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Quantum Monte Carlo Method for Fermions, Free of Discretization Errors
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In this Letter we present a novel quantum Monte Carlo method for fermions, based on an exact
decomposition of the Boltzmann operator éxpH). It can be seen as a synthesis of several
related methods. It has the advantage that it is free of discretization errors, and applicable to
general interactions, both for ground-state and finite-temperature calculations. The decomposition
is based on low-rank matrices, which allows faster calculations. As an illustration, the method is
applied to an analytically solvable model (pairing in a degenerate shell) and to the Hubbard model.
[S0031-9007(99)09240-6]

PACS numbers: 02.70.Lg, 21.60.Ka, 71.10.Fd

Quantum Monte Carlo methods (QMC) offer an inter-the Hubbard-Stratonovich transform [11,12] to linearize
esting way to obtain numerical results for large quantunthe two-body part of the Hamiltonian. Both ingredients
systems [1-3]. Determinantal Monte Carlo methods thalead to systematic discretization errors in the calculations.
go by names as auxiliary-field [4], shell-model [5], grand-Furthermore, for general two-body interactions these meth-
canonical [6], or projection quantum Monte Carlo [3] areods require many manipulations with dense matrices and
based on the decomposition of the Boltzmann operatdnence a lot of CPU (central processing unit) time.
exp(—BH) as a sum or integral over exponentials of one- Several quantum Monte Carlo methods have been
body operators. The latter are easy to handle numerdeveloped that are free from discretization errors: the
cally. Simple algebraic expressions exist to calculate theiGreen’s function QMC of Ceperley and Kalos [1], the
grand-canonical [6] or canonical trace [5,7] or their over-stochastic series expansion developed by Handscomb
lap between Slater determinants [3,8]. The sum or intef13] and extended by Sandvik and Kurkijarvi [14], the
gral is then evaluated using Monte Carlo techniques, mostontinuous-time loop algorithm of Beard and Wiese
often Markov-chain Monte Carlo techniques such as th€15], the “worm” algorithm of Prokof'ewet al.[16], and
Metropolis algorithm [9]. The basic ingredients of such athe finite-temperature method for the pairing interaction
decomposition are the Suzuki-Trotter decomposition [10developed by Cerf [17]. The latter two methods are based
to separate honcommuting parts of the Hamiltonian qnd)n the expression
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For the determinantal QMC, no algorithm without diis- general interactions and moreover results in a (partially
cretization errors was available. By repeating the calculaeontinuous) sum over exponentials of one-body operators,
tion several times, with a finer and finer mesh in imaginanjust like auxiliary-field quantum Monte Carlo methods.
time, one could make an extrapolation to the exact resulfThe decomposition is an exact one, so the only error in
But this requires a lot of computer time. the calculations is the statistical error originating from the

In this Letter we present a new decomposition of theMonte Carlo sampling of the terms in the decomposition
Boltzmann operator, also based on expression (1), thdapart from the round-off error due to the limited machine
is free of discretization errors, but that is applicable toprecision).
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The trick to arrive at the decomposition of the Boltz-
mann operator is to replaceV in expression (1) with
u — BV, whereu is an arbitrary, real positive parame-

N N > 1 t
e—,BH0+(M—BV) =1+ Z w” [ dty - f
m=1 0 0

m
2dt1 l_[(l - ﬁe_”BﬁOVetiﬁﬂ°>:|e_ﬂﬁ°.
i=1 ~

ter. Adding u to the exponent has no influence on the
properties calculated with the Boltzmann operator, and it
can simply be corrected by a facter#. Instead of ex-
pression (1) we now obtain

2)

This last expression is reminiscent of the expression |for For the pairing Hamiltonian one has

the partition function in the interaction representation
derived in [18], with the difference that here the factors

have the forml — %V(rﬂ) instead of —V(r) [where

V(r) is the two-body Hamiltonian in the interaction
representation]. It is the additional constarthat makes

V=-G >
k,k'>0

3)

where the operatdr,ir creates a particle in the correspond-
ing single-particle state and withthe time-reversed state

it possible to construct a decomposition into a sum Ofpf the statek. The notationk, k' > 0 denotes that the

exponentials of one-body operators.
we start by constructing a decomposition fbr— %V.
Hereby we build on expressions derived in Ref. [19].

k,k'>0 s==*1

S S 60 + syl + syALap),

To achieve thisymmation fork and &’ should run over states with an-

gular momentum projectiofp > 0 only. Using lemma 1
from Ref. [19], we obtain

(4)

