VOLUME 82, NUMBER 21 PHYSICAL REVIEW LETTERS 24 My 1999

Quantum Chaos of a Kicked Particle in an Infinite Potential Well

Bambi Hu!-*> Baowen Li! Jie Liu,!* and Yan Gi+*
'Department of Physics and Centre for Nonlinear Studies, Hong Kong Baptist University, Hong Kong, China
2Department of Physics, University of Houston, Texas 77204-5506
3Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China
4Center for Fundamental Physics, University of Science and Technology of China, Hefei, China
(Received 26 October 1998

We study quantum chaos in a non-KAM system exemplified by a particle in an infinite potential
well subject to a periodic kicking force. For a small perturbatikin the classical phase space
displays a stochastic web structure, and the diffusion coefficient scalés .ak?>>. However, in
the largeK regime,D = K?. Quantum mechanically, we observe that the level spacing statistics of the
quasieigenenergies changes from Poisson to Wigner distributiéh iasreases. The quasieigenstates
are power-law localized for smal and extended for larg€. Possible experimental realization of this
model is also discussed. [S0031-9007(99)08900-0]

PACS numbers: 05.45.Mt, 03.65.Sq

In the study of quantum chaos, most works havenumerically both classically and quantum mechanically;
been concentrated on quantum systems whose classidqa) to study quantum chaos in such a system. As we shall
counterparts obey the Kolmogorov-Arnold-Moser (KAM) see, despite its simplicity, our model shows a stochastic
theorem. In such systems, as the external or drivemweb structure in the classical phase space. Unlike the
parameter is increased, the invariant curves gradualilHO, the quasieigenenergies and quasieigenstates of this
break up. Local chaos evolves into global chaos andnodel can be computed easily. Furthermore, like the KR,
diffusion takes place. The widely studied models are theur model might be realized experimentally. The study of
kicked rotator (KR) [1,2] and quantum billiards [3]. In this model aims to enrich our understanding of quantum
these models, a conspicuous phenomenon is dynamicahaos in non-KAM gquantum systems.
localization, namely, the quantum suppression of classical The model we consider in this Letter is a particle
diffusion. This phenomenon was discovered numericallymoving inside a one-dimensional (1D) infinite square
by Casatiet al. [1] in the KR, and later confirmed by sev- potential well and under the influence of a kicked periodic
eral experiments such as a Rydberg atom in a microwavexternal potential. The difference of this model from
field [4] and an atom moving in a modulated standingthe KHO lies in its phase configuration. As mentioned
wave, etc. [5]. This phenomenon has been found to beefore, the phase space of the KHO is unbounded both
generic not only in the kicked quantum systems but alsdn coordinate and momentum, whereas it is bounded on a
in conservative Hamiltonian systems such as quanturaylinder with flattened end in our model.
billiards [6], the Wigner band random matrix model [7], The Hamiltonian of our model is given by

and a single ion confined in a Paul trap [8]. p?

However, besides the systems mentioned above, thereH = ey + Vo(g) + kcodg + a) Z 5(t — nT),
exists another class of systems which is non-KAM. In n=—e
these systems, the invariant curves do not exist at all (1)

for any small external or driven parameters. Comparegyhere

with the KAM systems, much less is known about o forg — 0

quantum chaos in such systems. For instance, we have Volg) = {0’ elsgwher’w

only limited knowledge of the kicked harmonic oscillator ’ &

(KHO) introduced by Zaslavsket al.[9,10] to describe ande« is a phase shift. Our model is a modification of the

a charged particle moving in a magnetic field and undeKR. There are, however, two minor changes: (1) Two

the disturbance of a wave packet. This model can alsbard walls are set up at = 0 and =, respectively; and

be used to describe a single ion trapped in a harmoni2) a phase shifiw for the potential is introduced. In

potential [11]. This system is a degenerate one anthis Letter, we taken = 1 for illustrative purposes; no

does not satisfy the KAM theorem. It is difficult to essential difference is found for other valuesaaf The

study quasieigenenergies, quasieigenstates, and long tiheo hard walls destroy the analyticity of the potential,

diffusion of this model [12] because its phase space ifience non-KAM. The phase shift breaks the parity

unbounded and cannot be reduced to a cylinder, as in treymmetry.

