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We study quantum chaos in a non-KAM system exemplified by a particle in an infinite potentia
well subject to a periodic kicking force. For a small perturbationK, the classical phase space
displays a stochastic web structure, and the diffusion coefficient scales asD ~ K2.5. However, in
the largeK regime,D ~ K2. Quantum mechanically, we observe that the level spacing statistics of the
quasieigenenergies changes from Poisson to Wigner distribution asK increases. The quasieigenstates
are power-law localized for smallK and extended for largeK. Possible experimental realization of this
model is also discussed. [S0031-9007(99)08900-0]
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In the study of quantum chaos, most works hav
been concentrated on quantum systems whose class
counterparts obey the Kolmogorov-Arnold-Moser (KAM
theorem. In such systems, as the external or driv
parameter is increased, the invariant curves gradua
break up. Local chaos evolves into global chaos a
diffusion takes place. The widely studied models are th
kicked rotator (KR) [1,2] and quantum billiards [3]. In
these models, a conspicuous phenomenon is dynam
localization, namely, the quantum suppression of classic
diffusion. This phenomenon was discovered numerica
by Casatiet al. [1] in the KR, and later confirmed by sev-
eral experiments such as a Rydberg atom in a microwa
field [4] and an atom moving in a modulated standin
wave, etc. [5]. This phenomenon has been found to
generic not only in the kicked quantum systems but al
in conservative Hamiltonian systems such as quantu
billiards [6], the Wigner band random matrix model [7]
and a single ion confined in a Paul trap [8].

However, besides the systems mentioned above, th
exists another class of systems which is non-KAM. I
these systems, the invariant curves do not exist at
for any small external or driven parameters. Compar
with the KAM systems, much less is known abou
quantum chaos in such systems. For instance, we ha
only limited knowledge of the kicked harmonic oscillato
(KHO) introduced by Zaslavskyet al. [9,10] to describe
a charged particle moving in a magnetic field and und
the disturbance of a wave packet. This model can al
be used to describe a single ion trapped in a harmon
potential [11]. This system is a degenerate one a
does not satisfy the KAM theorem. It is difficult to
study quasieigenenergies, quasieigenstates, and long t
diffusion of this model [12] because its phase space
unbounded and cannot be reduced to a cylinder, as in
case of the KR.

The purpose of this Letter is twofold: (1) to construc
a simple non-KAM system which could be investigate
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numerically both classically and quantum mechanica
(2) to study quantum chaos in such a system. As we s
see, despite its simplicity, our model shows a stocha
web structure in the classical phase space. Unlike
KHO, the quasieigenenergies and quasieigenstates of
model can be computed easily. Furthermore, like the K
our model might be realized experimentally. The study
this model aims to enrich our understanding of quant
chaos in non-KAM quantum systems.

The model we consider in this Letter is a partic
moving inside a one-dimensional (1D) infinite squa
potential well and under the influence of a kicked period
external potential. The difference of this model fro
the KHO lies in its phase configuration. As mention
before, the phase space of the KHO is unbounded b
in coordinate and momentum, whereas it is bounded o
cylinder with flattened end in our model.

The Hamiltonian of our model is given by

H ­
p2

2
1 V0sqd 1 k cossq 1 ad

X̀
n­2`

dst 2 nT d ,

(1)

where

V0sqd ­

Ω
`, for q ­ 0, p

0, elsewhere,

anda is a phase shift. Our model is a modification of th
KR. There are, however, two minor changes: (1) Tw
hard walls are set up atq ­ 0 and p, respectively; and
(2) a phase shifta for the potential is introduced. In
this Letter, we takea ­ 1 for illustrative purposes; no
essential difference is found for other values ofa. The
two hard walls destroy the analyticity of the potentia
hence non-KAM. The phase shift breaks the par
symmetry.

Classical dynamics.—The main characteristic of this
system is the existence of stochastic webs in the class
phase space. Thus diffusion can take place along
© 1999 The American Physical Society



VOLUME 82, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 24 MAY 1999

al
n-

go-

bed

li-
ts

tor

ix

s
he

-

in
he

in

en
stochastic webs for any smallK s­ kT d; see, e.g., Fig. 1.
This is a fundamental difference from a KAM system like
the KR. In the KR, for anyK , Kc ­ 0.971635 . . . , no
global diffusion occurs due to the existence of invarian
curves. The properties of the stochastic webs such as
thickness and symmetry, etc., are also very interesting [
We will, however, leave this work to future investigations
As K increases, the stochastic layer becomes wider a
wider, and eventually covers the whole phase space.
calculating the diffusion coefficient for a givenK, we
have taken104 points starting from stochastic regions
and all the initial trajectories evolve for one million
periods. Averages are taken over104 trajectories for each
time period. It is found that the energy diffusion is
asymptotically linear for all values ofK.

