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Topological Origin of the Phase Transition in a Mean-Field Model
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We argue that the phase transition in the mean-fi&fdmodel is related to a particular change in
the topology of its configuration space. The nature of this topological change can be discussed on the
basis of elementary Morse theory using the potential energy per paiicis a Morse function. The
value of V where such a topological change occurs equals the thermodynamic valMeabthe phase
transition and the number of (Morse) critical points grows very fast with the number of parcles
Furthermore, as in statistical mechanics, the way the thermodynamic limit is taken is crucial in topology.
[S0031-9007(99)09249-2]

PACS numbers: 75.10.Hk, 02.40.-k, 05.70.Fh, 64.60.Cn

It is customary in statistical mechanics to associate In spite of all these indirect indications, rlirect evi-
phase transitions with singularities in the equilibrium mea-dence, analytical or numerical, of the presence of a change
sure that describes the macroscopic system in its phase the topology of the configuration manifold that can be
space. Recently it has been conjectured [1] that secondelated with a thermodynamic phase transition had yet been
order phase transitions might have a topological originfound. The purpose of the present Letter is to argue that
i.e., that a thermodynamic transition might be related tasuch a topological change in configuration space indeed ex-
a change in the topology of the configuration space, anéts in the particular case of the mean-fi?ld model and,
that the observed singularities in the statistical-mechanicah doing so, to clarify the nature of the relationship between
equilibrium measure and in the thermodynamic observtopologic and thermodynamic transitions, discussing espe-
ables at the phase transition might be interpreted as @ally the role played by the thermodynamic limit.
“shadow” of this major topological change that happens Let us now introduce the mathematical tools we need
at a more basic level. Such a conjecture has been put fote detect and characterize topological changes, which are
ward heuristically, based on numerical simulations whereeferred to as elementary critical point (Morse) theory [5].
the averages and fluctuations—either time or statisticalSuch a theory links the topology of a given manifold with
mechanical—for some observables of a geometric naturthe properties of the critical points of functions defined on
(e.g., configuration-space curvature fluctuations) related td. Given a (compact) manifold/ and a smooth function
the Riemannian geometrization of the dynamics in configuf : M — R, a pointx. € M is called acritical point of
ration space have been computed. When plotted as a fung-if df = 0, while the valuef(x.) is called acritical
tion of either the temperature or the energy, the fluctuationsalue A level setf (a) ={x € M : f(x) = a} of f
of the curvature have a singular behavior at the transitios called acritical level if a is a critical value off, i.e.,
point which can be qualitatively reproduced using a geoif there is at least one critical point. € f~!(a). The
metric model. In such a model the origin of the singularfunction f is called aMorse functionon M fif its critical
behavior of the curvature fluctuations resides in a topologipoints are nondegenerate, i.e., if the Hessiarf @ft x,.
cal change [1]. Extensive numerical work [2] has shownhas only nonzero eigenvalues, so the critical paintare
that the curvature fluctuations indeed exhibit qualitativelyisolated. Let us now consider a Hamiltonian dynamical
the same singular behavior in many different models unsystem whose Hamiltonian is of the form
dergoing continuous phase transitions, namely Jattice 1 &
models with discrete and continuous symmetries Aiid H=— Z 72+ Vip), (1)
models. The presence of a singularity in the statistical- 2 S
mechanical averages as well as in the fluctuations of th&shere thee’s and the#’s are, respectively, the coor-
curvature at the transition point has been proved analytidinates and the conjugate momenta. The dynamics of
cally for the mean-fieldY model [3], which is the model such a system is defined in tl#¥V-dimensional phase
that we will consider in the following. Moreover, a purely space spanned by the's and the’s, so that a natural
geometric, and thus still indirect, further indication that thechoice would be to investigate the topology of the phase
topology of the configuration space might change at thespace by using the Hamiltoniafi{ itself as a Morse
phase transition has been obtained from numerical calcdunction. However, for all the critical points ofH,
lations for thee* model on a two-dimensional lattice [4]. 7; = 0 V i holds, so that there is no loss of information
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in considering as our manifolty the N-dimensional con- for any v > 1/2 + h*/2 and is anN-torus. To detect
figuration space, and the potential energy per particléopological changes we have to solve Egs. (3). To this
V(e) = V(e)/N as our Morse function [6]. Let us now end it is useful to define the magnetization vector, i.e., the
consider the following family of submanifolds &1: collective spin vectom = % >N | 'si, which as a function

