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Topological Origin of the Phase Transition in a Mean-Field Model

Lapo Casetti,1,* E. G. D. Cohen,2,† and Marco Pettini3,‡

1Istituto Nazionale per la Fisica della Materia (INFM), Unità di Ricerca del Politecnico di Torino, Dipartimento di Fisi
Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

2The Rockefeller University, 1230 York Avenue, New York, New York 10021-6399
3Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze, Italy

and Istituto Nazionale per la Fisica della Materia (INFM), Unità di Ricerca di Firenze, Firenze, Italy
(Received 30 October 1998)

We argue that the phase transition in the mean-fieldXY model is related to a particular change in
the topology of its configuration space. The nature of this topological change can be discussed on the
basis of elementary Morse theory using the potential energy per particleV as a Morse function. The
value ofV where such a topological change occurs equals the thermodynamic value ofV at the phase
transition and the number of (Morse) critical points grows very fast with the number of particlesN.
Furthermore, as in statistical mechanics, the way the thermodynamic limit is taken is crucial in topology.
[S0031-9007(99)09249-2]
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It is customary in statistical mechanics to associa
phase transitions with singularities in the equilibrium me
sure that describes the macroscopic system in its ph
space. Recently it has been conjectured [1] that seco
order phase transitions might have a topological orig
i.e., that a thermodynamic transition might be related
a change in the topology of the configuration space, a
that the observed singularities in the statistical-mechani
equilibrium measure and in the thermodynamic obser
ables at the phase transition might be interpreted as
“shadow” of this major topological change that happen
at a more basic level. Such a conjecture has been put
ward heuristically, based on numerical simulations whe
the averages and fluctuations—either time or statistic
mechanical—for some observables of a geometric nat
(e.g., configuration-space curvature fluctuations) related
the Riemannian geometrization of the dynamics in config
ration space have been computed. When plotted as a fu
tion of either the temperature or the energy, the fluctuatio
of the curvature have a singular behavior at the transiti
point which can be qualitatively reproduced using a ge
metric model. In such a model the origin of the singula
behavior of the curvature fluctuations resides in a topolo
cal change [1]. Extensive numerical work [2] has show
that the curvature fluctuations indeed exhibit qualitative
the same singular behavior in many different models u
dergoing continuous phase transitions, namely,w4 lattice
models with discrete and continuous symmetries andXY
models. The presence of a singularity in the statistic
mechanical averages as well as in the fluctuations of
curvature at the transition point has been proved analy
cally for the mean-fieldXY model [3], which is the model
that we will consider in the following. Moreover, a purely
geometric, and thus still indirect, further indication that th
topology of the configuration space might change at t
phase transition has been obtained from numerical cal
lations for thew4 model on a two-dimensional lattice [4].
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In spite of all these indirect indications, nodirect evi-
dence, analytical or numerical, of the presence of a cha
in the topology of the configuration manifold that can b
related with a thermodynamic phase transition had yet b
found. The purpose of the present Letter is to argue t
such a topological change in configuration space indeed
ists in the particular case of the mean-fieldXY model and,
in doing so, to clarify the nature of the relationship betwe
topologic and thermodynamic transitions, discussing es
cially the role played by the thermodynamic limit.

Let us now introduce the mathematical tools we ne
to detect and characterize topological changes, which
referred to as elementary critical point (Morse) theory [
Such a theory links the topology of a given manifold wi
the properties of the critical points of functions defined
it. Given a (compact) manifoldM and a smooth function
f : M ° R, a pointxc [ M is called acritical point of
f if df ­ 0, while the valuefsxcd is called acritical
value. A level setf21sad ­ hx [ M : fsxd ­ aj of f
is called acritical level if a is a critical value off, i.e.,
if there is at least one critical pointxc [ f21sad. The
function f is called aMorse functionon M if its critical
points are nondegenerate, i.e., if the Hessian off at xc

has only nonzero eigenvalues, so the critical pointsxc are
isolated. Let us now consider a Hamiltonian dynamic
system whose Hamiltonian is of the form

