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Depletion-Induced Demixing in Polydisperse Mixtures of Hard Spheres

Richard P. Sear*

Department of Physics, University of Surrey, Guildford, Surrey GU2 5XH, United Kingdom
(Received 10 November 1998

Polydisperse mixtures are those in which components with a whole range of sizes are present. It
is shown that the fluid phase of polydisperse hard spheres is thermodynamically unstable unless the
density of large spheres decreases at least exponentially as their size increases. The instability is with
respect to the large spheres crystallizing into multiple solid phases. [S0031-9007(99)09203-0]

PACS numbers: 64.10.+h, 64.75.+g, 82.70.Kj

Mixtures of hard spheres in which spheres with a widespheres decreases at least exponentially with increasing
range of diameters are present are a good first model afize, they crystallize out of the mixture at all densities.
emulsions. Emulsions are suspensions of droplets of oilThe mixture is then never stable as a single fluid phase.
or fat in water; milk is perhaps the most familiar example.The crystallization is driven by a depletion attraction
The droplets of an emulsion interact via a short-rangg5—-7] between the large spheres, due to the smaller
repulsion, which is well represented by a hard-sphere inspheres. Depletion-induced separation of the largest
teraction. They are typically present with a wide range ofspheres has been observed in emulsions [3] but there
diameters: from 0.1 to a few micrometers [1-3]. Mixturesthe floating of the droplets to the surface due to gravity
in which a continuous range of sizes are present are termewmplicates the situation. Our demonstration applies to
polydisperse [4]. They are much less well understoodspheres at equilibrium.
than systems which contain only one or two components. Specifying a polydisperse mixture requires specifying
For example, the phase behavior of single component hatthe number density of spheres of every size. This is done
spheres has been understood for thirty years: The fluidith a distribution functionc(o) [4]. The number density
phase is stable up the point where the spheres occupydd spheres with diameter is thenpx(o)do, wherep is
little less than half the volume of the suspension, there ishe total number density of spheres. Although our final
then a first order transition to a solid. In contrast there are@esult will apply to a whole class of distribution functions
no phase diagrams known for polydisperse hard spheregie choose a specific function for definiteness because it is
Below, we examine polydisperse spheres with particulawidely used to describe emulsions [1,2] and powders [8].
emphasis on the largest spheres. We study a dilute flui@ihe distribution is called the log-normal distribution, and
phase and show that, unless the density of the Iar?eﬂtis defined by
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wherew is the mean diameter and is the standard de- spheres we will treat them differently. Not only is the
viation in units of. Note that for this distribution there number density of the large spheres much less than that
is no upper limit onw; its lower limit is zero and cor- of the spheres with diameters nearbut the fraction of
responds to a one component system. In the canonic#te fluid’s volume they occupy is much less. This is so
ensemble a polydisperse mixture of hard spheres is conbecausex(o) [Eq. (1)] decays much faster than > at
pletely specified by (o) and the total number density of largeo.
spheres; for hard spheres the temperature is not a rele- Consider the very large spheres of the distribution, those
vant variable. We can also use the total volume fractiorwith diameterss > &. These spheres are immersed in a
occupied by the sphereginstead ofp; we will start from  “sea” of spheres much smaller than themselves, for each
a dilute fluid and thereforeg will be small. Temperature large sphere there are many spheres with diameters of
affects the de Broglie wavelength of each species, but abe same order ag or smaller. These smaller spheres
usual these wavelengths do not depend on density or cormduce an effective attraction between the large spheres
position and so have no effect on the phase behavior [4].of the polydisperse mixture: the well-known depletion
In order to make progress in understanding a polydisattraction first described by Asakura and Oosawa [5]. This
perse mixture of hard spheres with a broad distribution okffect has been extensively studied theoretically [6,9,10]
sizes we distinguish between the spheres with diameteend in experiments on colloids which accurately model
close to or less than the average diameteand spheres (polydisperse) hard spheres [11-13].
with much greater diameters. Because of the large dif- The depletion attraction is entropic in origin (it cannot
ferences in size and number density of these two sets dfave any other origin because in hard spheres there is no
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energy of interaction and so there is nothing but entropy)which depends on the cutoéf.. However, ifo is suffi-
When two spheres approach each other, the volumes thejently large so thatr < o, < o, the integral depends
exclude to the other spheres overlap. Thus the volumenly weakly ono . because(a')o'? is small for values of
this pair of spheres denies to the other spheres decrease$= o.. Indeed we can extend the upper limit of inte-
and so the volume available to the other spheres increasagation to infinity without introducing a significant error.
increasing their entropy. This is particularly pronouncedThe fact that we can do so justifies our splitting of the dis-
for a pair of large spheres surrounded by many smalfribution into two parts. We then have
spheres; when the Ia_rge spheres touch, the entropy of very 3 n o B
many small spheres increases. ulo) = TR = o>»>0o, (5
For a pair of spheres of diameter immersed in an (1+ w22 o

