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Universality of the Wigner Time Delay Distribution for One-Dimensional Random Potentials
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We show that the distribution of the time delay for one-dimensional random potentials is universal in
the high energy or weak disorder limit. Our analytical results are in excellent agreement with extensive
numerical simulations carried out on samples whose sizes are large compared to the localization length
(localized regime). The case of small samples is also discussed (ballistic regime). We provide a
physical argument which explains in a quantitative way the origin of the exponential divergence of the
moments. The occurrence of a log-normal tail for finite size systems is analyzed. Finally, we present
exact results in the low energy limit which clearly show a departure from the universal behavior.
[S0031-9007(99)09146-2]
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The problem of quantum scattering by chaotic or disor-We assume that (x) has its support on the intervidl, L]
dered systems is encountered in many fields ranging frorand impose the Dirichlet boundary conditiof(0) =
atomic or molecular physics as well as in the scattering. Therefore, forx = L stationary scattering states of
of electromagnetic microwaves. Some properties of theéhe form
scattering process are well captured through the concept
of time delay. This quantity, which goes back to Eisen- Pi(x) = 1 (e Kx—L) 4 pikle=L)+id(k)) )
bud and Wigner [1], is related to the time spent in the 2

interaction region by a wave packet of energy peaked gf, aqent the superposition of an incoming and a reflected

E. 1t can be expressed in terms of the derivative of the)ane wave. Since there is only backward scattering, the
§ matrix with respect to the energy. In the context of efaction coefficientei?® is of unit modulus and the
chaotic scattering, the approach based on random matr, def | d8(k)

theory (RMT) provides a statistical description of the timengner time delay takes the foraik) = 5 =g ~. Sucha

delays. This problem was first studied by a supersymmet, o gered sample connected to an infinite lead. Instead

ric approach [2] and in [3] by using a statistical analysis.mc using the invariant embedding method as in [9,10] or

This latter paper provides a derivation for the one chan- tochastic differential equations [11], our starting point is

nel case for the different universality classes. Recently i o relate the time delay to the wave function inside the

served as a starting point for [4] where tNechannel dis- : : . . .
tribution is shown to be given by the Laguerre ensemblgample' This may be achieved by using the identity

of RMT. In spite of its success, such a description by d (dy* dy LA s

RMT is not entirely satisfactory; in particular, it does not dx \ dx dE i dxdE | Iy~

apply to strictly one-dimensional systems [5] for which

strong localization effects occur. Furthermore, it does NOBy integration over[0, L] one gets the so-called Smith

shed much light on the physical mechanisms which ar¢ormula [12]

responsible for the universal distribution. In this Letter, 5 ; X

we explore another approach by considering the scattering _ < 2 _ LG

by a one-dimensional random potential. In this case, the (k) = k f dx |y 2k? sino(k). (%)

existence of universal distributions was first conjectured ) _

in [6] on the basis of a comparative study of two differ- It €xpresses the time delay as the sum of a dwell time

ent models. This was further supported by [7] where thd13] and a term that can be neglected in the high energy

random potential is still of a different kind. I|_m|t. Inside th(_e sample, the wave function gnd its deriva-
The purpose of this Letter is to present a new derivatioriVe May be written in the ':o)md’k(x) = N sing (x)eft)

that accounts for the universality and also to provide a‘andl//k(x)j@/gj_v co(x)e!™. The normalization factor

physical picture that explains the origin of the algebraic tail N | = ¢ Is fixed by matching the wave function at

of the distribution in terms of resonances. Further detail§ = L With the scattering states (2). \We now consider the

will be given elsewhere [8]. To begin, let us briefly recall ¢25€ Where/(x) is a random pote(nglal. In this case, the

the model. We consider the Schrodinger equation on th@fowth or decay of the envelope™ of the wave func-

model with a random potential can be viewed as a model of

3)

half line x = 0 tion is measured by thglLyapunov e.zxponer(ﬁnvgrs'e lo-
2 calization _Iength/\ =7 ). In th_e high energy limit, the