My =V —ov]={p €M: Vie)=v}. (2 of the angles is given by

N N
i.e., eachM, is the se{p;}'"; such that the potential en- ~ m = (m,,m,) = (% > COSsDi,% ZSincvi). 5)
ergy per particle does not exceed a given value As i=1 i=1

v is increased from-« to +co, this family covers suc- Since, due to the mean-field character of the model, the
cessively the whole manifoltf [7]. All these manifolds potential energy (4) can be written as a functionmof
have the same topology (homotopy type) until a criticalalone (remember thal = 1), the potential energy per
level V~!(v.) = aM,, is crossed; here the topology of particle reads

M, changes. More precisely, the manifolds, andM,,, _ R S S N

with v/ < v. < v”, cannot be smoothly mapped onto Vi) = Vimem,) = 5(1 my = my) = hmy.
each other ifv. is a critical value of V(¢). A change in (6)

the topology ofM, can occur only whem passes through . . .
a critical value of V. Thus in order to detect topological This allows us to write Egs. (3) in the form £ 1., )

changes inV,, we have to find the critical values oV, (my + h)sing; — my cosg; = 0. (7
which means solving the equations Now we can solve these equations and find all the critical
V() . values of V. The solutions of Egs. (7) can be grouped
do; 0, i=L....N. (3 inthe following three classes:
i (i) The minimal energy configuratiop; = 0 V i, with
Let us now apply this method to the case of the meanz .itical valuev = vo = —h, which tends to 0 ag —

field XY model. This model is particularly interesting o+ |4 this casem? + m2 = 1
: b 5 :

for our purpose begaus_g the mean—fie_ld characte_r of the (i) Configurations such thatr, = 0,sing; = 0V i,
interaction greatly simplifies the analysis [8], aIIOW|_ng aNThese are the configurations in whigh equals either
analytical treatment of Egs. (3); moreover, a projectionyy or - j e we have agair; = 0V i, but also theN
pf the c_onflguratlon space onto a two-dlmensmnal plan%onfigurations withg, = 7 and ¢; = 0V i # k, then
is possible. The mean-fieldY model [9] describes a ihe N(N — 1) configurations with two angles equal to
system ofN equally cqupl_ed planar classical rotators. It . 5nq all the others equal to 0, and so on, up to
is defined by a Hamiltonian of the class (1) where thewe configuration withy; = 7 V i. The critical values
potential energy is corresponding to these critical points1 depeqd only on
J & N the number ofr’s, n,, so thatv(n,) = 3[1 — = (N —
Vie) = N .Z_l[l —codgi — @)l — h ;COS%' 2n,)2] — »(N — 2n,). We see that the largest critical
we - (4) Valueis, forN even,v(n, = N/2) = 1/2 and that the
number of critical points corresponding to it@(2").
Here ¢; € [0,24r] is the rotation angle of th&h rotator (iii) Configurations such thatn, = —h and m, = 0,
andh is an external field. Defining at each sita classi- which correspond to the critical value = 1/2 + h?/2,
cal spin vectos; = (cose;, sing;) the model describes a which tends tol/2 as h — 0". The number of these
planar XY) Heisenberg system with interactions of equalconfigurations grows wittv not slower thanv'! [10].
strength among all the spins. We consider only the fer- Configurations (i) are the absolute minima o¥,
romagnetic casé > 0; for the sake of simplicity, we set (iii) are the absolute maxima, and (ii) are all the other
J = 1. The equilibrium statistical mechanics of this sys- stationary configurations oV .
tem is exactly described, in the thermodynamic limit, by Since forv < v, the manifold is empty, the topological
mean-field theory [9]. In the limitz — 0%, the system change that occurs at, is the one corresponding to the
has a continuous phase transition, with classical criticatbirth” of the manifold from the empty set; subsequently
exponents, af. = 1/2 or . = 3/4, wheree = E/N is  there are many topological changes at valués,) €
the energy per particle. (vg,1/2] till at v. there is a final topological change
We aim at showing that this phase transition has itsvhich corresponds to the “completion” of the manifold.
foundation in a basic topological change that occurs in th&e remark that the number of critical values in the
configuration spac#/ of the system. Let us remark that interval[v,, 1/2] grows withN and that eventually the set
since V(gp) is bounded,—h = V(¢) = 1/2 + h*/2,  of these critical values becomes dense in the livhit> oo
the manifold is empty as long as < —#h, and whenv However, the critical valuev, remains isolated also in
increases beyontl/2 + h%/2 no changes in its topology that limit. We observe that considering a nonzero external
can occur so that the manifolst/, remains the same field 4 is necessary in order tha¥ is a Morse function,
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because if» = 0 all the critical points of classes (i) and  Now we want to argue that the topological change oc-

(i) are degenerate, in which case topological changes dourring atv. is related to the thermodynamic phase transi-

not necessarily occur [5]. This degeneracy is due to théion of the mean-field(Y model. Since the Hamiltonian