case of the KR. Classical dynamics—The main characteristic of this
The purpose of this Letter is twofold: (1) to construct system is the existence of stochastic webs in the classical

a simple non-KAM system which could be investigatedphase space. Thus diffusion can take place along the
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stochastic webs for any small (= kT); see, e.g., Fig. 1. where V(g) = kcodq + «). The operator U(T) is
This is a fundamental difference from a KAM system like also called the Floquet operator, and it is time-reversal
the KR. In the KR, for anyk < K. = 0.971635..., no invariant. Moreover, it is unitary and satisfies the eigen-

global diffusion occurs due to the existence of invariantyajue equation/(T)|¥,) = e‘%|\pA> where the phase
curves. The properties of the stochastic webs such as the is real. A/T is the quasieigenenergy, an#, the
thickness and symmetry, etc., are also very interesting [Sjuasieigenstate (or the Floquet state).

We will, however, leave this work to future investigations.  The quasieigenenergies can be obtained by diago-
As K increases, the stochastic layer becomes wider anflalizing {/(7) within a large number of based),

wider, and eventually covers the whole phase space. lghich we choose as the eigenstates of the nonperturbed
calculating the diffusion coefficient for a giveki, we  Hamiltonian, (g|n) = 2/# sin(nqg), ¢ € [0,7]; n =
have taken10* points starting from stochastic regions, | 2 ... N. In our calculationsV is kept at 1024 [the cal-
and all the initial trajectories evolve for one million cyjation is also performed with 512 bases, but no quali-
periods. Averages are taken ouér trajectories for each tative or quantitative difference is found]. The elements
time period. It is found that the energy diffusion is of the operatorv are U, = (n|U(T)lm). As U(T) is
asymptotically linear for all values of. a unitary operator, we can define a Hermitian operator
The diffusion coefficientD (= (E,)/n) as a function ¢ — %[IA](T) + U*(T)]. Then the matrix element§

two different diffusion regions. Fok > 1,D ~ K?, the conditon AT = A and B’ = —B, respectively.

— 125 ; i i _ . . .
whereas forK < 1, D ~ K+, which is similar to that [A B] is a2N X 2N symmetric matrix. The standard

of the discontinuous twist map [13]. However, the B A . . . .
underlying mechanism is quite different. In the case ofdlgorithm [14] is used to diagonalize the above matrix

the discontinuous twist map, the superslow diffusion jsto obtain the eigenvalues and eigenvectprsv]. We

caused by the stickiness of the cantori, whereas in odpreiect theN dimensional vectotu + iv) onto the basis
model it is due to the stable islands of a plane wave to obtain the eigenstatestdf’). The
Now we turn to the quantum' behaviors of this fast Fourier transform (FFT) of sinusoidal form [14] is

model. One may ask: How do such classical char€mployed to transform the wave function between the

acteristics as stochastic webs and superslow diffusioR°Stion r(_apresentanczlphand the energy represeﬂtatlonb
manifest themselves in the quantum statistics o Quasieigenstates-The quasieigenstates show  be-

quasieigenenergies and quasieigenstates? This is a v %vio[]s quite different from that of the III<Ri I? ”:je.
interesting question in the study of quantum chaos<R: the quasieigenstates are exponentially localized in
the momentum space [2]. In our model, however, the

