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Quantum Monte Carlo Method for Fermions, Free of Discretization Errors
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In this Letter we present a novel quantum Monte Carlo method for fermions, based on an
decomposition of the Boltzmann operator exps2bĤd. It can be seen as a synthesis of seve
related methods. It has the advantage that it is free of discretization errors, and applicab
general interactions, both for ground-state and finite-temperature calculations. The decomp
is based on low-rank matrices, which allows faster calculations. As an illustration, the meth
applied to an analytically solvable model (pairing in a degenerate shell) and to the Hubbard m
[S0031-9007(99)09240-6]
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Quantum Monte Carlo methods (QMC) offer an inter
esting way to obtain numerical results for large quantu
systems [1–3]. Determinantal Monte Carlo methods th
go by names as auxiliary-field [4], shell-model [5], grand
canonical [6], or projection quantum Monte Carlo [3] ar
based on the decomposition of the Boltzmann opera
exps2bĤd as a sum or integral over exponentials of one
body operators. The latter are easy to handle nume
cally. Simple algebraic expressions exist to calculate th
grand-canonical [6] or canonical trace [5,7] or their ove
lap between Slater determinants [3,8]. The sum or int
gral is then evaluated using Monte Carlo techniques, mo
often Markov-chain Monte Carlo techniques such as th
Metropolis algorithm [9]. The basic ingredients of such
decomposition are the Suzuki-Trotter decomposition [1
to separate noncommuting parts of the Hamiltonian a
u
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the Hubbard-Stratonovich transform [11,12] to lineariz
the two-body part of the Hamiltonian. Both ingredien
lead to systematic discretization errors in the calculatio
Furthermore, for general two-body interactions these me
ods require many manipulations with dense matrices a
hence a lot of CPU (central processing unit) time.

Several quantum Monte Carlo methods have be
developed that are free from discretization errors: t
Green’s function QMC of Ceperley and Kalos [1], th
stochastic series expansion developed by Handsco
[13] and extended by Sandvik and Kurkijärvi [14], th
continuous-time loop algorithm of Beard and Wies
[15], the “worm” algorithm of Prokof’evet al. [16], and
the finite-temperature method for the pairing interactio
developed by Cerf [17]. The latter two methods are bas
on the expression
e2bsĤ01V̂d  e2bĤ0 1
X̀

m1

s2bdm
Z b

0
dtm · · ·

Z t2

0
dt1 e2t1Ĥ0 V̂e2st22t1dĤ0 V̂ · · · e2stm2tm21dĤ0V̂e2sb2tmdĤ0 . (1)
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For the determinantal QMC, no algorithm without dis
cretization errors was available. By repeating the calcu
tion several times, with a finer and finer mesh in imagina
time, one could make an extrapolation to the exact res
But this requires a lot of computer time.

In this Letter we present a new decomposition of th
Boltzmann operator, also based on expression (1), t
is free of discretization errors, but that is applicable
-
la-
ry
lt.

e
hat
to

general interactions and moreover results in a (partia
continuous) sum over exponentials of one-body operato
just like auxiliary-field quantum Monte Carlo methods
The decomposition is an exact one, so the only error
the calculations is the statistical error originating from th
Monte Carlo sampling of the terms in the decompositio
(apart from the round-off error due to the limited machin
precision).
© 1999 The American Physical Society 4155
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The trick to arrive at the decomposition of the Boltz
mann operator is to replace2bV̂ in expression (1) with
m 2 bV̂ , wherem is an arbitrary, real positive parame
r
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ter. Adding m to the exponent has no influence on th
properties calculated with the Boltzmann operator, an
can simply be corrected by a factore2m. Instead of ex-
pression (1) we now obtain
e2bĤ01sm2bV̂d 

"
1 1

X̀
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This last expression is reminiscent of the expression
the partition function in the interaction representatio
derived in [18], with the difference that here the facto
have the form1 2

b

m V̂ stbd instead of 2V̂ std [where
V̂ std is the two-body Hamiltonian in the interaction
representation]. It is the additional constant1 that makes
it possible to construct a decomposition into a sum
exponentials of one-body operators. To achieve th
we start by constructing a decomposition for1 2

b

m V̂ .
Hereby we build on expressions derived in Ref. [19].
or
n
s

f
is

For the pairing Hamiltonian one has

V̂  2G
X

k,k0.0

â
y
k0 â

y

k̄0 âk̄ âk , (3)

where the operator̂a
y
k creates a particle in the correspon

ing single-particle state and with̄k the time-reversed state
of the statek. The notationk, k0 . 0 denotes that the
summation fork and k0 should run over states with an
gular momentum projectionjz . 0 only. Using lemma 1
from Ref. [19], we obtain
1 2
b

m
V̂ 

1
2V2

X
k,k0.0

X
s61

Ô s1 1 sg A
y
k0Ak 1 sg A

y

k̄0Ak̄d , (4)
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with g  V

q
bG
m and V half the number of single-

particle states.Ak is the row matrix with a one on the
entry corresponding to the statek, and zeros anywhere
else. As defined in Ref. [19], for a square matrixQ,
the operatorÔ sQd transforms a Slater determinantCM ,
represented by the matrixM, into the SlaterCM 0 , with
M 0  Q M. If Q is nonsingular, thenÔ sQd is the
exponential of a one-body operator. Note that th
decomposition has a symmetry between the statesk . 0
and their time-reversed states. This symmetry preve
sign problems for even particle numbers.

