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Polydisperse mixtures are those in which components with a whole range of sizes are presen
is shown that the fluid phase of polydisperse hard spheres is thermodynamically unstable unles
density of large spheres decreases at least exponentially as their size increases. The instability i
respect to the large spheres crystallizing into multiple solid phases. [S0031-9007(99)09203-0]

PACS numbers: 64.10.+h, 64.75.+g, 82.70.Kj
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Mixtures of hard spheres in which spheres with a wid
range of diameters are present are a good first mode
emulsions. Emulsions are suspensions of droplets of
or fat in water; milk is perhaps the most familiar example
The droplets of an emulsion interact via a short-ran
repulsion, which is well represented by a hard-sphere
teraction. They are typically present with a wide range
diameters: from 0.1 to a few micrometers [1–3]. Mixture
in which a continuous range of sizes are present are term
polydisperse [4]. They are much less well understo
than systems which contain only one or two componen
For example, the phase behavior of single component h
spheres has been understood for thirty years: The fl
phase is stable up the point where the spheres occup
little less than half the volume of the suspension, there
then a first order transition to a solid. In contrast there a
no phase diagrams known for polydisperse hard sphe
Below, we examine polydisperse spheres with particu
emphasis on the largest spheres. We study a dilute fl
phase and show that, unless the density of the larg
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spheres decreases at least exponentially with increas
size, they crystallize out of the mixture at all densitie
The mixture is then never stable as a single fluid pha
The crystallization is driven by a depletion attractio
[5–7] between the large spheres, due to the sma
spheres. Depletion-induced separation of the larg
spheres has been observed in emulsions [3] but th
the floating of the droplets to the surface due to gravi
complicates the situation. Our demonstration applies
spheres at equilibrium.

Specifying a polydisperse mixture requires specifyin
the number density of spheres of every size. This is do
with a distribution functionxssd [4]. The number density
of spheres with diameters is thenrxssdds, wherer is
the total number density of spheres. Although our fin
result will apply to a whole class of distribution function
we choose a specific function for definiteness because i
widely used to describe emulsions [1,2] and powders [8
The distribution is called the log-normal distribution, an
it is defined by
xssd 
1 1 w2

s
p

2p lns1 1 w2d
exp

√
2

flnssysd 1 s3y2d lns1 1 w2dg2

2 lns1 1 w2d

!
, (1)
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wheres is the mean diameter andw is the standard de-
viation in units ofs. Note that for this distribution there
is no upper limit onw; its lower limit is zero and cor-
responds to a one component system. In the canon
ensemble a polydisperse mixture of hard spheres is co
pletely specified byxssd and the total number density of
spheresr; for hard spheres the temperature is not a re
vant variable. We can also use the total volume fracti
occupied by the spheresh instead ofr; we will start from
a dilute fluid and thereforeh will be small. Temperature
affects the de Broglie wavelength of each species, but
usual these wavelengths do not depend on density or co
position and so have no effect on the phase behavior [4

In order to make progress in understanding a polyd
perse mixture of hard spheres with a broad distribution
sizes we distinguish between the spheres with diamet
close to or less than the average diameters and spheres
with much greater diameters. Because of the large d
ferences in size and number density of these two sets
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spheres we will treat them differently. Not only is th
number density of the large spheres much less than
of the spheres with diameters nears but the fraction of
the fluid’s volume they occupy is much less. This is
becausexssd [Eq. (1)] decays much faster thans23 at
larges.

Consider the very large spheres of the distribution, tho
with diameterss ¿ s. These spheres are immersed in
“sea” of spheres much smaller than themselves, for e
large sphere there are many spheres with diameters
the same order ass or smaller. These smaller sphere
induce an effective attraction between the large sphe
of the polydisperse mixture: the well-known depletio
attraction first described by Asakura and Oosawa [5]. T
effect has been extensively studied theoretically [6,9,1
and in experiments on colloids which accurately mod
(polydisperse) hard spheres [11–13].

