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Universality and Crossover of Directed Polymers and Growing Surfaces
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We study Kardar-Parisi-Zhang surfaces on Euclidean lattices and directed polymers on hierar
lattices subject to different distributions of disorder, showing that universality holds, at odds with re
results on Euclidean lattices. Moreover, we find the presence of a slow (power-law) crossover to
the universal values of the exponents and verify that the exponent governing such crossover is un
too. In the limit of a (1 1 e)-dimensional system we find, both numerically and analytically, that t
crossover exponent is1y2. [S0031-9007(99)09043-2]
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The problem of directed polymers in random medi
(DPRM) [1] has attracted much attention in the last te
years, both as a paradigm in the area of disordered s
tems and for the richness of its connections with other sy
tems, in particular noisy surface growth governed by th
Kardar-Parisi-Zhang (KPZ) equation [2,3]. Both problem
show space and time scaling behavior, and the conn
tion between the two manifests through a corresponden
between their exponents. Within the KPZ context, it ha
been recently proposed that the model could be nonuniv
sal [4]: The exponents characterizing the surface grow
depend on the details of the driving noise, at least for
substrate dimensiond $ 2. These results have been ob
tained via a lattice formulation of the KPZ equation wher
the strong coupling limit (which is the nontrivial regime
of surface growth) is shown to be completely equivale
to the ground state problem of DPRM’s. Thus, we ca
expect nonuniversality in the DPRM context as well.
is therefore interesting to reexamine this issue both with
the KPZ context and for DPRM’s.

Before proceeding further, it is useful to recall the defi
nition of the exponents within the two contexts, and the
relations. Starting from a flat substrate of characteris
linear sizeL, the roughness of a KPZ surface grows in
tially as Wst, Ld , tb ; at longer times it saturates, and i
scales withL as Wst, Ld , Lx . The characteristic time
t between the two regimes scales with the size of th
system ast , Lz . These exponents are not indepen
dent: the relation (rooted in the Galilean invariance of th
KPZ equation)x 1 z ­ 2 holds in every dimension [2,3].
Moreover, consistency imposesx ­ zb. Therefore there
is just a single independent exponent. In the langua
of DPRM’s, the exponentb governs the fluctuations of
the ground state energy,DE ­

p
ksEGS 2 kEGSld2l , tv

with v ­ b (here we use the Greek alphabet letters com
monly used in the literature); the transverse wanderin
fluctuations of the ground state polymer are governed
the exponentz ­ 1yz, Dl , tz . The relationv ­ 2z 2

1 holds in every dimension (it is related tox 1 z ­ 2).
The exponents are known exactly only ford ­ 1:

b ­ 1y3 andz ­ 3y2 (v ­ 1y3, z ­ 2y3). At present
there are no exact solutions ford $ 2, and our knowledge
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of the exponents relies on numerical simulations. Yet, t
situation is not completely clear even numerically: As
has been pointed out recently [4], in the context of surfa
growth (KPZ equation) different distributions of disorde
seem to give different values of the exponents. This res
has been interpreted as a case of nonuniversality. Inde
using a distribution of the energies as

psxd ­
s1 2 ad

2
s1 2 jxjd2a ,

x [ s21, 1d, a . 21 ,
(1)

in [4] it was found that the values of the exponents d
pended on the value ofa in (1). In [4] the exponents
were calculated only ford $ 2, assuming that univer-
sality holds ind ­ 1, where the exponents are exactl
known (it is worth mentioning that the exact knowledg
of the exponents is based on taking a Gaussian distri
tion of disorder).

