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Universality of the Wigner Time Delay Distribution for One-Dimensional Random Potentials
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We show that the distribution of the time delay for one-dimensional random potentials is universal in
the high energy or weak disorder limit. Our analytical results are in excellent agreement with extensive
numerical simulations carried out on samples whose sizes are large compared to the localization length
(localized regime). The case of small samples is also discussed (ballistic regime). We provide a
physical argument which explains in a quantitative way the origin of the exponential divergence of the
moments. The occurrence of a log-normal tail for finite size systems is analyzed. Finally, we present
exact results in the low energy limit which clearly show a departure from the universal behavior.
[S0031-9007(99)09146-2]
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The problem of quantum scattering by chaotic or diso
dered systems is encountered in many fields ranging fro
atomic or molecular physics as well as in the scatterin
of electromagnetic microwaves. Some properties of t
scattering process are well captured through the conc
of time delay. This quantity, which goes back to Eisen
bud and Wigner [1], is related to the time spent in th
interaction region by a wave packet of energy peaked
E. It can be expressed in terms of the derivative of th
S matrix with respect to the energy. In the context o
chaotic scattering, the approach based on random ma
theory (RMT) provides a statistical description of the tim
delays. This problem was first studied by a supersymm
ric approach [2] and in [3] by using a statistical analysi
This latter paper provides a derivation for the one cha
nel case for the different universality classes. Recently
served as a starting point for [4] where theN channel dis-
tribution is shown to be given by the Laguerre ensemb
of RMT. In spite of its success, such a description b
RMT is not entirely satisfactory; in particular, it does no
apply to strictly one-dimensional systems [5] for which
strong localization effects occur. Furthermore, it does n
shed much light on the physical mechanisms which a
responsible for the universal distribution. In this Lette
we explore another approach by considering the scatter
by a one-dimensional random potential. In this case, t
existence of universal distributions was first conjecture
in [6] on the basis of a comparative study of two differ
ent models. This was further supported by [7] where th
random potential is still of a different kind.

The purpose of this Letter is to present a new derivatio
that accounts for the universality and also to provide
physical picture that explains the origin of the algebraic ta
of the distribution in terms of resonances. Further deta
will be given elsewhere [8]. To begin, let us briefly reca
the model. We consider the Schrödinger equation on t
half line x $ 0:

2
d2

dx2 cksxd 1 V sxdcksxd ­ k2cksxd . (1)
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We assume thatV sxd has its support on the intervalf0, Lg
and impose the Dirichlet boundary conditioncks0d ­
0. Therefore, forx $ L stationary scattering states of
the form

cksxd ­
1
2

se2iksx2Ld 1 eiksx2Ld1idskdd (2)

represent the superposition of an incoming and a reflect
plane wave. Since there is only backward scattering, t
reflection coefficienteidskd is of unit modulus and the
Wigner time delay takes the formtskd def

­ 1
2k

ddskd
dk . Such a

model with a random potential can be viewed as a model
a disordered sample connected to an infinite lead. Inste
of using the invariant embedding method as in [9,10] o
stochastic differential equations [11], our starting point i
to relate the time delay to the wave function inside th
sample. This may be achieved by using the identity

d
dx

√
dcp

dx
dc

dE
2 cp d2c

dx dE

!
­ jcj2. (3)

By integration overf0, Lg one gets the so-called Smith
formula [12]

tskd ­
2
k

Z L

0
dx jcksxdj2 2

1
2k2 sindskd . (4)

It expresses the time delay as the sum of a dwell tim
[13] and a term that can be neglected in the high ener
limit. Inside the sample, the wave function and its deriva
tive may be written in the formcksxd ­ N sinusxdejsxd

andc
0
ksxd ­ kN cosusxdejsxd. The normalization factor

jN j ­ e2jsLd is fixed by matching the wave function at
x ­ L with the scattering states (2). We now consider th
case whereV sxd is a random potential. In this case, the
growth or decay of the envelopeejsxd of the wave func-
tion is measured by the Lyapunov exponentg (inverse lo-
calization lengthl ­ g21). In the high energy limit, the
envelope is a slow variable, while the phaseusxd presents
rapid oscillations on a scalek21. Therefore, in the high
© 1999 The American Physical Society
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energy limit one can integrate over the fast variable in (
and get

tskd ­
1
k

Z L

0
dx e2fjsxd2jsLdg. (5)