ideal gas of spheres all of diameter, < o, the range Wwhere we have used= (7/6)pa (1 + w?)3. The
of the depletion attraction is + ¢’. The strength of the physical content of this approximation is that very large
effective attraction can be measured by its value at contaspheres only notice spheres with diameters aroand
divided by the thermal energyT’, u. This is the increase and less; the density of the larger spheres is too small to
in the entropy of the small spheres of sizewhen awidely add significantly to the depletion effect. Note that the
separated pair of spheres of sizds brought into contact attraction increases linearly with the size of the spheres
with each other. It is given by [5-7] By using the idea of a depletion attraction we have

U= —pyvoy, ) re_:du_ced_our_ polydis_pers_e mixture to the_ Iargeai! of the_

‘ distribution interacting via an effective interaction which

where p, is the density of the small spheres. Eachig ye qym of a hard-core interaction plus the short-range

large sphere excludes the smaller spheres fromaspheri(:deg[raction of Eq. (5). The attraction of Eq. (5) favors

; f oF :
;(olume of d(ljan;eterr h+ o ST/?/}’]V” In Flg.l 1 by thehth'Ck condensed phases where the large spheres are within the
Ines around the spheres. When two large spheres a gnge of the attraction of each other. Competing against
touching, the two volumes which they exclude to the smal

h | h | ¢ | £ th his attraction is the translational entropy of the large
spheres overlap. The volume of overlap of these oy nares which favors dilute phases. The translational
volumes isv,,. In Fig. 1 we see that this volume is

ntropy of the large spheres is just that of an ideal gas
equal to that of two caps, each an end of a sphere o ge sp J g

diameters + ¢’ and of heightz’'/2. We are considering Ixture, so that, per large sphere of sizeit is [4]

the limit of small o//o and so the caps are very flat. sp(o) = 1 = In[px(o)], (6)
Then the height of one of the caps a distancom a _ _
line drawn between the centers of the two large spheres is ~ const—In(p/7) — (3/2)In(e /)
(¢'/2) (1 — x?/r?), wherer is the radius of a cap at its [In(a /o) .
base;? = oo’/2. The total volume of the two caps 2In(1 + w2)’ (7)

Vo = 2 fr 2y a 1 — % dx = = 5o, 3) where t.he second expression is obtqined by .substituting
0 2 4 Eg. (1) into the first and the constant is a function only of

] o ) w. The entropysr increases with sphere size because
Now, for polydisperse spheres distributed according tne density decreases. But it only increases as the square

Eqg. (1) the number density of spheres with diametér  f 5 log, which is a slower than linear increase.
is px(o')do’ and so, for a pair of spheres of diameter e stability of the dilute fluid phase with respect to
o> o, the gjepletlon attraction due to spheres with.ondensation into a phase in which the density of large
diameters=o., is spheres is much higher is determined by the relative
__7 e N2 5 entropy of the dilute and condensed phases. Therefore,
u(o) = Ead f x(o)odo, @ e require the entropy of the condensed phase. The range
of the depletion attraction iso. For spheres of diameter
o > 7, this is very small in comparison to the size of the
spheres. Intheo — <o limit, the ratio of the range of the

\ attraction to the size of the sphef¢ o tends to zero. Stell

O has shown [14,15] that, as the strength of the attractions is
\ increased, a fluid of spheres with a zero-range attraction

\ does not condense to form a liquid but collapses to form

- > a close-packed solid (see also Refs. [16,17]). Therefore,
G+0G' we look not for condensing of the large spheres into a

_ ) ) dense, liquidlike, phase but for collapse into a dense solid.
FIG. 1. A schematic of two large touching spheres of diame4ye therefore require the entropy in the dense solid phase.

ter o, the shaded disks, with the volumes they exclude to .
smaller spheres of diameter’. These volumes are outlined By dense we mean sufficiently close to the close-packed