H ­
1
2

NX
i­1

p2
i 1 V swd , (1)

where thew’s and thep ’s are, respectively, the coor
dinates and the conjugate momenta. The dynamics
such a system is defined in the2N-dimensional phase
space spanned by thew’s and thep ’s, so that a natural
choice would be to investigate the topology of the pha
space by using the HamiltonianH itself as a Morse
function. However, for all the critical points ofH ,
pi ­ 0 ; i holds, so that there is no loss of informatio
© 1999 The American Physical Society
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in considering as our manifoldM theN-dimensional con-
figuration space, and the potential energy per parti
V swd ­ V swdyN as our Morse function [6]. Let us now
consider the following family of submanifolds ofM:

My ­ V 21s2`, yg ­ hw [ M : V swd # yj , (2)

i.e., eachMy is the sethwijN
i­1 such that the potential en-

ergy per particle does not exceed a given valuey. As
y is increased from2` to 1`, this family covers suc-
cessively the whole manifoldM [7]. All these manifolds
have the same topology (homotopy type) until a critic
level V 21sycd ­ ≠Myc is crossed; here the topology o
My changes. More precisely, the manifoldsMy0 andMy ,
with y0 , yc , y00, cannot be smoothly mapped ont
each other ifyc is a critical value ofV swd. A change in
the topology ofMy can occur only wheny passes through
a critical value ofV . Thus in order to detect topologica
changes inMy we have to find the critical values ofV ,
which means solving the equations

≠V swd
≠wi

­ 0, i ­ 1, . . . , N . (3)

Let us now apply this method to the case of the mea
field XY model. This model is particularly interesting
for our purpose because the mean-field character of
interaction greatly simplifies the analysis [8], allowing a
analytical treatment of Eqs. (3); moreover, a projectio
of the configuration space onto a two-dimensional pla
is possible. The mean-fieldXY model [9] describes a
system ofN equally coupled planar classical rotators.
is defined by a Hamiltonian of the class (1) where th
potential energy is

V swd ­
J

2N

NX
i,j­1

f1 2 cosswi 2 wjdg 2 h
NX

i­1

coswi .

(4)

Herewi [ f0, 2pg is the rotation angle of theith rotator
andh is an external field. Defining at each sitei a classi-
cal spin vectorsi ­ scoswi , sinwid the model describes a
planar (XY ) Heisenberg system with interactions of equ
strength among all the spins. We consider only the fe
romagnetic caseJ . 0; for the sake of simplicity, we set
J ­ 1. The equilibrium statistical mechanics of this sys
tem is exactly described, in the thermodynamic limit, b
mean-field theory [9]. In the limith ! 01, the system
has a continuous phase transition, with classical critic
exponents, atTc ­ 1y2 or ´c ­ 3y4, where´ ­ EyN is
the energy per particle.

We aim at showing that this phase transition has
foundation in a basic topological change that occurs in t
configuration spaceM of the system. Let us remark tha
since V swd is bounded,2h # V swd # 1y2 1 h2y2,
the manifold is empty as long asy , 2h, and wheny

increases beyond1y2 1 h2y2 no changes in its topology
can occur so that the manifoldMy remains the same
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for any y . 1y2 1 h2y2 and is anN-torus. To detect
topological changes we have to solve Eqs. (3). To th
end it is useful to define the magnetization vector, i.e., t
collective spin vectorm ­

1
N

PN
i­1 si , which as a function

of the angles is given by

m ­ smx , myd ­

√
1
N

NX
i­1

coswi ,
1
N

NX
i­1

sinwi

!
. (5)

Since, due to the mean-field character of the model,
potential energy (4) can be written as a function ofm
alone (remember thatJ ­ 1), the potential energy per
particle reads

V swd ­ V smx , myd ­
1
2

s1 2 m2
x 2 m2

yd 2 hmx .

(6)

This allows us to write Eqs. (3) in the form (i ­ 1, . . . , N)

smx 1 hd sinwi 2 my coswi ­ 0 . (7)

Now we can solve these equations and find all the critic
values ofV . The solutions of Eqs. (7) can be groupe
inthe following three classes:

(i) The minimal energy configurationwi ­ 0 ; i, with
a critical valuey ­ y0 ­ 2h, which tends to 0 ash !
01. In this case,m2

x 1 m2
y ­ 1.