0(2) invariance of the potential energy in the absence ofs of the standard form (1), the temperature the en-

an external field. To be sure, far+ 0, V may not be ergy per particles, and the average potential energy per

a Morse function on the whole df either, but only on particlex = (V) obey, in the thermodynamic limit, the

M, with v < v., because the critical points of class (iii) following equation:

may also be degenerate, so thatdoes not necessarily T

correspond to a topological change. e=— + u(T), (12)
However, this difficulty could be dealt with by using 2

that the potential energy can be written in terms ofwhere we have set Boltzmann's constant equal to 1.

the collective variablesn, and m,—see Eq. (6). This Substituting the values of the critical energy per particle

implies that we consider the system ®fspins projected &, = 3/4 and of the critical temperaturé. = 1/2 we

onto the two-dimensional configuration space of theget u. = u(T.) = 1/2, so that the critical value of the

collective spin variables. According to the definition (5) potential energy per particke. where the last topological

of m, the accessible configuration space is now not the&hange occurs equals the statistical-mechanical average

whole plane, but only the disk value of the potential energy at the phase transition,

D = {(my,my) : m2 + m}2 = 1}. (8) Ve = U . (12)

Thus we want to study the topology of the submanifolds Thus although a topological change M occurs at any
_ ] N, and v, is independentof N, there is a connection
Dy = {(my.my) € D= Vimemy) < vh. (O Gfgienq topological change and a thermodynamic phase
The sequence of topological transformations undergontransitiononly in the limit N — o, h — 0%, when indeed
by D, can now be very simply determined in the limit thermodynamic phase transitions can be defined. A
h — 0" (see Fig. 1). Aslong as < 0, D, isthe empty similar kind of difference, as here between topological
set. The first topological change occursvat= vy = 0,  changes in mathematics (for af) and phase transitions

where the manifold appears as the cirglé + mf, =1, inphysics (forN — « only), also occurs in other contexts
i.e., the boundaryD of the accessible region. Thenas in statistical mechanics, e.g., in nonequilibrium stationary
growsD,, is given by the conditions states [11].

) 2 . The relevance of topologic concepts for phase transition
= 2v=m+m=1; (10) theory had already been proved, in the case of the two-
i.e., itis the ring with a hole centered {0, 0) (punctuated dimensional Ising model [12], though in a rather abstract
disk) comprised between the two circles of ratliand context: in that case the phase transition was related
V2v, respectively. Asv continues to grow the hole to a jump in the Atiyah index of a suitable vector

shrinks and it is eventually completely filled as= v, = bundle. However, Eq. (12) strongly supports — albeit for
1/2, where the second topological change occurs. I special model — the conjecture put forward in Ref. [1],
this coarse-grained two-dimensional descriptiomipall  i.e., that also the topology of the configuration space

the topological changes that occur M betweenv = 0 changes in correspondence with a thermodynamic phase
and v = 1/2 disappear, and only the two topological transition.
changes corresponding to the extrema ¥t occurring Sincenot all topological changes correspond to phase
atv = vy andv = v,, survive. This strongly suggests transitions, those that do correspond remain to be deter-
that the topological change at should be present also mined to make the conjecture of Ref. [1] more precise.
in the full N-dimensional configuration space, so that theln this context, we consider one example where there are
degeneracies mentioned above for the critical points ofopological changes very similar to the ones of our model
class (iii) should not prevent a topological change. but no phase transitions, i.e., the one-dimensioxl
model with nearest-neighbor interactions, whose Hamil-
tonian is of the class (1) with interaction potential

1 N N
Vie) = o D[1 = codgiv1 — @)] = h Y cosg;.
i=1 i=1 (13)

In this case the configuration spakgis still an N-torus,
and using again the specific interaction enerdy =

v=0 0<v<l/2 v=172 V/N as a Morse function we can prove that also here
FIG. 1. The sequence of topological changes undergone bthere are many topological changes in the submanifolds
the manifoldsD,, with increasingy in the limit 7 — 0. M, aswv is varied in the interval0, 1/2] (after taking
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of the mean-fieldXY model. But now the maximum

critical value v = 1/2, instead of corresponding to a

huge number of critical points, which rapidly grows

with N, corresponds tanly two configurations with\ >trIIEElI(zz((::ttrrc())rr:ii((:: chji?jrrissss:' l: pg%)rc:)"ctlﬁ\./i;x rockefeller.edu
domain walls, which arey, = 0, @y+y = o, With k = *Also at INFN éezgi]one di Firenze, Firenze, Ital
1,...,N/2, and the reversed one. ' ' ’ y
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Finally, the fact that the topological changes appeaf; 3] This holds for our mean-field model, since fluctuations
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phenomena infinite systems, such as atomic clusters, phase transition the nontrivial role of fluctuations may

nuclei, polymers and proteins, or other biological systems.  complicate the present picture.
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