)
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is the invariant Haar measure of the group, given in termslescribed by a transfer matri{, is added to a conductor

of the parameters in (1) by of lengthL; and transfer matri#/, to form a conductor of
N lengthLl = L, + Ly and transfer matrid = MM, the

duM) = J(A) [l_[ dA; } du(u)du(v), (2)  probability densityp, (M) satisfies the combination rule

where proen D, = [ pu, M5 Y, (M) pa(ty) (@
J =TT = Al (3)  where the angular bracket represents an ensemble average.
i<j For Ly < [, the small change in the transfer matrix can

anddu(u) anddu(v) are the invariant measures of the be expected to lead to a small change in the parameters
unitary groupU(N). When a conductor of lengtli | A and one can expand the probability density as

a1’9L|()\) 1 Z L, (A )<6/\ )L, - (5)

S, + —
(Bl £ 9N a0 N,

Since the changes in, are small, we can use perturbation theory to evaluate their averages. We can also expand the
left hand side in powers af,. The resulting equation, keeping only terms first ordeLnon the left hand side, is
given by

(pri+1e(M)r, = pr, (A + )1, = pr,(A) + Z

<ZAC caV £a> + ZA (142 ) <Z)\’(1 + /\’)Ivcal4>
Lo Lo

Ag + Ap + 20,4 0
+ Z b b p Z/\’ 1+ )L/)v/ * éb*vébvca . (6)
a#b Aa = Ab Lo

Here the primed variables correspond to the added small conductor of length

The above equation (6) is quite general. It is based on the symmetry properties of the transfer matrices and the
combination principle for adding two conductors. These principles should remain valid beyond quasi-one-dimension.
It is the further approximations on the averages in Eq. (6) made in deriving DMPK that limits DMPK to quasi-one-
dimension. There are two major approximations involved.

(i) The “isotropy” assumption is used tkecouplethe averages over the products of the parametersd the unitary
matricesv. Once decoupled, the averages over the products of the unitary matrices alone can be explicitly obtained to
give

1

<v£a* />_N’

1 2
NN + 1)’ NN +1)°

while the average over the trace &ff is taken to be proportional thy. In particular,(3 . AL) = NL/I, wherel is the
mean free path, consistent with the Born approximation for the transmission amplitude valid foL.gmall
(i) The second approximation is based on the expectation that the averages of the prod{iasedfigher orders in
Lo and therefore negligible. In particular, this means that the terms proportiopal A&’ are neglected in Eq. (6).
The above two approximations, together with the identity

(lui It = (7)

] ox_ ok ) / —
<Uca Vep Ucbvca> -

Aag T Ap + 24,7, 1
> = —(N = D1 +24) + 20,(1 + A) > —— ), (8)
b(#a) Aa = Ab b(#a) Ao — Ap
lead to the well known DMPK equation
ap 2 1 ap(A)
= +
WD NI [A U+ AN =50 | ®)

whereJ(A) is defined in (3).

We will first show that beyond quasi-one-dimension, the second approximation fails, n@mely, is of the same
order inLy as) . A, and therefore cannot be neglected. In this case we will show that the total probability cannot be
conserved within the decoupling approximation. We will then introduce phenomenological parameters for the averages
over the products in (6) and show that the conservation of total probability requires a very specific generalization of
the DMPK equation involving a single additional parameter. Finally we will evaluate the corrections to the mean and
variance of the conductance using the generalized DMPK as a function of the parameter and interpret the results.

To go beyond quasi-1D, we start with a conductor of lengghralongx and widthW alongy andz, with scattering
potentialV(x, y,z). To see how the second approximation fails, we will consider, for simplicity, a square well potential
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adequately approximated by a repulsive delta func2 - 1]/4, whereQ = M*tM [3]. From flux conservation,
tion at x =0, ie., V(x,y,z) = Vr(y,2)8(x). Writ- Q! =3.03., whereX. is the third Pauli matrix with
ing the Schrédinger wave function a¥(x,y,z) = 1 and O replaced byN X N) 1 and 0 matrices. It
dii(y,2)¢i(x), where ¢;(y,z) are the transverse is easy to see thak is block diagonal, each block
eigenfunctions in the perfectly conducting lead, chosen tgiven by a sum of two matrice®; = (A + AT)/2 and
be real, we obtain the system of coupled equations for th&, = AtA. The important point is thak; is traceless,