(ii) Configurations such thatmy ­ 0, sinwi ­ 0 ; i.
These are the configurations in whichwi equals either
0 or p; i.e., we have againwi ­ 0 ; i, but also theN
configurations withwk ­ p and wi ­ 0 ; i fi k, then
the NsN 2 1d configurations with two angles equal to
p and all the others equal to 0, and so on, up
the configuration withwi ­ p ; i. The critical values
corresponding to these critical points depend only
the number ofp ’s, np , so thatysnp d ­

1
2 f1 2

1
N2 sN 2

2npd2g 2
h
N sN 2 2npd. We see that the largest critica

value is, forN even,ysnp ­ Ny2d ­ 1y2 and that the
number of critical points corresponding to it isO s2N d.

(iii) Configurations such thatmx ­ 2h and my ­ 0,
which correspond to the critical valueyc ­ 1y2 1 h2y2,
which tends to1y2 as h ! 01. The number of these
configurations grows withN not slower thanN! [10].

Configurations (i) are the absolute minima ofV ,
(iii) are the absolute maxima, and (ii) are all the oth
stationary configurations ofV .

Since fory , y0 the manifold is empty, the topologica
change that occurs aty0 is the one corresponding to the
“birth” of the manifold from the empty set; subsequent
there are many topological changes at valuesysnp d [
sy0, 1y2g till at yc there is a final topological change
which corresponds to the “completion” of the manifold
We remark that the number of critical values in th
intervalfy0, 1y2g grows withN and that eventually the se
of these critical values becomes dense in the limitN ! `.
However, the critical valueyc remains isolated also in
that limit. We observe that considering a nonzero extern
field h is necessary in order thatV is a Morse function,
4161
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because ifh ­ 0 all the critical points of classes (i) and
(ii) are degenerate, in which case topological changes
not necessarily occur [5]. This degeneracy is due to t
Os2d invariance of the potential energy in the absence
an external field. To be sure, forh fi 0, V may not be
a Morse function on the whole ofM either, but only on
My with y , yc, because the critical points of class (iii)
may also be degenerate, so thatyc does not necessarily
correspond to a topological change.

However, this difficulty could be dealt with by using
that the potential energy can be written in terms o
the collective variablesmx and my —see Eq. (6). This
implies that we consider the system ofN spins projected
onto the two-dimensional configuration space of th
collective spin variables. According to the definition (5
of m, the accessible configuration space is now not t
whole plane, but only the disk

D ­ hsmx , myd : m2
x 1 m2

y # 1j . (8)

Thus we want to study the topology of the submanifolds

Dy ­ hsmx , myd [ D : V smx , myd # yj . (9)

The sequence of topological transformations undergo
by Dy can now be very simply determined in the limi
h ! 01 (see Fig. 1). As long asy , 0, Dy is the empty
set. The first topological change occurs aty ­ y0 ­ 0,
where the manifold appears as the circlem2

x 1 m2
y ­ 1,

i.e., the boundary≠D of the accessible region. Then asy

growsDy is given by the conditions

1 2 2y # m2
x 1 m2

y # 1 ; (10)

i.e., it is the ring with a hole centered ins0, 0d (punctuated
disk) comprised between the two circles of radii1 andp

2y, respectively. Asy continues to grow the hole
shrinks and it is eventually completely filled asy ­ yc ­
1y2, where the second topological change occurs.
this coarse-grained two-dimensional description inD, all
the topological changes that occur inM betweeny ­ 0
and y ­ 1y2 disappear, and only the two topologica
changes corresponding to the extrema ofV , occurring
at y ­ y0 and y ­ yc, survive. This strongly suggests
that the topological change atyc should be present also
in the full N-dimensional configuration space, so that th
degeneracies mentioned above for the critical points
class (iii) should not prevent a topological change.