For the repulsive Hubbard model one can take

V̂  U
X

i

√
n̂"i n̂#i 2

n̂"i 1 n̂#i

2

!
. (5)

Then

1 2
b

m
V̂ 

1
2NS

X
i

fegsn̂"i2n̂#id 1 e2gsn̂"i2n̂#i dg , (6)

provided that coshsgd  1 1
UbNS

2m , with NS the num-

ber of lattice sites and̂nsi  â
y
si âsi. Lemma 1 from

Ref. [19] allows one to construct analogousexactdecom-
positions of1 2

b

m V̂ , based on matrices of low rank, fo
any fermionic interaction.

The Monte Carlo algorithm has to sample over
values of m between 0 and infinity, over all possibl
sets 0 # t1 # · · · # tm # 1, and at each interval ove
all the terms in the decomposition of1 2

b

m V̂ . To
perform this sampling numerically, a large number
intervals is taken. LetNx be the number of intervals
To each intervali we assign a fractionti of the inverse
is

nts
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temperature, such that
PNx

i1 ti  1, and an indexIi to
indicate that part of the decomposition of1 2

b

m V̂ that
is inserted at that interval. If no part is inserted, the
Ii  0. In total there arem out of Nx intervals with
Ii fi 0. Thus a term of orderm in the decomposition
(2) is represented by a configuration withm intervals for
which Ii fi 0. The sum of the coefficientsti between
the jth and thesj 1 1dth insertion of 1 2

b

m V̂ has to
be equal totj11 2 tj. This scheme is visualized in
Fig. 1.

This representation is not unique. To obtain ever
combination with the right weight, we have to take into
account an extra weight factorsNx 2 md!yNx! for a
configuration of orderm. The operator corresponding to
a particular configuration can then be calculated as

ÛI ,t 
NxY

i1

se2tibĤ0 Q̂Ii d , (7)

with Q̂j the jth part in the decomposition of1 2
b

m V̂ ,
and Q̂0  1. From a computational point of view it is

FIG. 1. A schematic way to represent the terms in th
decomposition (2). The arrayti represents the inverse-
temperature intervals, the arrayIi represents the parts of
1 2

b

m V̂ that are inserted.
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advantageous to work in the interaction representatio
i.e.,

ÛI,t 

√
NxY

i1

Q̂Ii stid

!
e2bĤ0 , (8)

with ti 
Pi

k1 tk and Q̂jstd the jth part in the decom-
position of1 2

b

m V̂ stbd. This decomposition is obtained
by multiplying the row matrices used in the decompos
tion of 1 2

b

m V̂ , with the matrixe6tbH0 , whereH0 is the
matrix representation of the one-body operatorĤ0 in the
single-particle space. The operatorÛI ,t is a product of
exponentials of one-body operators and thus the expon
tial of a one-body operator itself. Therefore, one can ea
ily calculate its grand-canonical [6] or canonical trace [7
or apply it to a Slater determinant. In this way, exact var
ants of the grand-canonical [6], shell-model [5], and pr
jector quantum Monte Carlo method [3,4] are obtaine
When applying the grand-canonical or projector varian
fast updating techniques analogous to the ones presen
by White et al. [8] can be applied. The rank-two struc
ture in the decomposition of the factors1 2

b

m V̂ stbd al-
lows one to make a quick update requiring only8N2

s
flops, even for general interactions. These updates h
to be performed only whenIi fi 0. On average, this
amounts tokmlMC times to update the whole configura
tion, wherekmlMC is value of the orderm in the decompo-
sition (2), averaged over all Monte Carlo samples. For t
canonical algorithm such a fast updating technique
not possible. There the performance can be dras
cally improved usingguided sampling[20]. Instead
of the canonical (N-particle) weight wI ,t  mmsNx 2

md! TrN sÛI ,tdyNx!, one uses a local approximatioñwI ,t
that allows fast updates. After a number of steps these
dates are then accepted or rejected collectively, accord

to the ratioq 
w̃I ,t

w̃0
I ,r

w0
I ,r

wI ,t
. Using a generalized Metropo-

lis algorithm [21] that includes the factormm sNx2md!
Nx ! in

the proposition probability, one can set up a very efficie
Markov chain, with acceptance rates close to unity a
with autocorrelation lengths of a few sweeps.

