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Liquid Flow through Aqueous Foams: The Node-Dominated Foam Drainage Equation
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We present an experimental study of forced drainage through a soap foam, where a constant liquid
flux at the top of a dry foam produces a downwards traveling wave with a constant velocity and
uniform liquid content. The results are not consistent with existing models and we propose a new
model, based upon relaxing the condition of wall rigidity throughout the network and emphasizing the
importance of viscous damping in the nodes where Plateau borders meet. This model agrees well with
the experimentally measured (power-law) scaling behavior of the drainage velocity, and the width of
the propagating liquid front, on the imposed flow rate and bubble size. [S0031-9007(99)09185-1]

PACS numbers: 47.55.Mh, 82.70.Rr, 83.70.Hqg

Foams are ubiquitous in everyday life and include Styro-column using a syringe pump. Liquid flows downwards
foam, soap suds, and food (e.g., chocolate mousse and it@ough the disordered channel network due to gravity. A
cream) [1,2]. Recent applications include foaming met{front is observed, separating the dry foam below from the
als to make porous ultralight materials, which are useful invetter foam above, which moves down with a constant ve-
mechanical applications [3,4]. As with other liquid foams, locity v, and constant front width ;.
metallic foams in the melt undergirainage,i.e., a flow A schematic of the experimental setup is shown in
that is induced by gravity and capillarity. On a micro- Fig. 2, together with a typical result for the vertical varia-
scopic scale the liquid flow through foams is very com-tions of € at successive times. The soap solution is com-
plicated and poorly understood, even for simple aqueouposed of tap water and 0.25% Dawn soap (which is well
foams. However, some macroscopic theories exist [5—8pgbove the critical micelle concentration), with025%

This work puts these theories to an experimental test anfuorescein salt added as a tracer. The experimental re-
tries to explain the discrepancies found. sults reported here were unchanged when distilled water

Aqueous foams consist of gas bubbles (many-sidewvas used or the soap concentration was doubled or halved.
polyhedra, polyederschauinwith liquid residing in the The foam is generated at the lower end of the tube by a
cracks between the bubbles to form a channel networkbubbler which can be exchanged to produce bubbles of
The surfactant creates a disjoining force that prevents thdifferent average sizes with different degrees of size dis-
interfaces from rupturing and the bubbles from mergingpersion (Table I). The foam is replenished by constant
[2]. The regions between three touching bubbles are calledubbling from the bottom, so that the “aging” (coarsen-
Plateau borders, and achannelsfor liquid flow. Four ing) of the foam is constant at a given height. UV light
channels join in the region between four touching bubbles,
which we call anode Figure 1 shows a network unit that
consists of a node and half the lengths of the four adjoining channel
Plateau borders. The geometry of the network is calculated .
using the SURFACE EVOLVER [9], which minimizes the waist
surface energy, and results in a constant mean curvature
everywhere, apart from the polyhedra’s faces where the
disjoining pressure dominates.

Despite the complexity of fluid flow on the level of in- L/2
dividual channels and the complex geometry of the foam
with bubbles that are in general not monodisperse, an over-
riding structure to fluid flow (on a scale larger than the
bubble size) can be observed in many experiments, which

affords a macroscopic dynamical description. We revisit channel no
here a simple experiment called forced drainage [8,10].

The primary observable is the liquid volume fractien Ccross-section

the ratio of liquid volume to total volume. of channel

The experiment starts with a column of very dry foam
(typically e < 0.01%) in a long (170 cm) vertical tube of
2.5 cm diameter. A constant flow rag of liquid (iden- r
tical to the foaming soap solution to minimize gradients
in surfactant concentration) is introduced at the top of the FIG. 1. Foam network unit with liquid contert = 0.005.
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FIG. 3. Front velocity as a function of superficial velocity for

FIG. 2. Schematic of the experimental setup (left) and athree different bubble sizes. Solid lines are best fits.

typical result for the measured light intensities of the downward . .
propagating liquid front (right). To model forced drainage, we consider low flow rates

and small capillary numbergv,/y < 1, with fluid vis-

iluminates the foam, and a CCD camera records the inter€0Sity 4 and surface tensiop, so that the capillary forces
sity 7 of the fluorescence, which is the only visible source@'® large compared with the stresses that may distort the
of light in the darkened room. This allows for clean imagesfoam. Thus, the geometry of the idealized gravity-free,
without glaring, reflected, or scattered light. We verified 28ro-flux foam (Fig. 1) should be essentially preserved in
experimentally thak « I for e < 0.01, which allows an the experlme.nt,.whlch is confirmed by visual observa_tlon.
easy way to record(z, 1), and extract both; andw;. _In the dry limit, the channels are to a good approxima-
To eliminate the dependence of the flow rate on theion straight, slender units whose lengths appraagsee
cross-sectional arefiof the tube, we introduce an intrinsic F19- 1) with a transverse radius of curvaturat their waist.
guantity, thesuperficial velocity/; = Q/A. Changing the The v_olume of c;ne _channeldﬁL, where the cross-sectional
tube size does not affect the results (expressed in terms @62 iSa = 047", With 8, = (V3 — m/2) = 0.1613 [8].
V,) provided that the tube diameter is much larger tiign | "€ node volume i< (r*), as the node size is propor-
the average bubble edge length. Injecting liquid for a timefional tor, and is negligible compared to the channel vol-

