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Liquid Flow through Aqueous Foams: The Node-Dominated Foam Drainage Equation
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(Received 22 December 1998)

We present an experimental study of forced drainage through a soap foam, where a constant liquid
flux at the top of a dry foam produces a downwards traveling wave with a constant velocity and
uniform liquid content. The results are not consistent with existing models and we propose a new
model, based upon relaxing the condition of wall rigidity throughout the network and emphasizing the
importance of viscous damping in the nodes where Plateau borders meet. This model agrees well with
the experimentally measured (power-law) scaling behavior of the drainage velocity, and the width of
the propagating liquid front, on the imposed flow rate and bubble size. [S0031-9007(99)09185-1]

PACS numbers: 47.55.Mh, 82.70.Rr, 83.70.Hq
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Foams are ubiquitous in everyday life and include Styro
foam, soap suds, and food (e.g., chocolate mousse and
cream) [1,2]. Recent applications include foaming me
als to make porous ultralight materials, which are useful
mechanical applications [3,4]. As with other liquid foams
metallic foams in the melt undergodrainage,i.e., a flow
that is induced by gravity and capillarity. On a micro
scopic scale the liquid flow through foams is very com
plicated and poorly understood, even for simple aqueo
foams. However, some macroscopic theories exist [5–8
This work puts these theories to an experimental test a
tries to explain the discrepancies found.

Aqueous foams consist of gas bubbles (many-sid
polyhedra,polyederschaum) with liquid residing in the
cracks between the bubbles to form a channel netwo
The surfactant creates a disjoining force that prevents t
interfaces from rupturing and the bubbles from mergin
[2]. The regions between three touching bubbles are call
Plateau borders, and arechannelsfor liquid flow. Four
channels join in the region between four touching bubble
which we call anode. Figure 1 shows a network unit that
consists of a node and half the lengths of the four adjoinin
Plateau borders. The geometry of the network is calculat
using theSURFACE EVOLVER [9], which minimizes the
surface energy, and results in a constant mean curvat
everywhere, apart from the polyhedra’s faces where t
disjoining pressure dominates.

Despite the complexity of fluid flow on the level of in-
dividual channels and the complex geometry of the foa
with bubbles that are in general not monodisperse, an ov
riding structure to fluid flow (on a scale larger than th
bubble size) can be observed in many experiments, whi
affords a macroscopic dynamical description. We revis
here a simple experiment called forced drainage [8,10
The primary observable is the liquid volume fractione,
the ratio of liquid volume to total volume.

The experiment starts with a column of very dry foam
(typically e , 0.01%) in a long (170 cm) vertical tube of
2.5 cm diameter. A constant flow rateQ of liquid (iden-
tical to the foaming soap solution to minimize gradient
in surfactant concentration) is introduced at the top of th
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column using a syringe pump. Liquid flows downward
through the disordered channel network due to gravity.
front is observed, separating the dry foam below from t
wetter foam above, which moves down with a constant v
locity yf and constant front widthwf .

A schematic of the experimental setup is shown
Fig. 2, together with a typical result for the vertical varia
tions ofe at successive times. The soap solution is co
posed of tap water and 0.25% Dawn soap (which is w
above the critical micelle concentration), with0.025%
fluorescein salt added as a tracer. The experimental
sults reported here were unchanged when distilled wa
was used or the soap concentration was doubled or halv
The foam is generated at the lower end of the tube by
bubbler which can be exchanged to produce bubbles
different average sizes with different degrees of size d
persion (Table I). The foam is replenished by consta
bubbling from the bottom, so that the “aging” (coarse
ing) of the foam is constant at a given height. UV ligh
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FIG. 1. Foam network unit with liquid contente ­ 0.005.
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FIG. 2. Schematic of the experimental setup (left) and
typical result for the measured light intensities of the downwa
propagating liquid front (right).

illuminates the foam, and a CCD camera records the inte
sity I of the fluorescence, which is the only visible sourc
of light in the darkened room. This allows for clean image
without glaring, reflected, or scattered light. We verifie
experimentally thate ~ I for e & 0.01, which allows an
easy way to recordesz, td, and extract bothyf andwf .