The diffusion coefficientD s; kEnlynd as a function
of K is plotted in Fig. 2. It is evident that there exis
two different diffusion regions. ForK ¿ 1, D , K2,
whereas forK ø 1, D , K2.5, which is similar to that
of the discontinuous twist map [13]. However, the
underlying mechanism is quite different. In the case
the discontinuous twist map, the superslow diffusion
caused by the stickiness of the cantori, whereas in o
model it is due to the stable islands.

Now we turn to the quantum behaviors of this
model. One may ask: How do such classical cha
acteristics as stochastic webs and superslow diffusi
manifest themselves in the quantum statistics
quasieigenenergies and quasieigenstates? This is a v
interesting question in the study of quantum chao
Since our model is a periodically driven system, th
evolution operator over one periodT of the kick is
given by ÛsT d ­ exps2 ip̂2T

4 h̄ d exps2 iV sq̂d
h̄ d exps2 ip̂2T

4 h̄ d,

FIG. 1. A typical classical phase space of our model at ve
small perturbation strength. The stochastic web structure
clearly seen. Here we haveK ­ 0.01, a ­ 1. One trajectory
starts fromsq0 ­ 0.1, p0 ­ 0.012d and evolves for105 periods.
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where V sqd ­ k cossq 1 ad. The operator ÛsT d is
also called the Floquet operator, and it is time-revers
invariant. Moreover, it is unitary and satisfies the eige
value equation,ÛsT djCll ­ e2 il

h̄ jCll where the phase
l is real. lyT is the quasieigenenergy, andCl the
quasieigenstate (or the Floquet state).

The quasieigenenergies can be obtained by dia
nalizing ÛsT d within a large number of basesjnl,
which we choose as the eigenstates of the nonpertur
Hamiltonian, kqjnl ­

p
2yp sinsnqd, q [ f0, pg; n ­

1, 2, . . . , N. In our calculationsN is kept at 1024 [the cal-
culation is also performed with 512 bases, but no qua
tative or quantitative difference is found]. The elemen
of the operatorU are Unm ­ knjÛsT djml. As ÛsT d is
a unitary operator, we can define a Hermitian opera
Ĉ ­ 1

2 fÛsT d 1 Û1sT dg. Then the matrix elementsC
are Cnm ­ Anm 1 iBnm. The matricesA and B satisfy
the condition AT ­ A and BT ­ 2B, respectively.

f A 2B
B A g is a 2N 3 2N symmetric matrix. The standard

algorithm [14] is used to diagonalize the above matr
to obtain the eigenvalues and eigenvectorsfu, yg. We
project theN dimensional vectorsu 1 iyd onto the basis
of a plane wave to obtain the eigenstates ofÛsT d. The
fast Fourier transform (FFT) of sinusoidal form [14] i
employed to transform the wave function between t
position representation and the energy representation.

Quasieigenstates.—The quasieigenstates show be
haviors quite different from that of the KR. In the
KR, the quasieigenstates are exponentially localized
the momentum space [2]. In our model, however, t
quasieigenstates are power-law localized, as shown
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FIG. 2. Classical diffusion coefficientD versus perturbation
strengthK. The best fit by using the dataK . 1 gives rise to
a slope 1.97, whereas that by using the dataK , 0.1 gives rise
to a slope 2.47. A clear turning point of the slope can be se
at K about 1.
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Fig. 3. In this figure, we demonstrate a few typical stat
at different values ofK for localized, intermediate, and
extended ones, respectively. It is clearly seen that t
localized states gradually transit to extended ones as
increaseK. This transition, as we shall see later, wil
also manifest itself in the statistics of quasieigenenergie

In fact, the power-law localization of the eigenstates
traceable to the structure of the matrixU. In the KR,
the matrix elementsUm,m1n decay faster than exponentia
whenn exceeds the band widthb, which is proportional
to K. Thus the elements outside this band can
regarded as effectively zero. Within the band of widt
b, the elements are pseudorandom [2]. This kind of ba
random matrix has attracted much interest. However,
our model the situation is different. A careful analys
shows that the elements outside the band decay a
power law with jUm,m1nj ø 1yn2. We have calculated
kU2ln s; kU2

m,m1nlmd for four different K ’s, and plot
them in Fig. 4. The typical slope of the curves over
large range is approximately24. The band widthb in
our model is found to scale asb ~ K. Inside this band
the magnitude of the matrix elements is almost a consta
This kind of band random matrix describes a new cla
of physical systems, such as systems with nonanaly
singular boundary [15].