At at the top produces a uniformly wetted foam behind the!Mme.  Thus the volume of a liquid network unit2gL.
front spanning a volume;AA7, thuse = QAr/v AAr = We assume that the foam is composed of monodisperse

Vy/vs. tetrakaidecahedra (Kelvin cells), mimicking the polyhedral
Figure 3 plotsv, versusV, for three bubble sizes over bubbles found in a real foam [11]. Each tetrakaidecahe-

about four decades of flow rate and more than two decadé¥fon has 132 complete ch?/r;nels, 6 complete nodes, and vol-
ine (5% 107% < e=02). v, increases withV, and Ume dvolL” With 8,51 = 2772, For low volume fractions

bubble size, and power-law behavior of the form € = 0.10,
vp = voVE, with @ = 0.36, 1) € =~ 8% /L% with 6. = 128,/8,01 = 0.1711. (3)
is observed. The fitted prefactop increases witHL). Above this, the channels are no longer long and slender,

Figure 4 shows the relationship between the front widththe nodes contain an appreciable part of the liquid, and a
wy and vy, determined from measuring the vertical dis- simple theory is far more difficult to develop.
tance between the points where the traveling profik®

and80% of its maximum height, respectively. The front
narrows with increasind’; and decreasinglL). There is _ o8
. . . . —HF—— large,y=1.42x
an approximately inverse relationship betwegnandv , —&— medium, y = 0.83 X°
wr = wouf, with B = —0.95. 2) £ T emelyEes
Experiments show that at higher (higher v, than in 3
Fig. 4) the data for front width versus levels off. §
TABLE |. Bubbling equipment, bubble average polyhedral =
edge lengtHL), and relative standard deviation @f). 10°
Bubble size Bubbler (L) (cm) % ! D
10" 10°
Large 0.2 mm capillary tube 0.20 0.235 front velocity, v, (cm/sec)
Medium Extra-coarse glass frits 0.083 0.309

0.324 FIG. 4. Front width as a function of front velocity for three

I I fri .051
Sma Coarse glass frits 0.05 different bubble sizes. Solid lines are best fits.
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To model the power-law behaviors (1) and (2) involv- factants produce the power-law behavior we observe. We
ing vy andVy, it is necessary to obtain a relation betweentherefore question the assumption of rigid channel walls,
vy ande (or r) which, withe = V, /vy, closes the system and propose an alternative approach in which the chan-
of equations. In general;s(e) can be determined from nel's surface has slip (small stresses at the boundaries;
the Navier-Stokes equations, although a first-principle calef. [5,14]). Assuming that the flow in the channels is
culation is well beyond the scope of this investigation.  pluglike, the damping force of the third integral in (4) is

We first discuss the main body of the traveling wave,small. However, in the nodes, flows from different chan-
where redistribution of liquid among the channels due taels merge and give rise to velocity gradients on a length
capillarity leads to a constaat(see Fig. 2). The structure scaler, thereby dominating viscous damping.
is periodic from channel to channel, and there are no The second integral in (4) can be rewritten by removing
pressure gradients on a macroscopic scale, which ensurtrge length scale, and the velocity scale, which here has
that all channels have the sameegardless of orientation magnitude equal to the front velocity,

[8]. Since the velocity field is time independent and )
the Reynolds numbers are smaf (0.01-10)], a volume fv puVudV = —nlrpv,
integral of the Stokes equation over many bubbles yields " (7)

1 . -
I=|— Vznﬂ/‘,
fy (Vp — pg)dV = fV uViadV n ff/n "

where n is the number of nodes inV, and~ denotes

n / uVudV, (4) dimensionless quantities] is a dimensionless number
V. representative of the viscous force in the nodes assumed

to be independent of. Dividing (4) by 2naL, the foam

liquid volume containing: nodes, and using (3) and (7),

gives

where the liquid volumeV]iq is divided among channels
V. and nodesV,, and the microscopic liquid velocity is
denoted byu. The first integral is the driving force, the 212
second and third are the damping forces in the nodes anqvp + pg = NS wherek(e) = 26,L°€
the channels, respectively. Because of the periodicity the ™" k(€)’ sl
integral overVp vanishes away from the front region. (8)

Traditionally, models assum@gid walls throughout the
whole network [6,7,12,13]. Then, since the channels hav
a cross section smaller than, and a length longer thany \ariations on a scale smaller than averaged out.
':he hodes, the third integral of (4) do.mlnagtes the_secpn guation (8) is a form of Darcy’s equation for flow through
erm. The flow then resembles gravity-driven Poiseuille

e 1l . h | ori . q f porous media with a permeability(e). In contrast,
pipe flow. For a given channel orientatidn and flow  hq channel-dominated flow model yields a permeability
rateq; we havepg - §; = uéb,q;/a*, wheres, depends

