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Universality and Crossover of Directed Polymers and Growing Surfaces
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We study Kardar-Parisi-Zhang surfaces on Euclidean lattices and directed polymers on hierarchical
lattices subject to different distributions of disorder, showing that universality holds, at odds with recent
results on Euclidean lattices. Moreover, we find the presence of a slow (power-law) crossover toward
the universal values of the exponents and verify that the exponent governing such crossover is universal
too. In the limit of a ( + €)-dimensional system we find, both numerically and analytically, that the
crossover exponent is/2. [S0031-9007(99)09043-2]

PACS numbers: 61.41.+e

The problem of directed polymers in random mediaof the exponents relies on numerical simulations. Yet, the
(DPRM) [1] has attracted much attention in the last tensituation is not completely clear even numerically: As it
years, both as a paradigm in the area of disordered sy&as been pointed out recently [4], in the context of surface
tems and for the richness of its connections with other sysgrowth (KPZ equation) different distributions of disorder
tems, in particular noisy surface growth governed by theseem to give different values of the exponents. This result
Kardar-Parisi-Zhang (KPZ) equation [2,3]. Both problemshas been interpreted as a case of nonuniversality. Indeed,
show space and time scaling behavior, and the connecising a distribution of the energies as

tion between the two manifests through a correspondence (1 — a)

between their exponents. Within the KPZ context, it has px) = > (1= Ixhe,

been recently proposed that the model could be nonuniver- @
sal [4]: The exponents characterizing the surface growth x€e (11, a>-1,

depend on the details of the driving noise, at least for
substrate dimensiod = 2. These results have been ob-
tained via a lattice formulation of the KPZ equation where
the strong coupling limit (which is the nontrivial regime

of surface growth) is shown to be completely equivalen sality holds ind = 1, where the exponents are exactly
to the ground state problem of DPRM's. Thus, we can nown (it is worth mentioning that the exact knowledge

expect nonuniversality in the DPRM context as well. Itg:;:]hgf ﬁi(spocigggts 's based on taking a Gaussian distribu-
is therefore interesting to reexamine this issue both within To settle this problem, we have performed simulations

th%KfPf corntext;::d 1;orrtlﬁPrRil§[/lis. ful to recall the d ﬁ_of surface growth ond = 1 Euclidean lattices. We
elore proceeding Turther, 1L IS Usetul to recafl tne aetl- o ¢ e thg8 exponents ruling the growth in time of the

e o eltoughnessi (1) staring fom a flat ubstste (e other
: o 9 ~exponents can be obtained from the above mentioned
linear sizeL, the roughness of a KPZ surface grows ini-

. B . . .. relations). We us_ed three different valueSC_Q_fnamer
ggg)l/eeslswvig\tigs WEt ,La)ltlogg}(er %ﬁ:scgasr:gﬁ;?é ?irrfelt a = 0.5,0.75,0.9 (in each case we also verified that we

Ve ) ) : are still far from saturation). As can be seen from Fig. 1,
7 between the two regimes scales with the size of th

system asr ~ L. These exponents are not indepen- power law with exponent/3 (the theoretical one) is

dent: the relation (rooted in the Galilean invariance of thenOt suited to fit the numerical power laws obtained. A

; — i . ; haive fit would give instead3 = 0.28,0.26, and 0.24,
KPZ equatlon)u(_+ <= _2ho|dsm every dimension [2,3]. respectively. Even fitting an exponent on the last four
Mqreover, consistency Imposgs= 2f3. Therefore there oints witha = 0.5 would give 8 = 0.30 (results for the
L;JS;'[R?\A?;”?:; Iggsgsgggn;o?/)gﬁget?]té ﬂlgcttS:ti(l)a;]nsgg?g ost commonly used case, the uniform distribution with