To eliminate the dependence of the flow rate on th
cross-sectional areaA of the tube, we introduce an intrinsic
quantity, thesuperficial velocityVs ; QyA. Changing the
tube size does not affect the results (expressed in terms
Vs) provided that the tube diameter is much larger thankLl,
the average bubble edge length. Injecting liquid for a tim
nt at the top produces a uniformly wetted foam behind th
front spanning a volumeyfADt, thuse ­ QDtyyfADt ­
Vsyyf .

Figure 3 plotsyf versusVs for three bubble sizes over
about four decades of flow rate and more than two decad
in e (5 3 1024 & e & 0.2). yf increases withVs and
bubble size, and power-law behavior of the form

yf ­ y0V a
s , with a ø 0.36 , (1)

is observed. The fitted prefactory0 increases withkLl.
Figure 4 shows the relationship between the front wid

wf and yf , determined from measuring the vertical dis
tance between the points where the traveling profile is20%
and80% of its maximum height, respectively. The fron
narrows with increasingVs and decreasingkLl. There is
an approximately inverse relationship betweenwf andyf ,

wf ­ w0y
b
f , with b ø 20.95 . (2)

Experiments show that at highere (higher yf than in
Fig. 4) the data for front width versusyf levels off.

TABLE I. Bubbling equipment, bubble average polyhedra
edge lengthkLl, and relative standard deviation ofkLl.

Bubble size Bubbler kLl scmd ssLd
kLl

Large 0.2 mm capillary tube 0.20 0.235
Medium Extra-coarse glass frits 0.083 0.309
Small Coarse glass frits 0.051 0.324
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small, y = 1.21 x0.356

FIG. 3. Front velocity as a function of superficial velocity fo
three different bubble sizes. Solid lines are best fits.

To model forced drainage, we consider low flow rate
and small capillary numbersmyfyg ø 1, with fluid vis-
cositym and surface tensiong, so that the capillary forces
are large compared with the stresses that may distort
foam. Thus, the geometry of the idealized gravity-fre
zero-flux foam (Fig. 1) should be essentially preserved
the experiment, which is confirmed by visual observatio

In the dry limit, the channels are to a good approxim
tion straight, slender units whose lengths approachL (see
Fig. 1) with a transverse radius of curvaturer at their waist.
The volume of one channel isaL, where the cross-sectiona
area isa ­ dar2, with da ­ s

p
3 2 py2d ø 0.1613 [8].

The node volume isO sr3d, as the node size is propor
tional tor, and is negligible compared to the channel vo
ume. Thus the volume of a liquid network unit is2aL.
We assume that the foam is composed of monodispe
tetrakaidecahedra (Kelvin cells), mimicking the polyhedr
bubbles found in a real foam [11]. Each tetrakaidecah
dron has 12 complete channels, 6 complete nodes, and
ume dvolL3 with dvol ­ 27y2. For low volume fractions
e & 0.10,

e ø der2yL2 with de ­ 12daydvol ø 0.1711 . (3)

Above this, the channels are no longer long and slend
the nodes contain an appreciable part of the liquid, an
simple theory is far more difficult to develop.
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small, y = 0.54 x-0.95

FIG. 4. Front width as a function of front velocity for three
different bubble sizes. Solid lines are best fits.
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To model the power-law behaviors (1) and (2) involv
ing yf andVs, it is necessary to obtain a relation betwee
yf ande (or r) which, withe ­ Vsyyf , closes the system
of equations. In general,yfsed can be determined from
the Navier-Stokes equations, although a first-principle c
culation is well beyond the scope of this investigation.