To settle this problem, we have performed simulatio
of surface growth ond ­ 1 Euclidean lattices. We
measure theb exponents ruling the growth in time of the
roughnessWstd starting from a flat substrate (the othe
exponents can be obtained from the above mention
relations). We used three different values ofa, namely
a ­ 0.5, 0.75, 0.9 (in each case we also verified that w
are still far from saturation). As can be seen from Fig.
a power law with exponent1y3 (the theoretical one) is
not suited to fit the numerical power laws obtained.
naive fit would give insteadb ­ 0.28, 0.26, and 0.24,
respectively. Even fitting an exponent on the last fo
points witha ­ 0.5 would giveb ­ 0.30 (results for the
most commonly used case, the uniform distribution wi
a ­ 0, are not given since the fitted exponent isb ­
0.31 and the crossover is less evident). To understa
whether this is a case of nonuniversality or of crossov
we also analyze the running exponents (see Fig. 2a).
the numerical points shown in Fig. 1 are taken at fixe
time ratiostn11ytn ­ r, then the running exponents ar
defined as

bn ­ logr
Wstn11d
Wstnd

, (2)
© 1999 The American Physical Society
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FIG. 1. Roughness of KPZ surfaces for exponentsa ­
0.5, 0.75, and 0.9 in Eq. (1). The dashed line represents
power law with exponentb ­ 1y3, the dotted lines represent
temptative fits. Each numerical point is the average fro
10 000 independent disorder realizations.

where, in the present case,r ­ 3y2. We find that the
running exponents approach their universal valueb ­
1y3. In a log-log plot (Fig. 2b) it is then easy to see tha
such an approach is ruled by a power law with a univers
(independent ofa) exponentg ­ 0.23 6 0.02.

The results obtained are amenable of different interp
tations: either thed ­ 1 case is nonuniversal too, agains
naive expectations, or it is indeed affected by extreme
slow crossovers. The analysis of the running expone
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FIG. 2. (a) Running exponents for the roughness as in Fig.
(b) Log-log plot of the difference of the running exponent
from the theoretical value1y3. The dashed line represents
power law with exponent0.23.
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seems to sustain the latter hypothesis. The behavior
higher dimensions is unfortunately much more difficult t
extract. Indeed, we have also performed simulations
d ­ 2, but the results, although similar, are somehow le
conclusive due to numerical limitations: in order to get re
liable statistics ind ­ 1, each numerical point is averaged
over 10 000 independent realizations. Moreover, univer
sality in the crossover is evident only for times$100.
Matching both conditions ford $ 2 goes beyond the ca-
pabilities of our present computing facilities.

To investigate the high dimensional behavior of thi
crossover we resort then to analytical and numeric
calculations on hierarchical lattices, where the sam
behavior emerges.

The main idea of hierarchical lattices is that it is
possible to build them iteratively, given a fundamenta
bond-block transformation, where a bond is substitute
by a block as in Fig. 3. The inverse process can b
seen as a coarse graining transformation. Indeed, us
this transformation, it can be shown that real-spac
renormalization becomes exact on hierarchical lattice
We exploit this property to write the corresponding
renormalization for the ground state of polymers o
hierarchical lattices with bond disorder taken from a give
distribution.

Given the ground state energy distribution at a certa
renormalization stepn, it is possible to compute the
distribution of the ground state energy at stepn 1 1 via
the equation

Pn11sxd ­ bQnsxd
∑Z `

x
Qnsx0d dx0

∏b21

, (3)

where b is the number of sides as from Fig. 3.Qnsxd
is the convolution of two probability distributionsPnsxd,
Qnsxd ­ Pnsxd p Pnsxd. The right-hand side (rhs) of
Eq. (3) represents the probability that one of theb sides
has an energyx, while all the others have an energy
greater thanx. Because of the choice of the minimum
energy, this is also the probability that the ground sta
energy isx at stepn 1 1.

The number of sidesb can be related to afractal
dimension of the lattice. Indeed, at every renormalizatio
step we rescale the length of the lattice of a factor2,
and the volume of a factor2b. Therefore the dimension
of the system can be related tob via the formulaD ­
1 1 log2b (or, correspondingly,d ­ D 2 1 ­ log2b).