The depletion attraction is entropic in origin (it cann
have any other origin because in hard spheres there is
© 1999 The American Physical Society
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energy of interaction and so there is nothing but entrop
When two spheres approach each other, the volumes t
exclude to the other spheres overlap. Thus the volu
this pair of spheres denies to the other spheres decrea
and so the volume available to the other spheres increa
increasing their entropy. This is particularly pronounce
for a pair of large spheres surrounded by many sm
spheres; when the large spheres touch, the entropy of v
many small spheres increases.

For a pair of spheres of diameters immersed in an
ideal gas of spheres all of diameter,s0 ø s, the range
of the depletion attraction iss 1 s0. The strength of the
effective attraction can be measured by its value at cont
divided by the thermal energykT , u. This is the increase
in the entropy of the small spheres of sizes0 when a widely
separated pair of spheres of sizes is brought into contact
with each other. It is given by [5–7]

u  2rsyov , (2)

where rs is the density of the small spheres. Eac
large sphere excludes the smaller spheres from a spher
volume of diameters 1 s0, shown in Fig. 1 by the thick
lines around the spheres. When two large spheres
touching, the two volumes which they exclude to the sm
spheres overlap. The volume of overlap of these tw
volumes isyov . In Fig. 1 we see that this volume is
equal to that of two caps, each an end of a sphere
diameters 1 s0 and of heights0y2. We are considering
the limit of small s0ys and so the caps are very flat
Then the height of one of the caps a distancex from a
line drawn between the centers of the two large sphere
ss0y2d s1 2 x2yr2d, wherer is the radius of a cap at its
base;r2  ss0y2. The total volume of the two caps

yov  2
Z r

0
2px

√
s0

2

! √
1 2

x2

r2

!
dx 

p

4
ss02. (3)

Now, for polydisperse spheres distributed according
Eq. (1) the number density of spheres with diameters0

is rxss0dds0 and so, for a pair of spheres of diamete
s ¿ sc, the depletion attraction due to spheres wi
diameters#sc is

ussd  2
p

4
rs

Z sc

0
xss0ds02 ds0, (4)

FIG. 1. A schematic of two large touching spheres of diam
ter s, the shaded disks, with the volumes they exclude
smaller spheres of diameters0. These volumes are outlined
by the heavy curves and they overlap when the large sphe
touch.
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which depends on the cutoffsc. However, ifs is suffi-
ciently large so thats ø sc ø s, the integral depends
only weakly onsc becausexss0ds02 is small for values of
s0 $ sc. Indeed we can extend the upper limit of inte
gration to infinity without introducing a significant error.
The fact that we can do so justifies our splitting of the dis
tribution into two parts. We then have

ussd  2
3
2

h

s1 1 w2d2

s

s
, s ¿ s , (5)

where we have usedh  spy6drs3s1 1 w2d3. The
physical content of this approximation is that very larg
spheres only notice spheres with diameters arounds

and less; the density of the larger spheres is too small
add significantly to the depletion effect. Note that th
attraction increases linearly with the size of the spheress.

By using the idea of a depletion attraction we hav
reduced our polydisperse mixture to the larges tail of the
distribution interacting via an effective interaction which
is the sum of a hard-core interaction plus the short-ran
attraction of Eq. (5). The attraction of Eq. (5) favors
condensed phases where the large spheres are within
range of the attraction of each other. Competing again
this attraction is the translational entropy of the larg
spheres, which favors dilute phases. The translation
entropy of the large spheres is just that of an ideal g
mixture, so that, per large sphere of sizes, it is [4]

sFssd  1 2 lnfrxssdg , (6)

, const2 lnsrysd 2 s3y2d lnssysd

1
flnssysdg2

2 lns1 1 w2d
, (7)

where the second expression is obtained by substituti
Eq. (1) into the first and the constant is a function only o
w. The entropysF increases with sphere sizes because
the density decreases. But it only increases as the squ
of a log, which is a slower than linear increase.