' = 0, are not given since the fitted exponent@s=
the ground state energhE = /{((Egs — (Egs))?) ~ t* “« gV ! ! xP A

ithw — 3 (h the Greek alohabet lett 0.31 and the crossover is less evident). To understand
with @ = f3 (here we use the Greek alphabet letters COMhether this is a case of nonuniversality or of crossover,

monly gsed in the literature); the transverse wandering\le also analyze the running exponents (see Fig. 2a). If
fluctuations of the ground state polymer are governed the numerical points shown in Fig. 1 are taken at fixed

the exponent = 1/z, Al ~ t¢. The relationw = 2{ — : . - :
i imension (it i time ratiost,+1/t, = r, then the running exponents are
1 holds in every dimension (it is related jo + z = 2). w1/ r g exp

% [4] it was found that the values of the exponents de-
pended on the value af in (1). In [4] the exponents
were calculated only fod = 2, assuming that univer-

The exponents are known exactly only far= 1: defined as
B =1/3andz = 3/2 (v = 1/3, { = 2/3). At present B, = log W(tn+1) )
there are no exact solutions fér= 2, and our knowledge " TW(t,)
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seems to sustain the latter hypothesis. The behavior in
o——oa=12 _ higher dimensions is unfortunately much more difficult to
e =3/ -7 extract. Indeed, we have also performed simulations in

d = 2, but the results, although similar, are somehow less
conclusive due to numerical limitations: in order to get re-
liable statistics inl = 1, each numerical point is averaged
over 10000 independent realizations. Moreover, univer-
sality in the crossover is evident only for times100.
Matching both conditions fo# = 2 goes beyond the ca-
pabilities of our present computing facilities.

To investigate the high dimensional behavior of this
crossover we resort then to analytical and numerical
calculations on hierarchical lattices, where the same
behavior emerges.

The main idea of hierarchical lattices is that it is

‘ : possible to build them iteratively, given a fundamental
10 100 1000 bond-block transformation, where a bond is substituted
t by a block as in Fig. 3. The inverse process can be
FIG. 1. Roughness of KPZ surfaces for exponemts= SE€€N as a coarse graining transformation. Indeed, using
0.5,0.75, and 0.9 in Eq. (1). The dashed line represents athis transformation, it can be shown that real-space
Fowetr t|_61W \;\_/{th eépor;]enﬁ = 1_/3i the OIIOFteOtlhlineS represefnt renormalization becomes exact on hierarchical lattices.
emptative Tits. ~Each numerical point Is the average Tomye exploit this property to write the corresponding
10000 independent disorder realizations. renormalization for the ground state of polymers on
hierarchical lattices with bond disorder taken from a given
) ] distribution.
where, in the present case,= 3/2. We find that the  Gijyen the ground state energy distribution at a certain
running exponents approach their universal valie=  yenormalization step:, it is possible to compute the

1/3. In a log-log plot (Fig. 2b) it is then easy to see thatgistribution of the ground state energy at siep- 1 via
such an approach is ruled by a power law with a universaje equation

(independent ofr) exponenty = 0.23 = 0.02. " b1

The results obtained are amenable of different interpre- Poi1(x) = b0, (x) [[ 0, (") dx/} ) (3)
tations: either thel = 1 case is nonuniversal too, against x
naive expectations, or it is indeed affected by extremelywhere b is the number of sides as from Fig. 3,,(x)
slow crossovers. The analysis of the running exponents the convolution of two probability distributions,, (x),
0,(x) = P,(x) * P,(x). The right-hand side (rhs) of
Eq. (3) represents the probability that one of theides
has an energy, while all the others have an energy
greater thanc. Because of the choice of the minimum

<W(t)>

0 500 1000 1500
0.32 , :

energy, this is also the probability that the ground state
0.3 WW/Q——_Q @) energy isx at stepn + 1.
_ 028 ¢ The number of side$ can be related to dractal
< 026 | o—oa=1/2 dimension of the lattice. Indeed, at every renormalization
0.24 o—oa=3/4 step we rescale the length of the lattice of a facor
' t+—>a=09 and the volume of a factdb. Therefore the dimension
0.22 — of the system can be related tovia the formulaD =
T (b) 1 + log,b (or, correspondinglyy = D — 1 = log,b).
o« 0.1 ¢ ~
o
-
A A [
10 100 1000

t
FIG. 3. lterative procedure to build a hierarchical lattice: the

FIG. 2. (a) Running exponents for the roughness as in Fig. 1bond on the left schematically represents the lattice at step
(b) Log-log plot of the difference of the running exponentsthen it is used to build the lattice at step+ 1, represented on
from the theoretical valud /3. The dashed line represents a the right. In the picture only three of thesides are explicitly

power law with exponen.23. drawn.