Because the updating procedure is the most tim
consuming step of the algorithm, the required CPU tim
will be proportional tokmlMC. Therefore it is important
to have a good estimate of this quantity in advance. If t
grand-canonical or canonical algorithm is used, and if t
weightwI ,t is positive for all configurations, then one ca
show that

kmlMC  m 2 bkV̂ lb . (9)

This shows that the CPU time is proportional to the p
rameterm, but also to the thermal expectation valuekV̂ lb

of the residual interaction. Thoughm is an arbitrary pa-
rameter, we have experienced that a good balance betw
low CPU cost per sweep and fast mixing of the Marko
chain is obtained by takingm . bjkV̂ lbj. Note that one
n,
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has to takeNx such that it is always larger than the large
value ofm encountered during the Monte Carlo samplin
Apart from that, the method and the CPU time it requires
independent ofNx. Expression (9) can also be used to o
tain a value forkV̂ lb from the Monte Carlo calculation. If
wI ,t can become negative, then one has to take into acco
the sign ofwI ,t in expression (9). To calculate expectatio
values for other observables, one has to use the techniq
developed for auxiliary-field quantum Monte Carlo meth
ods, as described in Refs. [5,8,22].

To test our quantum Monte Carlo method, we ha
applied it to a model with pairing in a degenera
shell (Ĥ0  0). We took V̂ as in expression (3), with
G  1 MeV. This many-body problem can be solve
analytically using the seniority scheme [23]. Figure
shows the results for the energy and the specific h
of the model, in the canonical ensemble. They agr
perfectly with the analytical results. These observab
were evaluated using Eqs. (11) and (14) from Ref. [22]

To make a comparison with the determinantal qua
tum Monte Carlo methods based on the Suzuki-Trot
decomposition, we have performed calculations for t
half-filled minimal Hubbard model [24]. Hereby we use
the same code for both methods. No model-specific op
mizations were used, in order to allow a fair compariso
between the methods. Figure 3 shows how the Coulo
and the hopping energy converge to the exact values
the sizeDb of the Suzuki-Trotter slices goes to zero. Fig
ure 4 displays the corresponding CPU time required on
Digital Alpha 433 MHz workstation. A comparable pre
cision and a much better accuracy were obtained in s
nificantly less time using the continuous method. Resu
for systems away from half filling showed a similar sca
ing of the systematic errors and the CPU time. There t
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FIG. 2. EnergyE and specific heatC as a function of tem-
peratureT in the canonical ensemble, for a model with pai
ing (G  1 MeV) of 10 particles in a degenerate shell o
20 single-particle states. The curves correspond to the a
lytical results; the error bars indicate2 3 2s intervals for the
Monte Carlo results.
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FIG. 3. Coulomb and hopping energy as a function o
the inverse-temperature stepDb squared, for the half-filled
Hubbard model on an8 3 8 lattice, with an interaction strength
U  4jtj, at a temperature ofT  jtjy8 in the grand-canonical
ensemble; units were chosen such that the hopping stren
jtj  1. The results for the continuous method are plotted
sDbd2  0. They were obtained with the parameterm  600.
The error bars indicate2 3 2s intervals.

sign problem comes into play at low temperatures [25
The average sign obtained was similar for both method

Just like other quantum Monte Carlo methods for ferm
ons, our method is not free of sign problems at lo
temperatures. However, for a number of systems, a sy
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FIG. 4. Required CPU time for the corresponding data poin
in Fig. 3. For each set of parameters 10 000 Monte Ca
sweeps were performed.
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metry exists that guarantees good sign properties for t
method. This is, among others, the case for the attract
Hubbard model, the repulsive Hubbard model at half fi
ing, and the mean-field plus pairing model for even-ev
atomic nuclei, just like with the determinantal method
[22,26]. In shell-model Monte Carlo, one can exploit
specific symmetry to obtain good sign properties for t
pairing 1 quadrupole Hamiltonian [5]. The continuou
decomposition breaks this symmetry and therefore a s
problem emerges for this Hamiltonian. For other system
one can expect the sign properties to be different fro
standard quantum Monte Carlo methods, because a
ferent decomposition for the Boltzmann operator is use
This might or might not be an improvement, depending
the specific situation, but has to be studied more deep
The idea of the constrained-path Monte Carlo meth
[27] can be applied here: one can put a constraint on
samples in order to obtain a good sign, thereby giving
the exactness of the method.

In conclusion, we have developed a quantum Mon
Carlo method for fermions based on an exact deco
position of the Boltzmann operator into a continuou
sum over exponentials of one-body operators. Beca
of the low-rank matrices used in the decompos
tion, fast matrix multiplications and efficient updatin
procedures can be applied. The method can
applied to systems with general two-body interaction
in the grand-canonical or canonical ensemble, or w
ground-state projection. It allows one to calculate therm
and ground-state expectation values for any observa
It is an exact method, apart from statistical errors.
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