FIG. 1. The sequence of topological changes undergone
the manifoldsDy with increasingy in the limit h ! 01.
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Now we want to argue that the topological change o
curring atyc is related to the thermodynamic phase tran
tion of the mean-fieldXY model. Since the Hamiltonian
is of the standard form (1), the temperatureT , the en-
ergy per particlé , and the average potential energy p
particle u ­ kV l obey, in the thermodynamic limit, the
following equation:

´ ­
T
2

1 usT d , (11)

where we have set Boltzmann’s constant equal to
Substituting the values of the critical energy per partic
´c ­ 3y4 and of the critical temperatureTc ­ 1y2 we
get uc ­ usTcd ­ 1y2, so that the critical value of the
potential energy per particleyc where the last topological
change occurs equals the statistical-mechanical ave
value of the potential energy at the phase transition,

yc ­ uc . (12)

Thus although a topological change inM occurs at any
N, and yc is independentof N, there is a connection
of such a topological change and a thermodynamic ph
transitiononly in the limit N ! `, h ! 01, when indeed
thermodynamic phase transitions can be defined.
similar kind of difference, as here between topologic
changes in mathematics (for allN) and phase transitions
in physics (forN ! ` only), also occurs in other context
in statistical mechanics, e.g., in nonequilibrium stationa
states [11].

The relevance of topologic concepts for phase transit
theory had already been proved, in the case of the tw
dimensional Ising model [12], though in a rather abstra
context: in that case the phase transition was rela
to a jump in the Atiyah index of a suitable vecto
bundle. However, Eq. (12) strongly supports — albeit f
a special model — the conjecture put forward in Ref. [1
i.e., that also the topology of the configuration spa
changes in correspondence with a thermodynamic ph
transition.

Sincenot all topological changes correspond to pha
transitions, those that do correspond remain to be de
mined to make the conjecture of Ref. [1] more precis
In this context, we consider one example where there
topological changes very similar to the ones of our mod
but no phase transitions, i.e., the one-dimensionalXY
model with nearest-neighbor interactions, whose Ham
tonian is of the class (1) with interaction potential

V swd ­
1
4

NX
i­1

f1 2 cosswi11 2 widg 2 h
NX

i­1

coswi .

(13)

In this case the configuration spaceM is still an N-torus,
and using again the specific interaction energyV ­
VyN as a Morse function we can prove that also he
there are many topological changes in the submanifo
My as y is varied in the intervalf0, 1y2g (after taking
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h ! 01). The critical points are all of the typewj ­
wk ­ wl ­ . . . ­ p, wi ­ 0 ; i fi j, k, l, . . . ; however,
at variance with the mean-fieldXY model, it is no longer
the number ofp ’s that determines the value ofV at
the critical point, but rather the number of domain walls
nd , i.e., the number of boundaries between “islands” o
p ’s and islands of0’s: ysndd ­ ndy2N . Sincendf0, Ng,
the critical values lie in the same interval as in the ca
of the mean-fieldXY model. But now the maximum
critical value y ­ 1y2, instead of corresponding to a
huge number of critical points, which rapidly grows
with N, corresponds toonly two configurations withN
domain walls, which arew2k ­ 0, w2k11 ­ p, with k ­
1, . . . , Ny2, and the reversed one.

Thus this example suggests the conjecture that a top
logical change in the configuration space submanifol
My occurring at a critical valueyc is associated with a
phase transition in the thermodynamic limit if the numbe
of critical points corresponding to the critical valueyc is
sufficiently rapidly growing withN . On the basis of the
behavior of the mean-fieldXY model we expect that such
a growth should be at least exponential. Furthermore
relevant feature appears to be thatyc remains an isolated
critical value also in the limitN ! `: in the mean-field
XY model this holds only if the thermodynamic limit is
taken before the h ! 01 limit: this appears as a topo-
logical counterpart of the noncommutativity of the limits
h ! 01 andN ! ` in order to get a phase transition in
statistical mechanics.

We conclude with some comments.
The sequence of topological changes occurring wi

growing V makes the configuration space larger an
larger, till at yc the whole configuration space become
fully accessible to the system through the last topologic
change. From a physical point of view, this correspond
to the appearance of more and more disordered config
rations asT grows, which ultimately lead to the phase
transition atTc. We remark that the connection betwee
the topology of the configuration space and the physics
continuous phase transitions made here via the poten
energy, in particular, Eq. (12), makes sense only in th
thermodynamic limit, where the potential energy pe
particle usT d is well defined since its fluctuations vanish
then at least as1y

p
N [13].

Since a notion of universality arises quite naturall
in a topological framework, it is tempting to think tha
universal quantities like critical exponents might have i
general a topological counterpart.

Finally, the fact that the topological changes appe
at any N opens a new possibility to study transitiona
phenomena infinite systems, such as atomic clusters
nuclei, polymers and proteins, or other biological system
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