FIG. 3. Iterative procedure to build a hierarchical lattice: th
bond on the left schematically represents the lattice at stepn;
then it is used to build the lattice at stepn 1 1, represented on
the right. In the picture only three of theb sides are explicitly
drawn.
4237
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Given Eq. (3), the calculation of the exponentv

reduces in principle to a numerical iteration of (3) give
a starting distributionP0sxd. The ground state energy
fluctuation exponent can be computed as

vn ­ log2
sn11

sn
, (4)

wheresn is the variance ofPnsxd. Asymptotically, the
running exponentvn tends to a constantv`. Possible
nonuniversalities should then emerge using different d
tributions. Yet, calculations ofv` show that different dis-
tributions give the same asymptotic values up tob ­ 20
(corresponding to a substrate dimensiond ­ 4.32 . . .).

As a by-product, we see that hierarchical lattices
fractal dimensionD ­ d 1 1 give values of thev

exponents close to the results on Euclidean lattices
the same dimension [D ­ 2, vhier ­ 0.30s1d, veucl ­
1y3; D ­ 3, vhier ­ 0.22s1d, veucl ­ 0.24s1d; D ­ 4,
vhier ­ 0.15s1d, veucl ­ 0.16s1d].

Although universality holds for directed polymers on
hierarchical lattices, we find that the running exponen
vn show a power-law crossover toward their asymptot
valuev` (see Fig. 4a):

jv` 2 vnj , 22gsn11d, (5)

2n11 being the length of the lattice.
The power-law exponentg does not depend on the de

tails of P0sxd, that instead are responsible of the amplitud
of the crossover. We used Gaussian distributions and d
tributions of the form (1), as considered in [4].
4238
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In Fig. 5 we show the running exponent approach t
v` for different values ofb (all the numerics in this case
have been done using Gaussian distributions; as alrea
explained above, universality of the crossover exponent
verified). We find that, asb ! 1 theng ! 1y2.

We verify that indeed gsb ­ 11d ­ 1y2 via a
b ­ 1 1 e expansion of Eq. (3) on the same lines
in Ref. [5]: there a Gaussian microscopic distributio
P0sxd was used, and no crossover effects were di
covered. We use instead gamma distributions of th
kind Psx; nd ­

1
Gsnd x

n21e2x , defined for x . 0: these
distributions are partially stable under convolution;
indeed, Psx; nd p Psx; nd ­ Psx; n0 ­ 2nd, that is, the
convolution of two gamma distributions is still a gamma
distribution (although characterized by a different expo
nentn0).

We assume that the distribution at iterationn is given
by

Pnsxd ­ P0
nsxd f1 1 eFnsxdg , (6)

whereP0
nsxd is the distribution at iterationn for the one-

dimensional system (b ­ 1), simply given byP0
nsxd ­

P0
n21sxd p P0

n21sxd ­ Q0
n21sxd. The perturbationFnsxd

must satisfy the relationZ `

0
FnsxdP0

nsxd dx ­ 0 . (7)

We expand Eq. (3) for smalle, keeping only terms of
ordere:
Q0
nsxd 1 eQ0

nsxdFn11sxd ­ Q0
nsxd 1 e

Ω
Q0

nsxd 1 Q0
nsxd ln

Z `

x
Q0

nsx0d dx0 1 2P0
nsxd p fP0

nsxdFnsxdg
æ

. (8)
or

la
r-

ete
The linear terms ine are a recursion relation for the
perturbationFsxd,

Q0
nsxdFn11sxd ­ Q0

nsxd 1 Q0
nsxd ln

Z `

x
Q0

nsx0d dx0

1 2P0
nsxd p fP0

nsxdFnsxdg . (9)

All the terms in (9) are proportional toQ0
nsxd except for

the last term on the rhs. We deal with this last term wi
theansatzequation

P0
nsxd p fP0

nsxdfn,ssxdg ­ ln,sQ0
nsxdfn11,ssxd , (10)

whose purpose is to extract from the left-hand sid
expression a term proportional toQ0

nsxd that can be then
simplified in (9). If among the solutions of Eq. (10
it is possible to find setsffn,sg that are complete and
orthonormal for anyn, then we can writeFnsxd ­
th

e

)

P
s an,sfn,ssxd and (9) becomes a recursion relation f

thean coefficients.
Any function of the form

fn,ssxd ­
s21ds
p

s!