This representation of the time delay holds for any realiz
tion of the disordered potential. It therefore captures all t
statistical properties oftskd once the distribution ofjsxd is
known. Denoting byxc the correlation length ofV sxd and
assuming thatxc andk21 are the smallest length scales o
the system, then it was proven in [14] that the variablejsxd
is a Brownian motion of the formjsxd ­ gx 1

p
g Wsxd,

whereWsxd is a normalized Wiener process [kW sxdl ­ 0,
kW sxdW sx0dl ­ minsx, x0d]. Thus, the Lyapunov expo-
nentg controls both the drift and the fluctuations. Usin
the scaling properties of the Brownian motion then give
the following identity in law:

tskd
slawd
­

1
kg

Z gL

0
du e22u12Wsud. (6)

This representation of the time delay as an exponen
functional of the Brownian motion [15–17] allows one
to derive a number of interesting results: (i) existence
a limit distribution (t fixed, L ! `) with an algebraic
tail [18]:

Pstd ­
l

2kt2 e2ly2kt . (7)

(ii) Linear divergence of the first moment and exponenti
divergence of the higher moments [16]:

ktskdl ­
L
k

, (8)

ktskdnl ­

(
nX

m­2

s21dn2mCm
n

3
sm 2 2d! s2m 2 1d

sn 1 m 2 1d!
e2msm21dLyl

1
s21dn11

n!

√
2n

L
l

1 n 2 1

!) √
l

2k

!n

. (9)

(iii) Analytical expression of the probability distribution
for a system of lengthL [see Eq. (12) of [6] ]. In [6] we
have shown that these results hold for two different mode
of random potential in the localized regimesL ¿ ld.

In order to test the analytical results in the above me
tioned regime it is convenient to choose a model suitab
for numerical simulations. For this purpose we have co
sidered the case where the random potential is given
a sum of delta functions of the same weighty, randomly
dropped on the half line with an average densityr (the so-
called Frish and Lloyd model). [This model coincides wit
the Gaussian model (Halperin model) considered in [6]
the limit of a high density of impuritiessy ø k ø rd.]
The equations that describe the evolution of the phase t
a discrete form which can be implemented conveniently
a numerical simulation. The distribution of the time de
4)
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lay that we have obtained numerically in this way is i
perfect agreement with Eq. (7) as soon as the high ene
regime is reached. For example, we compare in Fig
the analytical expression (7) with the corresponding n
merical result for a regimer ø y ø k. The simulation
was carried out for a system with105 impurities of weight
y ­ 1, distributed with an averaged densityr ­ 0.1. The
energy considered corresponds tok ­ 10 which is re-
lated to a localization lengthl ­

8k2

ry2 ­ 8000. The ratio
Lyl ­ 125 is sufficiently large for the limit distribution
to be reached. The numerical calculation is based on s
tistics of 50 000 values. It shows that the algebraic ta
is well reproduced by (7) for 2000 times the typical valu
ttyp ­ 200. Let us stress that there is no adjustable p
rameter to fit the numerics. The only parameter entering
the analytical expressions is the localization length whi
is known for each kind of disorder.

The derivation of the statistical properties oft given
above allows one to understand the universality of t
result but, on the other hand, does not shed much lig
on the physical mechanisms which are responsible
the occurrence of an algebraic tail. In the following
we propose a physical picture based on the existence
resonances that explains the leading exponential beha
of the moments. The starting point is to realize that th
reflection of the incident wave on the random potenti
can in fact be viewed as a resonance tunneling proc
[19,20]. Indeed there exists a representation of the tim
delay as a superposition of resonances of energyEa and
width Ga in the form [21]

tsEd ­ 2
X
a

Gay2
sE 2 Ead2 1 G2

ay4
. (10)

Obviously the dominant contributiont . 4
Ga

is achieved
when E is in a window of width Ga centered atEa ,

FIG. 1. Time delay distribution in the localized regimeL ¿
l. Comparison between the numerical calculation and expr
sion (7). Inset: tail of the integrated distribution, numerical an
analytical.
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and this will occur with probabilityG

D , where D is the
mean level spacing. In order to estimate the width, w
may assume that a discrete levelEa localized atx0 will
be broadened by its coupling to the continuum of stat
through the end pointx ­ L. We may therefore setG ,
e22gLsL2x0d, wheregL is the Lyapunov exponent in the
finite system. Assuming thatx0 is uniformly distributed
on f0, Lg and decorrelated fromgL, one obtains the
estimate

ktnl ,
Z L

0

dx0

L

Z
dgL psgLd

G

D

1
Gn

. (11)

Since jsLd ­ LgL defined previously is a Gaussian
process, the distribution of the finite size Lyapuno
exponentgL is [14]

psgLd ­

s
L

2pg
e2sLy2gd sgL2gd2

. (12)

One finally obtains

ktnl , e2nsn21dLyl. (13)

A more refined derivation [8] allows one to recove
the gross behavior of the preexponential factor. Th
demonstrates that this particular behavior of the momen
has origin both in the exponentially small widths o
the resonances and in the fluctuations of the Lyapun
exponent for the finite size sample.