by the heavy curves and they overlap when the large spherdd€nsity that the sphere is within the range of the depletion
touch. attraction of its neighbors.
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The entropy per large sphesg of a dense solid phase volume by forming the solid phases. We now compare
has two parts. The first is the entropy associated witlihe entropies of the fluid and solid phases. The entropy
the motion of the large sphere and the second is the erchange per large sphetes, when spheres of average di-
tropy gain of the small spheres when a large sphere iametero separate from an ideal gas to form a crystal phase
brought close to twelve neighboring spheres, as it is in avith a polydispersity of orde¢a, is Eq. (8) minus Eq. (7)
dense face-centered-cubic or hexagonal-close-packed lat- ~ 4 3 _
tice [18]. The first part is easily obtained from a cell the- As(o)= const+ In(c"pT”) + (3/2)In(o/7)
ory [17,19]. This assumes that each sphere is restricted _ [In(e/2)P n o
to a cage formed by its neighbors, which are taken to be 2In(1 + w?) (1 + w223’
fixed at their lattice positions. For a solid with a lattice
constantz, the center of mass of a sphere can move a dis-
tance~(a — o) from its lattice position without bumping When the volume fractiom is nonzero, this is positive
into any of its neighbors. The solid is formed due to at-for sufficiently larges. In fact, it is positive for any (o)
tractive interactions so the spheres must be close enoughthich decreases more slowly than exponentially with
each other to attract each other throughout the cage whichherefore,any fluid phase of hard spheres with a distri-
their neighbors form. For this to be true,must satisfy bution which decreases more slowly than exponentially is
a — o = co, Wherec < % For monodisperse spheres unstablewith respect to the largest spheres crystallizing
the entropy is simply the logarithm of the volumier)®,  into solid phases with narrow polydispersities. This is true
which is available to the center of mass of a sphere [19]. however lown is, as long as it is nonzero; this justifies

When the spheres are polydisperse the situation is mo posterioriour use of the Asakura-Oosawa approxima-
complicated. There is an upper limit to the range of sizesion for the depletion attraction, which is only valid at low
of spheres a single solid phase can tolerate [20]. A latticelensities of the small spheres. A single solid phase can
can only accommodate spheres up to about its latticeontain only a narrow slice, of width a fraction of, of
constanta in diameter; larger spheres cannot fit into thethe original distributionx(o), but spheres with diameters
lattice position without overlapping with their neighbors. ranging from infinity down to some large but finite limit
Spheres with diameters less thatta — &) are so small crystallize. Thus, an infinite number of solid phases form,
that they cannot be within the range of the depletioneach phase with a different range of sphere sizes. For the
attraction of all of their neighbors [17]. This means sake of clarity, when we say that the fluid phase is unstable
that the large spheres cannot all crystallize into a singleve mean that the solid phases have higher entropies. The
solid phase. In order to crystallize they first fractionatefluid phase will, however, be metastable, i.e., stable with
into many fractions, each containing spheres with onlyrespect to infinitesimal perturbations.

a narrow range of diameters. The fractions can then Very recently, Cuesta [21] has shown that, within the
crystallize individually to produce separate solid phasesBoublik-Mansoori-Carnahan-Starling-Leland (BMCSL)
each containing spheres of a different size. The combinefll] approximation, polydisperse hard spheres with a
fractionation and crystallization of polydisperse spheredog-normal distribution with a sufficiently large standard
with zero-range attraction is discussed in Ref. [17]. Thedeviation w have a spinodal. Warren has also found
range of diameters is roughly — o = co. This width  a spinodal within the BMCSL approximation [22]. A
of distribution contributes an amountin(co) to the spinodal is where the fluid phase becomes unstable. The
entropy of the solid [4,17]. difference between Cuesta’s result and ours is probably

The parameter will be determined by a competition due to one or both of two factors. The first factor is the
between the depletion attraction which tends to reduce mature of the transition we have found. It is very strongly
and the motion of the large sphere which tends to increasiirst order and so the transition occurs much before the
it. However, our results are not sensitive to the exacspinodal. The second factor is the poor accuracy of the
value ofc and so we merely take it to be much less thanBMCSL approximation when there are spheres of widely
one. Then the depletion attraction is almost equal to itglifferent sizes present [23]. Kofke and Bolhuis [24] have
value at contact [Eqg. (5)], and the gain in entropy of thealso studied the freezing of polydisperse hard spheres.
small spheres per large sphere which solidifies is closelfheir polydisperse mixture contains a much narrower
equal to minus six times Eq. (5). The entropy per largedistribution of spheres and thus the small spheres, which
sphere of a solid phase of large spheres of size are driving the behavior we have observed via the deple-
tion attraction, are absent. As a result they observe very
different behavior. Very high pressures need to be exerted

(8) on the spheres in order for them to freeze, and the fluid

The solid phases are much denser than the fluid phagghase is stable with respect to the solid phase up to higher
and so can be formed without increasing the volume occuvolume fractions than are monodisperse hard spheres.
pied by the system. Thus if the solid phases have a higher In comparing our result with experiment it should be
entropy than the dilute fluid, the dilute fluid cannot be theremembered that in an emulsion there will be some upper
equilibrium phase, as the entropy can be increased at fixesize limits, beyond which there are essentially no particles.
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