The stability of the dilute fluid phase with respect to
condensation into a phase in which the density of larg
spheres is much higher is determined by the relativ
entropy of the dilute and condensed phases. Therefo
we require the entropy of the condensed phase. The ran
of the depletion attraction is,s. For spheres of diameter
s ¿ s, this is very small in comparison to the size of the
spheres. In thes ! ` limit, the ratio of the range of the
attraction to the size of the spheresys tends to zero. Stell
has shown [14,15] that, as the strength of the attractions
increased, a fluid of spheres with a zero-range attracti
does not condense to form a liquid but collapses to for
a close-packed solid (see also Refs. [16,17]). Therefo
we look not for condensing of the large spheres into
dense, liquidlike, phase but for collapse into a dense sol
We therefore require the entropy in the dense solid pha
By dense we mean sufficiently close to the close-pack
density that the sphere is within the range of the depletio
attraction of its neighbors.
4245
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The entropy per large spheresK of a dense solid phase
has two parts. The first is the entropy associated w
the motion of the large sphere and the second is the e
tropy gain of the small spheres when a large sphere
brought close to twelve neighboring spheres, as it is in
dense face-centered-cubic or hexagonal-close-packed
tice [18]. The first part is easily obtained from a cell the
ory [17,19]. This assumes that each sphere is restric
to a cage formed by its neighbors, which are taken to
fixed at their lattice positions. For a solid with a lattice
constanta, the center of mass of a sphere can move a d
tance,sa 2 sd from its lattice position without bumping
into any of its neighbors. The solid is formed due to a
tractive interactions so the spheres must be close enoug
each other to attract each other throughout the cage wh
their neighbors form. For this to be true,a must satisfy
a 2 s  cs, wherec &

1
2 . For monodisperse spheres

the entropy is simply the logarithm of the volumescsd3,
which is available to the center of mass of a sphere [19

When the spheres are polydisperse the situation is m
complicated. There is an upper limit to the range of siz
of spheres a single solid phase can tolerate [20]. A latti
can only accommodate spheres up to about its latti
constanta in diameter; larger spheres cannot fit into th
lattice position without overlapping with their neighbors
Spheres with diameters less than,sa 2 sd are so small
that they cannot be within the range of the depletio
attraction of all of their neighbors [17]. This mean
that the large spheres cannot all crystallize into a sing
solid phase. In order to crystallize they first fractionat
into many fractions, each containing spheres with on
a narrow range of diameters. The fractions can th
crystallize individually to produce separate solid phase
each containing spheres of a different size. The combin
fractionation and crystallization of polydisperse sphere
with zero-range attraction is discussed in Ref. [17]. Th
range of diameters is roughlya 2 s  cs. This width
of distribution contributes an amount.lnscsd to the
entropy of the solid [4,17].

The parameterc will be determined by a competition
between the depletion attraction which tends to reduce
and the motion of the large sphere which tends to increa
it. However, our results are not sensitive to the exa
value ofc and so we merely take it to be much less tha
one. Then the depletion attraction is almost equal to
value at contact [Eq. (5)], and the gain in entropy of th
small spheres per large sphere which solidifies is close
equal to minus six times Eq. (5). The entropy per larg
sphere of a solid phase of large spheres of sizes,

sK ssd . 4 lnscsd 2 6ussd, s ¿ s, c ø 1 .
(8)

The solid phases are much denser than the fluid pha
and so can be formed without increasing the volume occ
pied by the system. Thus if the solid phases have a high
entropy than the dilute fluid, the dilute fluid cannot be th
equilibrium phase, as the entropy can be increased at fix
4246
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volume by forming the solid phases. We now compa
the entropies of the fluid and solid phases. The entro
change per large sphereDs, when spheres of average di
ameters separate from an ideal gas to form a crystal pha
with a polydispersity of ordercs, is Eq. (8) minus Eq. (7)

Dsssd. const1 lnsc4rs3d 1 s3y2d lnssysd

2
flnssysdg2

2 lns1 1 w2d
1 9

h

s1 1 w2d2

s

s
,

s¿ s . (9)