We first discuss the main body of the traveling wav
where redistribution of liquid among the channels due
capillarity leads to a constante (see Fig. 2). The structure
is periodic from channel to channel, and there are
pressure gradients on a macroscopic scale, which ens
that all channels have the samer regardless of orientation
[8]. Since the velocity field is time independent an
the Reynolds numbers are small [O s0.01 10d], a volume
integral of the Stokes equation over many bubbles yieldZ

Vliq

s=p 2 rgd dV ­
Z

Vn

m=2u dV

1
Z

Vc

m=2u dV , (4)

where the liquid volumeVliq is divided among channels
Vc and nodesVn, and the microscopic liquid velocity is
denoted byu. The first integral is the driving force, the
second and third are the damping forces in the nodes a
the channels, respectively. Because of the periodicity t
integral over=p vanishes away from the front region.

Traditionally, models assumerigid walls throughout the
whole network [6,7,12,13]. Then, since the channels ha
a cross section smaller than, and a length longer th
the nodes, the third integral of (4) dominates the seco
term. The flow then resembles gravity-driven Poiseuil
pipe flow. For a given channel orientationŝi and flow
rateqi we haverg ? ŝi ø mdmqiya2, wheredm depends
on the geometry of the cross-sectional area. For the cur
Plateau bordersdm ø 50 [8].

Let N be the typical number of channels in the tube
cross-section. The front velocity is the average vertic
liquid velocity

yf ­
1
N

NX
i­1

qi

a
ŝi ? ẑ ­

arg
Ndmm

NX
i­1

sŝi ? ẑd2

­
dar2rg
3dmm

, (5)

where Poiseuille flow is assumed and the last equality (t
factor of three) follows from the random orientation o
channels. In the limit of dry foams, using (3), (5), an
e ­ Vsyyf , we get

yf ­ sV rigid
0 Vsd1y2, whereV

rigid
0 ­

dargL2

3dedmm
. (6)

This assumption of rigid channel walls predicts an e
ponenta ­ 1y2 for (1), as reported earlier [10,12,13]
which is in disagreement with the data presented he
(Fig. 3). Nor does a variation of this model [8] which
introduces a surface viscosity due to the presence of s
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factants produce the power-law behavior we observe. W
therefore question the assumption of rigid channel wa
and propose an alternative approach in which the ch
nel’s surface has slip (small stresses at the boundar
cf. [5,14]). Assuming that the flow in the channels
pluglike, the damping force of the third integral in (4) i
small. However, in the nodes, flows from different cha
nels merge and give rise to velocity gradients on a leng
scaler, thereby dominating viscous damping.

The second integral in (4) can be rewritten by removin
the length scaler, and the velocity scalev, which here has
magnitude equal to the front velocityyf ,Z

Vn

m=2u dV ­ 2nI rmv ,

I ;
Ç

1
n

Z
Ṽn

=̃2ũ dṼ

Ç
,

(7)

where n is the number of nodes inVn and ˜ denotes
dimensionless quantities.I is a dimensionless numbe
representative of the viscous force in the nodes assum
to be independent ofe. Dividing (4) by 2naL, the foam
liquid volume containingn nodes, and using (3) and (7)
gives

2=pmacro 1 rg ­
mv

ksed
, whereksed ­

2daL2e1y2

d
1y2
e I

.

(8)

Here the macroscopic pressure gradient=pmacro is defined
as the derivative ofp on a macroscopic scale, with
all variations on a scale smaller thanL averaged out.
Equation (8) is a form of Darcy’s equation for flow throug
porous media with a permeabilityksed. In contrast,
the channel-dominated flow model yields a permeabil
ksed ~ L2e.

In the main body of forced drainage, there are n
macroscopic pressure variations, and using (8) we obta

yf ­ fsV slip
0 d2Vsg1y3, whereV

slip
0 ­

2dargL2

md
1y2
e I

, (9)

i.e., an exponenta ­ 1y3 which is about 8% lower than
the measured exponents. Several effects could contrib
to a deviation from a1y3-power law, e.g., (i) for narrow
tubes, whose diameter is only a few bubble diamete
the rigid tube walls should play a greater role providin
dissipation. Indeed, for experiments with a tube of 0.6 c
diameter andkLl ­ 0.2 cm, a increases about 20%
(ii) Contributions to dissipation from small viscou
stresses in the channels would also tend to incre
a, cf. (6). See Table II for a comparison between th
measurements and model predictions.