BG

with vy = () and Q) half the number of single-|
particle states.A; is the row matrix with a one on the
entry corresponding to the state and zeros anywhere
else. As defined in Ref. [19], for a square mat(x
the operator® (Q) transforms a Slater determinatt,,
represented by the matrid, into the Slater¥,,, with
M' = QM. If Q is nonsingular, then®(Q) is the
exponential of a one-body operator.
decomposition has a symmetry between the states0

and their time-reversed states. This symmetry prevents

sign problems for even particle numbers.
For the repulsive Hubbard model one can take

A iy + Ay
V= UZ<ﬁTiﬁ1i - %) (5)
Then
B s 1 (i —fy;) — (i —y)
1 —_ V = — Yyl —ny; + y\ny —ny, , 6
PR TN e NG

provided that costy) = 1 + Uf:’S,
ber of lattice sites andi,; = &I.i&m-. Lemma 1 from
Ref. [19] allows one to construct analogaessactdecom-
positions ofl — %\7, based on matrices of low rank, for
any fermionic interaction.

The Monte Carlo algorithm has to sample over all
values of m between 0 and infinity, over all possible
sets0 = =---=1, =1, and at each interval over
all the terms in the decomposition of — By, To

with Ng the num-

perform this sampling numerically, a large number ofgecomposition (2).

intervals is taken. LetV, be the number of intervals.
To each interval we assign a fractiorr; of the inverse
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temperature, such thiﬁv;l 7; = 1, and an index/; to
indicate that part of the decomposition bf— %\7 that

is inserted at that interval. If no part is inserted, then
I; = 0. In total there arem out of N, intervals with
I; # 0. Thus a term of ordern in the decomposition
(2) is represented by a configuration withintervals for
which I; # 0. The sum of the coefficients; between
jth and the(j + 1)th insertion of 1 — %f/ has to

be equal tot;+; — t;. This scheme is visualized in
ig. 1.

This representation is not unique. To obtain every
combination with the right weight, we have to take into
account an extra weight factotv, — m)!/N,! for a
configuration of ordem. The operator corresponding to

a particular configuration can then be calculated as
N’( N
U1 = [P0y, (7)
i=1

with Q; the jth part in the decomposition of — %f/,
and Oy = 1. From a computational point of view it is
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FIG. 1. A schematic way to represent the terms in the
The array; represents the inverse-
temperature intervals, the arralf represents the parts of

1 - %f/ that are inserted.
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advantageous to work in the interaction representatiorhas to takeV, such that it is always larger than the largest

i.e., value ofm encountered during the Monte Carlo sampling.
N, X Apart from that, the method and the CPU time it requires is
U, = (l_[ Q;i(ti)>eﬁH°, (8) independent ol,. Expression (9) can also be used to ob-

i=1 tain a value foKV}B from the Monte Carlo calculation. If

with 7, = ', 7. and 0;(¢) the jth part in the decom- Wz.r€an become negative, then one has to take into account
position of1 — gV(t,B). This decomposition is obtained the sign ofw; , in expression (9). To calculate expectation

by multiolving the row matrices used in the decom OSi_values for other opservaples, one has to use the techniques
_y Py BgA i Ry . P developed for auxiliary-field quantum Monte Carlo meth-
tion of 1 — 7V, with the matrixe='#Ho, Where{-lo is the ods, as described in Refs. [5,8,22].

matrix representation of the one-body operatrin the To test our quantum Monte Carlo method, we have
single-particle space. The operaidy . is a product of applied it to a model with pairing in a degenerate
exponentials of one-body operators and thus the exponeghell (, = 0). We took V as in expression (3), with
tial of a one-body operator itself. Therefore, one can easg = 1 MeV. This many-body problem can be solved
ily calculate its grand-canonical [6] or canonical trace [7],analytically using the seniority scheme [23]. Figure 2
or apply it to a Slater determinant. In this way, exact vari-shows the results for the energy and the specific heat
ants of the grand-canonical [6], shell-model [5], and pro-of the model, in the canonical ensemble. They agree
jector quantum Monte Carlo method [3,4] are obtainedperfectly with the analytical results. These observables
When applying the grand-canonical or projector variantyere evaluated using Egs. (11) and (14) from Ref. [22].
fast updating techniques analogous to the ones presentedTo make a comparison with the determinantal quan-
by White et al. [8] can be applied. The rank-two struc- tum Monte Carlo methods based on the Suzuki-Trotter
ture in the decomposition of the factors— %V(I,B) al-  decomposition, we have performed calculations for the
lows one to make a quick update requiring o> half-filled minimal Hubbard model [24]. Hereby we used
flops, even for general interactions. These updates havbe same code for both methods. No model-specific opti-
to be performed only wherd; # 0. On average, this mizations were used, in order to allow a fair comparison
amounts to{m)yc times to update the whole configura- between the methods. Figure 3 shows how the Coulomb
tion, where(m)vc is value of the ordem in the decompo- and the hopping energy converge to the exact values as
sition (2), averaged over all Monte Carlo samples. For théhe sizeA g of the Suzuki-Trotter slices goes to zero. Fig-
canonical algorithm such a fast updating technique igire 4 displays the corresponding CPU time required on a
not possible. There the performance can be drastiDigital Alpha 433 MHz workstation. A comparable pre-
cally improved usingguided sampling[20]. Instead cision and a much better accuracy were obtained in sig-
of the canonical §-particle) weightw;, = u™(N, — nificantly less time using the continuous method. Results
m)!TrN([j/[’,.)/Nx!, one uses a local approximatioty , for systems away from half filling showed a similar scal-
that allows fast updates. After a number of steps these upRg of the systematic errors and the CPU time. There the
dates are then accegted or rejected collectively, according