When the volume fractionh is nonzero, this is positive
for sufficiently larges. In fact, it is positive for anyxssd
which decreases more slowly than exponentially withs.
Therefore,any fluid phase of hard spheres with a distr
bution which decreases more slowly than exponentially
unstablewith respect to the largest spheres crystallizin
into solid phases with narrow polydispersities. This is tru
however lowh is, as long as it is nonzero; this justifie
a posteriori our use of the Asakura-Oosawa approxim
tion for the depletion attraction, which is only valid at low
densities of the small spheres. A single solid phase c
contain only a narrow slice, of width a fraction ofs, of
the original distributionxssd, but spheres with diameters
ranging from infinity down to some large but finite limi
crystallize. Thus, an infinite number of solid phases form
each phase with a different range of sphere sizes. For
sake of clarity, when we say that the fluid phase is unsta
we mean that the solid phases have higher entropies.
fluid phase will, however, be metastable, i.e., stable w
respect to infinitesimal perturbations.

Very recently, Cuesta [21] has shown that, within th
Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL
[4] approximation, polydisperse hard spheres with
log-normal distribution with a sufficiently large standar
deviation w have a spinodal. Warren has also foun
a spinodal within the BMCSL approximation [22]. A
spinodal is where the fluid phase becomes unstable. T
difference between Cuesta’s result and ours is proba
due to one or both of two factors. The first factor is th
nature of the transition we have found. It is very strong
first order and so the transition occurs much before t
spinodal. The second factor is the poor accuracy of t
BMCSL approximation when there are spheres of wide
different sizes present [23]. Kofke and Bolhuis [24] hav
also studied the freezing of polydisperse hard spher
Their polydisperse mixture contains a much narrow
distribution of spheres and thus the small spheres, wh
are driving the behavior we have observed via the dep
tion attraction, are absent. As a result they observe v
different behavior. Very high pressures need to be exer
on the spheres in order for them to freeze, and the flu
phase is stable with respect to the solid phase up to hig
volume fractions than are monodisperse hard spheres.

In comparing our result with experiment it should b
remembered that in an emulsion there will be some up
size limits, beyond which there are essentially no particl
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Obviously, the number of phases which separate is then n
infinite. In addition, at sufficiently low volume fractions
the fluid phase of the emulsion will be stable. Th
fluid phase can be destabilized by adding small spher
to the distribution, thus increasing the strength of th
depletion attraction. For emulsions, micelles can be add
and indeed this is done in Bibette’s [3] procedure fo
fractionating emulsions.

In summary, a dilute suspension of polydisperse ha
spheres with a nonzero volume fraction and distribute
according to a distribution function which decays mor
slowly than exponentially is thermodynamically unstable
Spheres above some lower size limit crystallize due to t
depletion attraction induced between them by the presen
of the smaller spheres of the distribution. We have n
determined this lower limit but it is much larger than the
average sizes. The solid phase can only tolerate a ver
limited polydispersity [17,20], and the range of sphere
which crystallize is from this lower limit to infinity. Thus,
the number of solid phases which form is infinite. Thi
seems surprising at first but, in the larges tail of the
distribution, the depletion attraction is increasing mor
rapidly than the translational entropy in the fluid phas
and so there is no upper limit to the sizes of spher
which crystallize. The sublinear increase withs of the
translational entropy in the fluid is the crucial factor in
destabilizing the fluid phase. It inevitably leads to th
fluid being unstable when the attractions grow linearl
with sphere diameter. At high volume fractions, effect
not considered here may become important, in particula
interactions between the spheres with diameters arounds;
the small spheres may even freeze. Thus our conclusio
apply only to a dilute suspension in which the volum
fraction is small.

Finally, we conjecture that the instability we have foun
is not restricted to spheres or to attractions which ari
from depletion. Consider a general polydisperse flu
with a number densityrxslddl of elements of sizel, then
the translational entropy increases as minus the logarith
of xsld. If the attractive energy (overkT ) usld between
elements increases faster than lnxsld,

djusldj
dl

. 2
dflnxsldg

dl
, (10)

then the attractive energy is much larger than the trans
tional entropy for sufficiently largel. When this is true
we expect the mixture to be unstable with respect to th
largest elements condensing out to form a dense phase
order to minimize the energy.

It is with pleasure that I acknowledge discussions wit
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