. k(€) = L2e.
on the geometry of the cross-sectional area. Forthe curved(ln) the main body of forced drainage, there are no

Plateau borders,, ~ 50 [8]. macroscopic pressure variations, and using (8) we obtain
Let N be the typical number of channels in the tube’s picp ' 98

Here the macroscopic pressure gradiept,...o is defined
s the derivative ofp on a macroscopic scale, with

. . 2
qrogs-sectiqn. The front velocity is the average vertical vy = [(VS“P)2VS]1/3, whereVShp = 2511#’ Q)
liquid velocity ' rawi
1 Loy apg < ., i.e., an exponen& = 1/3 which is about 8% lower than
vy = N Z " S; * 7= No Z(Si )] the measured exponents. Several effects could contribute
i=1 mi =l to a deviation from a /3-power law, e.g., (i) for narrow
Sar’pg tubes, whose diameter is only a few bubble diameters,
= ’ () the rigid tube walls should play a greater role providin
36,1 g play a g p g

o _ _ dissipation. Indeed, for experiments with a tube of 0.6 cm
where Poiseuille flow is assumed and the last equality (thgiameter and(L) = 0.2 cm, « increases about 20%.

factor of three) follows from the random orientation of (ji) Contributions to dissipation from small viscous
channels. In the limit of dry foams, using (3), (5), andstresses in the channels would also tend to increase

€ = V,/vy, we get a, cf. (6). See Table Il for a comparison between the
dgid. 1/ dgid  Sapgl? measurements and model predictions.
vy = (Voo V)2, whereVy©© = 360, (6) Now we discuss the front shape and width. The Young-
eOu

Laplace law for pressure drop across liquid-air interfaces
This assumption of rigid channel walls predicts an ex-yields in the dry foam [ImitAp = pgas — p = y/r, at
ponenta = 1/2 for (1), as reported earlier [10,12,13], the channel’'s waist (Fig. 1). For low flow rates, the gas
which is in disagreement with the data presented herpressure inside the bubbles will not change appreciably.
(Fig. 3). Nor does a variation of this model [8] which Thus averaging gives the macroscopic pressure gradient
introduces a surface viscosity due to the presence of SU¥ppacro = —yVr L.
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TABLE Il. Experimental data for the exponends and 8 and the prefactow, of Eqgs. (1)
and (2). Also shown are the relative errors in the predictionsefaand g8 from the rigid-
channel theory and the channel-slip theory presented hereB i&sclose to the experimental
value only for the channel-slip theory, the relative errorwef is given only for this case,

see (12).

a B wo
Size Expt. Rigid Slip Expt. Rigid Slip Expt. Slip
Large 0.359 40% 7% | —0.95 47% 5% 142 51%
Medium 0.361 39% 8% | —0.96 48% 4% 0.83 20%
Small 0.356 40% 6% | —0.95 47% 5% 0.54 3%

To obtain a dynamical equation for the macroscopicnentsa, 8, and those from the two models, rigid wall
guantity e, we start with the volume conservation equa-(channel dominated) and slip (node dominated).
tion for the liquid,de/dr + V - (ve) = 0. Eliminatingr The forced drainage experiments presented here show
using (3) fromV pmacro @nd substituting into (8) to obtain robust power-law behavior for the dependence of front
v yields the node-dominated foam drainage equation:  velocity on superficial velocityy; = V& with a =~ 1/3,
5127 & 5172 over se\(eral decades of flow [rgate_s and for different
MO = %€ 4 g -ve¥? — Y2 g2, — (. (10) Dbubble sizes. Furthermone, = Vi’ with g ~ —1, and
26,12 ot 2L the proportionality factor increases with bubble size.
. . . .. These results suggest that at least for a certain class of
The :ED 'd|menS|onIes3§2form2appropr|gte here, projectingy, factants the no-slip assumption is invalid. A simple
Onltj)z Z, 1S 0;€ — 9;€”" — 9;€ = 0 with Ie;n%th% scale  hew model based upon slipping walls and dissipation in
(8¢/“v)/(2pgL) and time scaléeJ yu/46.p°g"L". the nodes for the regime of dry monodisperse foams does
Forforced drainage, the ans&{’, 7) = f({ + v7) =  mych better predicting bote and 8, and also has the
[(s) transforms to the reference frame of the wave travelerect trend of front width increasing with bubble size.
ing at the nondimensional speedf liquid drainage. The We thank A. Evans for support of this project,
resulting ordinary differential equations can be solved anap Kraynik for his help with the Surface Evolver and
lytically and thee profile is the square of a Fermi function, ;e suggestions, as well as J. Eggers and J. Sher-
2 wood for helpful discussions. Support from ONR Grant
(11) No. NO0014-1-96-1028 is gratefully acknowledged.
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