Statistics of quasieigenenergies.—The structure of the
quasieigenstates determines the energy level statistics.
is well known, level repulsion can occur between the Fl
quet eigenvalues when the Floquet eigenfunctions ov
lap. In the KR, the quasieigenfunctions are exponentia
localized in angular momentum. Since angular mome
tum has a finite range, the Floquet states with very clo
eigenvalues may lie so far apart that they don’t overla
Thus, we don’t have any level repulsion for these tw
eigenvalues. This is the reason why Poisson-like sp
tral statistics persists in the KR even though the system
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FIG. 3. Typical quasieigenstates in these different regime
localized (K ­ 0.1 and 5), intermediate (K ­ 25), and ex-
tended (K ­ 50). The corresponding values ofK are shown
in the figure.
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classically chaotic. To observe the transition from Po
son to Wigner distribution, one has to consider the K
defined on a torus [2].

In our model, however, the Floquet states do overl
in momentum space, as is shown above. Therefore,
expect to observe the transition of the quasieigenenerg
statistics. The level spacing statistics of the quasieigen
ergies is shown in Fig. 5 for four different values ofK ­
0.1, 5, 25, and 50. This figure demonstrates a smoo
transition from Poisson to Wigner distribution. To quan
tify this transition, the Brody distribution [16] is used
to best fit the above four distributions. [In fact we us
the cumulative distribution functionIssd ­

Rs
0 Pss0d ds0.]

The best fit gives rise to the Brody parameterb ­
0.03, 0.08, 0.46, and0.82 for the four distributions shown
in Fig. 5. To check the approach to Poisson distrib
tion as K decreases to zero,Pssd is also calculated for
K ­ 1024. As expected, we obtain a good Poisson d
tribution. The best fit givesb ­ 0.01.

It should be pointed out that the origin of differenc
between our model and the KR comes from nonanalytic
of the potential. This makes the phase space in our mo
a half cylinder with the end flattened. This nonanalytici
also leads to a different structure of the evolution matr
U. Moreover, the model considered here is of mo
than academic interest. An experimental realization
the KR is achieved by putting cold (sodium/cesium
atoms in a periodically pulsed standing wave of light [5
Similarly, an experimental realization of our model cou
be achieved by putting cold atoms in a quasi-1D quantu
dot. The atoms are then driven by a periodically puls
standing wave of light. A quasi-1D quantum dot might b
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FIG. 4. The averaged matrix elementkU2l versus n for
different values ofK. From left to right, the dashed curve
for K ­ 0.1, dotted curve forK ­ 5, thick solid curve for
K ­ 25, and thin solid curve forK ­ 50. The band width is
about the order ofK, which is clearly seen from the figure
The slopes of these four curves are about24.
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FIG. 5. The distribution of the nearest neighbor level spacin
Pssd for different values ofK. The corresponding values of
K are given in the figure. The dotted curve is Poisson and t
thin curve is Wigner distribution. The histograms are numeric
results. Pssd at K ­ 0.1 and 5 are close to Poisson distribution
and atK ­ 25 is intermediate, andK ­ 50 is close to Wigner
distribution. The corresponding best fit Brody parameterb is
0.03, 0.08, 0.46, and0.83, respectively.

formed by stretching a 2D quantum dot in one directio
so that the length in one direction is much larger tha
the other. Such an experiment might allow us to stud
quantum chaos in a non-KAM system.

In summary, we have studied the classical and quantu
behaviors of a kicked particle in a 1D infinite potentia
well. Despite its simplicity, our model exhibits a compli-
cated stochastic web structure indicative of a non-KAM
system. The classical dynamics is diffusive for anyK fi

0. For smallK, the diffusion coefficientD ~ K2.5, and for
largeK, D ~ K2. The level statistics of quasieigenener
gies shows a smooth transition from Poisson to Wigner d
tribution for a fixed dimension of the Floquet matrix. The
quasieigenstates are found to be power-law localized w
an exponent equal to two. Our model provides a new pa
digm in the investigation of classical-quantum correspo
dence of stochastic motion in Hamiltonian systems wi
nonanalytic boundary conditions.
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