Since our model is a periodically driven system, the o : ;
evolution operator over one periofl of the kick is guasieigenstates are power-law localized, as shown in

given by U(T) = exp(—ﬁ?)exp(—@)exri—iﬁ? ,

FIG. 2. Classical diffusion coefficienb versus perturbation
FIG. 1. A typical classical phase space of our model at verystrengthK. The best fit by using the dat& > 1 gives rise to
small perturbation strength. The stochastic web structure is slope 1.97, whereas that by using the datec 0.1 gives rise
clearly seen. Here we have = 0.01, « = 1. One trajectory to a slope 2.47. A clear turning point of the slope can be seen
starts from(gy = 0.1, py = 0.012) and evolves fo 0’ periods. at K about 1.
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Fig. 3. In this figure, we demonstrate a few typical statelassically chaotic. To observe the transition from Pois-
at different values ofK for localized, intermediate, and son to Wigner distribution, one has to consider the KR
extended ones, respectively. It is clearly seen that thdefined on a torus [2].
localized states gradually transit to extended ones as we In our model, however, the Floquet states do overlap
increaseK. This transition, as we shall see later, will in momentum space, as is shown above. Therefore, we
also manifest itself in the statistics of quasieigenenergiesexpect to observe the transition of the quasieigenenergies
In fact, the power-law localization of the eigenstates isstatistics. The level spacing statistics of the quasieigenen-
traceable to the structure of the matiik In the KR, ergies is shown in Fig. 5 for four different values Kf=
the matrix element#,, ,,+, decay faster than exponential 0.1, 5, 25, and 50. This figure demonstrates a smooth
whenn exceeds the band widih, which is proportional transition from Poisson to Wigner distribution. To quan-
to K. Thus the elements outside this band can bdify this transition, the Brody distribution [16] is used
regarded as effectively zero. Within the band of widthto best fit the above four distributions. [In fact we use
b, the elements are pseudorandom [2]. This kind of banthe cumulative distribution function(s) = [, P(s") ds'.]
random matrix has attracted much interest. However, imhe best fit gives rise to the Brody parameigr=
our model the situation is different. A careful analysis0.03, 0.08, 0.46, and0.82 for the four distributions shown
shows that the elements outside the band decay asima Fig. 5. To check the approach to Poisson distribu-
power law withlUm,mHI ~ 1/n%. We have calculated tion asK decreases to zerd(s) is also calculated for
(U, (= (U} ,pnm) for four different K’s, and plot K = 107*. As expected, we obtain a good Poisson dis-
them in Fig. 4. The typical slope of the curves over atribution. The best fit giveg = 0.01.
large range is approximately4. The band widthb in It should be pointed out that the origin of difference
our model is found to scale dso K. Inside this band between our model and the KR comes from nonanalyticity
the magnitude of the matrix elements is almost a constantf the potential. This makes the phase space in our model
This kind of band random matrix describes a new class half cylinder with the end flattened. This nonanalyticity
of physical systems, such as systems with nonanalytialso leads to a different structure of the evolution matrix
singular boundary [15]. U. Moreover, the model considered here is of more
Statistics of quasieigenenergiesThe structure of the than academic interest. An experimental realization of
guasieigenstates determines the energy level statistics. Alse KR is achieved by putting cold (sodium/cesium)
is well known, level repulsion can occur between the Flo-atoms in a periodically pulsed standing wave of light [5].
quet eigenvalues when the Floquet eigenfunctions overSimilarly, an experimental realization of our model could
lap. Inthe KR, the quasieigenfunctions are exponentialljpe achieved by putting cold atoms in a quasi-1D quantum
localized in angular momentum. Since angular momeneot. The atoms are then driven by a periodically pulsed
tum has a finite range, the Floquet states with very closstanding wave of light. A quasi-1D quantum dot might be
eigenvalues may lie so far apart that they don’t overlap.
Thus, we don’'t have any level repulsion for these two
eigenvalues. This is the reason why Poisson-like spec-
tral statistics persists in the KR even though the system is 10°
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FIG. 4. The averaged matrix elemekt/?) versus n for
different values ofK. From left to right, the dashed curve
FIG. 3. Typical quasieigenstates in these different regimesfor K = 0.1, dotted curve forK = 5, thick solid curve for
localized € = 0.1 and 5), intermediate X = 25), and ex- K = 25, and thin solid curve foK = 50. The band width is
tended K = 50). The corresponding values & are shown about the order o, which is clearly seen from the figure.
in the figure. The slopes of these four curves are abeut
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