4237



VOLUME 82, NUMBER 21 PHYSICAL REVIEW LETTERS 24 My 1999

Given Eg. (3), the calculation of the exponent In Fig. 5 we show the running exponent approach to
reduces in principle to a numerical iteration of (3) given w.. for different values ob (all the numerics in this case
a starting distributionPy(x). The ground state energy have been done using Gaussian distributions; as already

fluctuation exponent can be computed as explained above, universality of the crossover exponent is
il verified). We find that, a8 — 1 theny — 1/2.
w, = log, g 4) We verify that indeed y(b =17) =1/2 via a

n

_ . _ b =1+ € expansion of Eq.(3) on the same lines
where o, is the variance of?,(x). Asymptotically, the in Ref. [5]: there a Gaussian microscopic distribution
running exponento,, tends to a constanb... Possible py(x) was used, and no crossover effects were dis-
nonuniversalities should then emerge using different discovered. We use instead gamma distributions of the
tr!but!ons. Yet, calculations ab.. shpw that different dis- ki.nd.P().c; v) = ﬁx”_‘le‘x, defined forx > 0: thgse
tributions give the same asymptotic values upbte= 20 gjstributions are partially stable under convolution;
(corresponding to a substrate dlmer}sabFF 4_.32...)._ indeed, P(x; ») * P(x;») = P(x;v' = 2v), that is, the

As a by-product, we see that hierarchical lattices ofconyolution of two gamma distributions is still a gamma
fractal dimensionD =d + 1 give values of thew  jstribution (although characterized by a different expo-
exponents close to the results on Euclidean lattices Ofﬁenty’).
the same dimensiond] = 2, wnier = 0.30(1), @eu = We assume that the distribution at iteratieris given
1/3; D = 3, wpier = 0.22(1), weuel = 0.24(1); D = 4, by
®hier = 0.15(1), weuer = 0.16(1)].

Although universality holds for directed polymers on P,(x) = P°(x)[1 + €®,(x)], (6)
hierarchical lattices, we find that the running exponents

, show a power-law crossover toward their asymptoticWherePg(x) is the distribution at iteratiom for the one-

value w.. (see Fig. 4a): dimensional systemb(= 1), simply given by P(x) =
) PP (x) * PY_ (x) = Q°_,(x). The perturbation®, (x)
lwee — @, | ~ 277770, (5)  must satisfy the relation
2"*1 peing the length of the lattice. %
The power-law exponent does not depend on the de- [ ®,(x)P(x)dx = 0. )]
0

tails of Py(x), that instead are responsible of the amplitude
of the crossover. We used Gaussian distributions and dis- We expand Eq. (3) for smal, keeping only terms of
tributions of the form (1), as considered in [4]. | ordere:

0%(x) + €Q0(x) D11 (x) = QOx) + e{Q,?(x) + oo [ ol ax’ + 2pY(0) + [P,9<x><1>n<x>]}. ®)

The linear terms ine are a recursion relation for thé D ansdns(x) and (9) becomes a recursion relation for
perturbation® (x), thea, coefficients.

o Any function of the form
0U)P, 1) = 00 + 0l [ 00 a

¢ (X) _ (_1)5 F(Vn) 1 d’
+ 2P%(x) * [PO(x)®, (x)]. 9) st \T(v, + 5) POx;v,) dx®
All the terms in (9) are proportional t@°(x) except for X [Py (i va)] (11)

the last term on the rhs. We deal with this last term withsatisfies Eq. (10) with “eigenvalues”
the ansatzequation
A _ \/F(Vn + S)F(VIH—I)