_a TV — k2 . 1 envelope is a slow variable, while the phaXe) presents

dx? () () (x) () @ rapid oscillations on a scale”!. Therefore, in the high
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energy limit one can integrate over the fast variable in (4Jay that we have obtained numerically in this way is in
and get perfect agreement with Eq. (7) as soon as the high energy
1 (L regime is reached. For example, we compare in Fig. 1
(k) = A f dx HEW ¢, (5)  the analytical expression (7) with the corresponding nu-
] ) ] _merical result for a regimp < v < k. The simulation
This representation of the time delay holds for any realizayas carried out for a system witld® impurities of weight
tion of the disordered potential. Ittherefore captures allthg, — 1, distributed with an averaged density= 0.1. The

statistical properties af(k) once the distribution of (x)is  energy considered corresponds o= 10 which is re-
known. Denoting by, the correlation length of (x) and 8k>

assuming that. andk ! are the smallest length scales of lated to a localization length = ,,z = 8000. The ratio
the system, then it was proven in [14] that the variziile) L/X = 125 is sufficiently large for the limit distribution
is a Brownian motion of the fornii(x) = yx + /y W(x),

to be reached. The numerical calculation is based on sta-
whereW (x) is a normalized Wiener proceséi{(x)) = 0. tistics of 50000 values. It shows that the algebraic tall
(W(x)W(x")) = min(x,x")]. Thus, the Lyapunov expo-

is well reproduced by (7) for 2000 times the typical value
nenty controls both the drift and the fluctuations. Using

Typ = 200. Let us stress that there is no adjustable pa-
the scaling properties of the Brownian motion then give rameter to fit the numerics. The only parameter entering in
the following identity in law:

Yhe analytical expressions is the localization length which
., is known for each kind of disorder.
(k) (law) 1 f“/ dug e~ 22V 6) The derivation of the statistical properties nfgiven

ky above allows one to understand the universality of the

This representation of the time delay as an exponentia[f9SUIt but, on the other hand, dqes not shed muph light
functional of the Brownian motion [15—17] allows one N the physical mechanisms which are responsible for

to derive a number of interesting results: (i) existence of€ occurrence of an algebraic tail. In the following,
a limit distribution ¢ fixed, L — o) with an algebraic W& Propose a physical picture based on the existence of
resonances that explains the leading exponential behavior

tail [18]: . .2 .
of the moments. The starting point is to realize that the
P(r) = A o M2k (7)  reflection of the incident wave on the random potential
2kT? can in fact be viewed as a resonance tunneling process
(i) Linear divergence of the first moment and exponential[19,20]. Indeed there exists a representation of the time
divergence of the higher moments [16]: delay as a superposition of resonances of enékgyand
L width I',, in the form [21]
(7)) = . 8) r. /2

(B=2 e r s 19

(r(k)") = (=prcy
,,,Zz Obviously the dominant contribution = ria is achieved
(m —2)!2m — 1) mm—1)L/A when E is in a window of widthI', centered atf,,
e

(n+m—1)

n
(=nr*! L A
+ 2n— +n—1 — 1. (9
n! A 2k ) I 7 T

150 I T T

(iii) Analytical expression of the probability distribution i %

for a system of lengtiL [see Eq. (12) of [6]]. In [6] we » / \ x

have shown that these results hold for two different models 100 \ % 10°
| C

*0™*

T

of random potential in the localized regirie > A). =
In order to test the analytical results in the above men- g
tioned regime it is convenient to choose a model suitable
for numerical simulations. For this purpose we have con-
sidered the case where the random potential is given by
a sum of delta functions of the same weightrandomly
dropped on the half line with an average dengitfthe so- 00
called Frish and Lloyd model). [This model coincides with "o 500 1000 1500 2000
the Gaussian model (Halperin model) considered in [6] in T
Ephe limit ?[f a h;%ht((jjensn.}é oftt:mpurlitlt?{f@v <<f t]L < ff).] t I(FIG. 1. Time delay distribution in the localized reginie>>
€ equations that aescribe the evolution ot tne phase faxge Comparison between the numerical calculation and expres-
a discrete form which can be implemented conveniently insion (7). Inset: tail of the integrated distribution, numerical and
a numerical simulation. The distribution of the time de-analytical.
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and this will occur with probabilityy, where A is the As an aside remark, let us mention that a log-normal
mean level spacing. In order to estimate the width, wedistribution of the time delay also occurs in the study of
may assume that a discrete levg] localized atx, will the random mass Dirac model at the critical pdint= 0