Now we discuss the front shape and width. The Youn
Laplace law for pressure drop across liquid-air interfac
yields in the dry foam limitnp ­ pgas 2 p ø gyr, at
the channel’s waist (Fig. 1). For low flow rates, the ga
pressure inside the bubbles will not change appreciab
Thus averagingp gives the macroscopic pressure gradie
=pmacro ø 2g=r21.
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TABLE II. Experimental data for the exponentsa and b and the prefactorw0 of Eqs. (1)
and (2). Also shown are the relative errors in the predictions fora and b from the rigid-
channel theory and the channel-slip theory presented here. Asb is close to the experimental
value only for the channel-slip theory, the relative error ofw0 is given only for this case,
see (12).

a b w0

Size Expt. Rigid Slip Expt. Rigid Slip Expt. Slip
Large 0.359 40% 7% 20.95 47% 5% 1.42 51%
Medium 0.361 39% 8% 20.96 48% 4% 0.83 20%
Small 0.356 40% 6% 20.95 47% 5% 0.54 3%
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To obtain a dynamical equation for the macroscop
quantity e, we start with the volume conservation equa
tion for the liquid,≠ey≠t 1 = ? sved ­ 0. Eliminatingr
using (3) from=pmacro and substituting into (8) to obtain
v yields the node-dominated foam drainage equation:

md1y2
e I

2daL2

≠e

≠t
1 rg ? =e3y2 2

gd1y2
e

2L
=2e ­ 0 . (10)

The 1D dimensionless form appropriate here, projecti
onto ẑ, is ≠te 2 ≠z e3y2 2 ≠

2
z e ­ 0 with length scale

sd1y2
e gdys2rgLd and time scaledeI gmy4dar2g2L3.
For forced drainage, the ansatzesz , td ­ fsz 1 ytd ­

fssd transforms to the reference frame of the wave trave
ing at the nondimensional speedy of liquid drainage. The
resulting ordinary differential equations can be solved an
lytically and thee profile is the square of a Fermi function

fssd ­
y2

f1 1 eyss02sdy2g2 , (11)

wheres0 sets the front position in the traveling frames.
Here, the width of the front, using the experimental80%
to 20% criterion, isns ø 4.70yy, or with dimensions

wf ­ 2.35
d1y2

e g

rgL
V

slip
0

yf
ø 0.020

V
slip
0

yf

cm2

L
(12)

usingg ø 20 gysec2 for soapy water. Equation (9) shows
V

slip
0 ~ L2, sowf in (12) increases linearly withL, which

is the trend seen in Fig. 4.
The rigid channel model yields a different front width

[6]. Using the 80% to 20% criterion, we findwf ­

0.556gd
1y2
a sdmrgmd21y2y

21y2
f with the predicted expo-

nentb ­ 21y2, rather than the measuredb ø 21. This
model also predicts that the front width doesnot vary with
bubble size, whereas experiments show thatwf increases
with kLl.

It is possible to estimate the prefactor forwf in (2)

from (12), givenV
slip
0 ­ y

3y2
0 from (1) and (9), withy0

determined from the best-fit lines of Fig. 4. We point ou
however, that our analysis was based upon monodispe
uniform foams, whereas in the experiments there are s
variations of about30%. Table II summarizes the relative
differences between the experimentally determined exp
ic
-

ng

l-

a-
,

t,
rse
ize

o-

nentsa, b, and those from the two models, rigid wa
(channel dominated) and slip (node dominated).

The forced drainage experiments presented here sh
robust power-law behavior for the dependence of fro
velocity on superficial velocity,yf ~ V a

s with a ø 1y3,
over several decades of flow rates and for differe
bubble sizes. Furthermorewf ~ V

b
s with b ø 21, and

the proportionality factor increases with bubble siz
These results suggest that at least for a certain class
surfactants the no-slip assumption is invalid. A simp
new model based upon slipping walls and dissipation
the nodes for the regime of dry monodisperse foams d
much better predicting botha and b, and also has the
correct trend of front width increasing with bubble size.
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