PO(x) % [PY(x) s ()] = Ay QUx) 15 (x),  (10) T T2, +5) ° (12)
whose purpose is to extract from the left-hand sideEquation (11) is nothing other than Rodrigues’ formula
expression a term proportional ?(x) that can be then for the generalized Laguerre polynomials, properly nor-
simplified in (9). If among the solutions of Eq. (10) malized, that are known to be orthogonal and complete
it is possible to find set§¢, ] that are complete and with weight P%(x) [6]. The first three such polynomials
orthonormal for anyn, then we can write®,(x) = | are

$nolx) =1, Gni(x) = (x — vu)//va,
¢n,2(x) = [x2 - 2(Vn + l)x + Vn(Vn + 1)]/ 2Vn(Vn + 1)- (13)

Substituting the series expansion®f(x) in (9), it is possible to read the iteration equations for the coefficients
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02 We can then compute the varianeg as
0t ',,..-;':G'ff':; 1 o2 = (x*), — (x)?
oY
c02 T *---v =0 1 =y, + €2v, (v, + ) ans + 2V, an).
3 04 L .4 *ee (=1/2 |
' v// «——e Gaussian (16)
06 1 @ | We can write then
O v [ R Trii K1
b =2/ 1+ e[ V2K,, +2—2 . @7
£l TRy ® Ti " VP
- S * ‘2‘*{\3\1 v | where we keep only the leading and next-to-the-leading
3 TRy, terms. From (17) the ordercorrection to thes exponent
g? 10y el can be computed. Indeed;’, /o2 = 22, and since
= I var1 = 2"y, we can write
0123456 7 8 9101112131415 ® :1+6QK L+ e 2 K, 2o+
n "2 In2 "™ In2. /vy ™" '
FIG. 4. (a) Running exponents fob = 8 with different (18)

disorder distributions, namely Gaussian and as from Eq. (4)Furthermore, bottk, ; and K,,, have a power-law con-
(b) Log-log plot of the difference of the same rt_'”ninﬁ vergence to their asymptotic value, with exponéri2
O e he s} 1 st 119 "1y result can be obtaned using a Gaussian approsima-
been chosen for numerical stability. tion in th(_elr evaluation). As a result the rhs of (18) con-
verges with exponent = 1/2 t0 w-..
In conclusion, we have found numerically that both the
(14) K'PZ eqqation om =1 Euclidgan lattices an.d DPR.M on
dnits = Kus + 2Asns s>0, hierarchical lattices show universal behavior, being the
exponentw independent on the details of the disorder
- - distribution. Yet, the presence of nontrivial power law
Kys = f dxPy 1 (X)a+1.s |nf P°, (x)dx'. (15) (therefore “slow”) crossover effects has been unveiled.
0 x Moreover, we have shown that the crossover exponent
It is straightforward to show thak, = —1; moreover, y is universal. We have also shown numerically and
from Eq. (7) we findagy = 0 and thereforea,o = 0  analytically thaty — 1/2 whenb — 1.
for any n, as required. It is also possible to show Since we find the same qualitative slow crossover behav-
that2A,, < 1 if s > 2 (indeed the leading behavior for jor both ond = 1 Euclidean lattices and on hierarchical
large v,, that is for largen, is 24, ~ 2' 79/?[1 + (s — lattices of any dimension, it is reasonable to think that the
1/2)s/2v,]"/?). Therefore all the iterations equations (14) same behavior is present also fbe= 2 Euclidean lattices,
with s > 2 converge and are asymptotically irrelevant for providing a way out of the nonuniversality claimed in [4].

ap+1,0 = 1+ Kn,O + 2/\11,0an,07

with

the scaling behavior. We are left with= 1,2. Indeed We thank C. Tebaldi for useful discussions. This work
an, anda,, are the only coefficients that are relevant forhas been partially supported by the European Network
the computation ob, from (4). Contract No. FMRXCT980183.
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