be broadened by its coupling to the continuum of state§22]. There, the authors provide a representationr of
through the end point = L. We may therefore sdt ~  which is similar to Eq. (6), except that the drift term is

e 27L=x) wherey, is the Lyapunov exponent in the absent. This problem can also be analyzed by using the
finite system. Assuming that, is uniformly distributed approach given in [16,17].

on [0,L] and decorrelated fromy;, one obtains the At this stage, we have considered only a localized

estimate regime for which the size of the system is large com-
L gy r 1 pared to the localization length > A. Another inter-
(") ~ f =0 f dyr p(yL) — — .  (11) esting case is the ballistic one characterized/by A.
o L AT In this situation, the dimensionless variabjd. which

Since £(L) = Ly, defined previously is a Gaussian arises in (6) is _small g:ompared to 1, and the argument
process, the distribution of the finite size LyapunovOf the exponential typically remains small compared to

exponenty; is [14] 1, which allows one to expand the exponential. The
resulting expression for the time delay is given by a
(y1) = L —wmei-yy 12) linear functional of a Gaussian quantity and has itself
plyL e : (12) . ’ . .
27 Gaussian fluctuations characterized by a first moment

(r) = % and a second cumular{t?) — (7)* = %L?
We have checked numerically these results with the delta
(1) ~ 2= DL/, (13)  impurity model. We have considered a regime where

A more refined derivation [8] allows one to recover it reproduces the high energy features of the Gauss-
jian model:iv < k < p and (k2 — pv) > (pvH)*3. In

the gross behavior .Of thg preexpone_ntial factor. This[his regime, one has to take into account the averaged
demonstrates that this particular behavior of the moments '

. -
has origin both in the exponentially small widths of value Of. the dlsordepv apd replace'; by k pv N
the resonances and in the fluctuations of the Lyapuno@" previous expressions: the localization length is thus

. . ; 8(k>—pv)
exponent for the finite size sample. given by A = == £~ and the moments of now read

. - B 2
The exponential divergence of the moments given b_)(f} = L/\JkZ — pv and(r2) — <.T>2 = w(ffvpv)zp_ In
(13) resembles that of a log-normal random variable. Thigig. 2, we compare the numerical result to the Gauss-
seems somehow paradoxical since the exact distributiofan distribution where the parameters are given by the
P(7;L) in the limit L — « (7) does not show any log- previous expressions. The calculation is performed for

normal tail. In order to clarify this point, instead of g ratio L/A = 1.4 X 1073. 10000 values ofr were
considering as before the regimefixed L — o which  calculated.

leads to (7), we have studied for fixddthe tail of the
distribution in the limit7 — . In order to extract the
asymptotic behavior, it is convenient to consider the char- e e LN B11 B o o U e e e
acteristic functiong(p,L) = [y dr e 2*»7P(r; L) given 10’
in [16]. If the conjugated variablg is chosen in a range

ye ' < p x ye’\/V_L, the characteristic function ex- «
hibits the following behavior:

One finally obtains

(2yL)¥? yL
X e~ I"(v/p)/8YL (14)

<TS> — <>

which suggests the existence of a log-normal tail for the
distribution

P(t;L) ~ exp—gy% In>Qkyr), (15)

i L VYL

in the rangee”” > 2kyr > eV”". Although we wereé  pi5 5 gecond cumulant of the time delay in the ballistic
not able to derive the behavior of the distribution whenregimer « A. Comparison between numerical results and the
et <« 2kyr, the fact that the most divergent part of the analytical result(r2) — (r)? = —£“ 3.

leew2n?L/ A e = W) The parameters
moments grows like?""*/* suggests that the distribution are » — 0.001, p =100, and k ='1. Inset: time delay

is still log normal. distribution for L = 100 (10* impurities).
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