N channels so t(A;) is given by t(X,) = tr(AtA). On the other
hand,X; does contribute to (A?) = tr(X; + X»)?, where
Gl (x) + k2 hi(x) = D kij(X);(x), (10)  tr(X))? = tr(A2 + A12 + ATA + AAT)/4. Clearly itis

of the same order as(fr;), and cannot be neglected.
where the prime denotes a derivative with respect Itis now straightforward to show that keeping thewfi
to x, k; are the wave vectors in channél and terms in (6) and using the decoupling approximation of
k;; are the coupling constants given by;;(x) = the averages o and A lead to a breakdown of the
@m/h) [ [dydzyi(y,2)Vr(y,2)¢i(y,2). We are conservation of total probability. Suppos®, A/2) =
interested in the transfer matrid that connects the «L,/I. Then using (7) for the averages ouerwe get a
solution ¢ on the left side of the conductor with that on correction term to the DMPK equation equal to
the right side. The transfer matrix satisfying the flux

conservation and time reversal symmetry can be written -2 Z(l + 2A,) op . (12)
in the form 249 A
1+ A A Clearly this is not a sum of total derivatives and the
M = % x| (11) resulting equation does not conserve total probability [20].
A 1+A . . ;
It is therefore clear that in order to go beyond quasi-

wherel andA areN X N matrices and\;; = «;;/2ik;. 1D, we need to relax both approximations. We propose a
Note thatA is pure imaginary but not symmetric. The simple phenomenological way to take care of both. Instead
parametersi that satisfy the DMPK equation in quasi- of computing the three averages in (6) explicitly, we start

1D are the eigenvalues of the matix=[Q + Q™' — | with the following very general ansatz:
Lo " LO 1
Z)‘lv/ ‘v, > = 75 <Z /\/(1 + AL, *Ulb*vlbv/ > = T L M1
<C c-ca ca Lo l - c c ca c C ca Lo l N + 1
Ly 2
AL+ A1) == 13
<§ c( c) |vca| L I N+ 1 M2, ( )

where u and w, are arbitrary dimensionless parameters, which can be functioNs o€learly, u; = u, = 1 gives
back the quasi-1D limit. Note that any additional parameter in the first term will serve only to redefine the mean free
path, so there are only two additional parameters possible. With this ansatz, Eq. (6) becomes

9 N —1 0 2 92 2 1 aJ 9
P —(1—M1m>2(1+2/\a)ﬁ+ B2 S 00+ 2 S PR NN+ A P

aL/n N+ 1 a2 N+ 1 J oAy 0Ag
(14)
We now demand that the parametesrs and u, are such | J—=J; y = ﬂ, (16)

that the right hand side can be written as a sum of total _ K2
derivatives in order to ensure the conservation of totathen (14) can be rewritten as
proEabiI;Ly. No';?_ t_ha’; '[hef sp”e(;LaI ch?iqel = Mthz 1_ " P 2 1

makes the coefficients of all three terms on the rig N = "

hand side of (14) the same, and then the three terms ca(?\(L/l ) N1
be written as a sum of derivatives after multiplying by d v 9P

J(X). It may appear at first that with two parameters X g Iy Aa(l + 27 (A) ar, | (17)
and three terms, no other choice is possible, except for , . )

a trivial multiplicative factor for all three terms which Wherel’ =1/, is a renormalized mean free path. Equa-
can be absorbed in the redefinition of the mean free patfion (17) is our one parameter generalization of the DMPK

However. we note that if we choose equation (9), where the paramegeenters in the renormal-
ization of the measure as in (16). Note that in the absence
N —1 242 ; : : :
1 — w = , (15)  of time reversal symmetry or in the presence of spin-orbit
N +1 N +1 scattering, the measure is changed in a similar way by an
together with a renormalization of the measure exponentiB = 2,4, respectively [14,21]. However, in our
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present case with time reversal symmepys= 1, and the We can try to interpret the phenomelogical parameter
exponenty is in general nonintegral. Clearly = 1 is by comparing with known results. The expectation value
the quasi-1D limit. From the relation betwegn andu,,  of any functionF(A), defined as

and the condition that botja; and w, must be positive,

N
we find the following restrictions: (FY)w/m = f F(N)pwn(A)J7 (M) l_[ dA,, (19)
N + 1 N + 1 a=1
0o<pu < —; 0< pupr < (18) . . . .
N —1 follows an evolution equation which can be obtained
This means that the only restriction on the parameté&s by multiplying both sides of (17) by/*(A)F(A) and
that it is positive. In general, it can be a function’of | integrating over all,, giving
IF oF
{F)s oF 0%F ¥ Aa(l + A g — Al + )5
— = 1+ 20) — + Al + ) | + = : =), (20
S L N R 0
wheres = L/I'. If y is independent oV, then we can| *Also at Department of Mathematics.
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