to the ratiog = Bis Wie Using a generalized Metropo-

v"v;y,. Wir"
m (N, —m)!
I

lis algorithm [21] that includes the factqu™ =

the proposition probability, one can set up a very efficient
Markov chain, with acceptance rates close to unity and °
with autocorrelation lengths of a few sweeps. )
Because the updating procedure is the most time-
consuming step of the algorithm, the required CPU time ¢ |
will be proportional to(m)uc. Therefore it is important
to have a good estimate of this quantity in advance. If theyg |-
grand-canonical or canonical algorithm is used, and if the
weightw; , is positive for all configurations, then one can -25 |
show that

in 0 E[Mev] — C - 120

10

(mwic = 1 — BV)g . © 0 : . : .
T [MeV]

This shows that the CPU time is proportional to the pa-
rametery, but also to the thermal expectation val#,  FIG. 2. EnergyE and specific heaC as a function of tem-
of the residual interaction. Though is an arbitrary pa- Perature7 in the canonical ensemble, for a model with pair-

i h - d that d bal bet |n§ (G =1 MeV) of 10 particles in a degenerate shell of
rameter, we have experienced that a good balance DEWESH ¢ingje-particle states. The curves correspond to the ana-
low CPU cost per sweep and fast mixing of the MarkOVIyticaI results; the error bars indicafex 2¢ intervals for the

chain is obtained by taking = BI(V)z|. Note that one Monte Carlo results.
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metry exists that guarantees good sign properties for this
I method. This is, among others, the case for the attractive
Hubbard model, the repulsive Hubbard model at half fill-
ing, and the mean-field plus pairing model for even-even
atomic nuclei, just like with the determinantal methods
T [22,26]. In shell-model Monte Carlo, one can exploit a
I specific symmetry to obtain good sign properties for the
pairing + quadrupole Hamiltonian [5]. The continuous
decomposition breaks this symmetry and therefore a sign
problem emerges for this Hamiltonian. For other systems,
T one can expect the sign properties to be different from
standard quantum Monte Carlo methods, because a dif-
ferent decomposition for the Boltzmann operator is used.
This might or might not be an improvement, depending on
the specific situation, but has to be studied more deeply.
The idea of the constrained-path Monte Carlo method
0.02 0.04 0.06 00 [27] can be applied here: one can put a constraint on the
By’ samples in order to obtain a good sign, thereby giving up

FIG. 3. Coulomb and hopping energy as a function ofthe exactnes_s of the method.
the inverse-temperature stepg squared, for the half-filled In conclusion, we have developed a quantum Monte
Hubbard model on aB X 8 lattice, with an interaction strength Carlo method for fermions based on an exact decom-

U = 4]t|, at a temperature df = |¢|/8 in the grand-canonical position of the Boltzmann operator into a continuous

lerllserTblql;_hunits were CTﬁsen St‘_JCh that trzﬁ goppingl ft”g”gt m over exponentials of one-body operators. Because
= 1. € results 1or the continuous method are piottea a . . .
(AB)* = 0. They were obtained with the parameﬁer:p600. of the low-rank matrices used in the decomposi-

The error bars indicat2 X 2o intervals. tion, fast matrix multiplications and efficient updating
procedures can be applied. The method can be
applied to systems with general two-body interactions,
in the grand-canonical or canonical ensemble, or with
ground-state projection. It allows one to calculate thermal
and ground-state expectation values for any observable.
It is an exact method, apart from statistical errors.
We thank S. Zhang, J. Carlson, J. Gubernatis,
Muramatsu, H.G. Evertz, and K. Langanke for
useful discussions and comments. The work has been
financially supported by the F.W.O. (Fund for Scientific
' ' ' Research)—Flanders and the Research Board of the
University of Gent.
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sign problem comes into play at low temperatures [25]
The average sign obtained was similar for both methods.

Just like other quantum Monte Carlo methods for fermi-
ons, our method is not free of sign problems at low
temperatures. However, for a number of systems, a symy
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