The exponential divergence of the moments given b
(13) resembles that of a log-normal random variable. Th
seems somehow paradoxical since the exact distribut
Pst; Ld in the limit L ! ` (7) does not show any log-
normal tail. In order to clarify this point, instead of
considering as before the regimet fixed L ! ` which
leads to (7), we have studied for fixedL the tail of the
distribution in the limit t ! `. In order to extract the
asymptotic behavior, it is convenient to consider the cha
acteristic functionfsp, Ld ­

R`

0 dt e22kptPst; Ld given
in [16]. If the conjugated variablep is chosen in a range

ge2gL ø p ø ge2
p

gL, the characteristic function ex-
hibits the following behavior:

fsp, Ld . 1 2
2
p

p e2gLy2

s2gLd3y2 lngyp

"
1 1 O

√
lngyp

gL

!#
3 e2 ln2sgypdy8gL, (14)

which suggests the existence of a log-normal tail for th
distribution

Pst; Ld , exp2
1

8gL
ln2s2kgtd , (15)

in the rangeegL ¿ 2kgt ¿ e
p

gL. Although we were
not able to derive the behavior of the distribution whe
egL ø 2kgt, the fact that the most divergent part of th
moments grows likee2n2Lyl suggests that the distribution
is still log normal.
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As an aside remark, let us mention that a log-norm
distribution of the time delay also occurs in the study
the random mass Dirac model at the critical pointE ­ 0
[22]. There, the authors provide a representation oft

which is similar to Eq. (6), except that the drift term i
absent. This problem can also be analyzed by using
approach given in [16,17].

At this stage, we have considered only a localize
regime for which the size of the system is large com
pared to the localization lengthL ¿ l. Another inter-
esting case is the ballistic one characterized byL ø l.
In this situation, the dimensionless variablegL which
arises in (6) is small compared to 1, and the argume
of the exponential typically remains small compared
1, which allows one to expand the exponential. Th
resulting expression for the time delay is given by
linear functional of a Gaussian quantity and has its
Gaussian fluctuations characterized by a first mom
ktl ­

L
k and a second cumulantkt2l 2 ktl2 . 4g

3k2 L3.
We have checked numerically these results with the de
impurity model. We have considered a regime whe
it reproduces the high energy features of the Gau
ian model:y ø k ø r and sk2 2 ryd ¿ sry2d2y3. In
this regime, one has to take into account the averag
value of the disorderry and replacek by

p
k2 2 ry in

all previous expressions: the localization length is th
given by l ­ 8sk22ryd

ry2 and the moments oft now read

ktl ­ Ly
p

k2 2 ry and kt2l 2 ktl2 . ry2

6sk22ryd2 L3. In
Fig. 2, we compare the numerical result to the Gau
ian distribution where the parameters are given by t
previous expressions. The calculation is performed
a ratio Lyl . 1.4 3 1023. 10 000 values oft were
calculated.

FIG. 2. Second cumulant of the time delay in the ballist
regimeL ø l. Comparison between numerical results and t
analytical resultkt2l 2 ktl2 . ry2

6sk22ryd2 L3. The parameters
are y ­ 0.001, r ­ 100, and k ­ 1. Inset: time delay
distribution forL ­ 100 (104 impurities).
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FIG. 3. Time delay distribution in the localized regimeL ¿
l at low energy.

Let us close the paper with some remarks on the lo
energy regime. In this case, one is more sensitive to
precise nature of the disorder, therefore one can gu
that universality must break down. The distribution o
the time delay will now depend on the nature of disorde
As an illustration let us consider the delta impurity mode
we predict [8], in the low density regimek ø r ø y, an
exponential tail for the distribution:

Pstd . krY

√
t 2

1
ky

!
e2krft2s1ykydg, (16)

where Y sxd denotes the Heaviside function. We hav
checked that this expression is in very good agreem
with the numerical results. The numerical computatio
was performed fory ­ 1, r ­ 0.1, and k ­ 0.01 for
1000 impurities. The resulting distribution presented
Fig. 3 is based on 50 000 data sets. The behavior
the origin is more subtle than the one given abov
nevertheless, (16) gives the correct scale on which
distribution vanishes at the origin. Another indicatio
that universality breaks down is the fact that within th
same model the low energy regime with a high dens
of impuritiesk ø y ø r leads to different distributions,
though still characterized by an exponential tail.
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