s
Gsnnd

Gsnn 1 sd
1

P0
nsx; nnd

ds

dxs

3 fxsP0
nsx; nndg (11)

satisfies Eq. (10) with “eigenvalues”

ln,s ­

s
Gsnn 1 sdGsnn11d
GsnndGs2nn 1 sd

. (12)

Equation (11) is nothing other than Rodrigues’ formu
for the generalized Laguerre polynomials, properly no
malized, that are known to be orthogonal and compl
with weight P0

nsxd [6]. The first three such polynomials
are
fn,0sxd ­ 1 , fn,1sxd ­ sx 2 nndy
p

nn ,

fn,2sxd ­ fx2 2 2snn 1 1dx 1 nnsnn 1 1dgy
q

2nnsnn 1 1d . (13)

Substituting the series expansion ofFnsxd in (9), it is possible to read the iteration equations for the coefficientsan,s:
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FIG. 4. (a) Running exponents forb ­ 8 with different
disorder distributions, namely Gaussian and as from Eq. (4
(b) Log-log plot of the difference of the same running
exponents from their asymptotic value, clearly showing th
power-law behavior withg ­ 0.80s2d. The valueb ­ 8 has
been chosen for numerical stability.

an11,0 ­ 1 1 Kn,0 1 2ln,0an,0 ,

an11,s ­ Kn,s 1 2ln,san,s s . 0 ,
(14)

with

Kn,s ­
Z `

0
dxP0

n11sxdfn11,s ln
Z `

x
P0

n11sx0d dx0. (15)

It is straightforward to show thatK0 ­ 21; moreover,
from Eq. (7) we finda0,0 ­ 0 and thereforean,0 ­ 0
for any n, as required. It is also possible to show
that 2ln,s , 1 if s . 2 (indeed the leading behavior for
large nn, that is for largen, is 2ln,s , 212sy2f1 1 ss 2

1y2dsy2nng1y2). Therefore all the iterations equations (14
with s . 2 converge and are asymptotically irrelevant fo
the scaling behavior. We are left withs ­ 1, 2. Indeed
an,1 andan,2 are the only coefficients that are relevant fo
the computation ofvn from (4).
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FIG. 5. Log-log plot of the difference of the running expo-
nents from their asymptotic value for different values ofb.
The dashed line represents a power law with exponent21y2.
All the data have been obtained using Gaussian distributions
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We can then compute the variances2
n as

s2
n ­ kx2ln 2 kxl2

n

­ nn 1 es
q

2nnsnn 1 1d an,2 1 2
p

nn an,1d .

(16)
We can write then

s
2
n11

s2
n

­ 2

"
1 1 e

√
p

2 Kn,2 1 2
Kn,1

p
nn11

!#
, (17)

where we keep only the leading and next-to-the-lead
terms. From (17) the ordere correction to thev exponent
can be computed. Indeed,s

2
n11ys2

n ­ 22vn , and since
nn11 ­ 2n11n0, we can write

vn ­
1
2

1 e

p
2

ln2
Kn,2 1 e

2
ln2

p
n0

Kn,122fsn11dy2g.

(18)
Furthermore, bothKn,1 and Kn,2 have a power-law con-
vergence to their asymptotic value, with exponent1y2
(this result can be obtained using a Gaussian approxi
tion in their evaluation). As a result the rhs of (18) co
verges with exponentg ­ 1y2 to v`.

In conclusion, we have found numerically that both th
KPZ equation ond ­ 1 Euclidean lattices and DPRM on
hierarchical lattices show universal behavior, being t
exponentv independent on the details of the disord
distribution. Yet, the presence of nontrivial power la
(therefore “slow”) crossover effects has been unveile
Moreover, we have shown that the crossover expon
g is universal. We have also shown numerically a
analytically thatg ! 1y2 whenb ! 1.

Since we find the same qualitative slow crossover beh
ior both ond ­ 1 Euclidean lattices and on hierarchica
lattices of any dimension, it is reasonable to think that t
same behavior is present also ford $ 2 Euclidean lattices,
providing a way out of the nonuniversality claimed in [4
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