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Numerical Study of Spin and Chiral Order in a Two-Dimensional XY Spin Glass
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The two-dimensionalXY spin glass is studied numerically by a finite size defect energy scaling
method atT ­ 0 in the vortex representation which allows us to compute the exact (in principle)
spin and chiral domain wall energies. We confirm earlier predictions that there is no glass phas
at any finite T . Our results strongly support the conjecture that both spin and chiral order have
the same correlation length exponentns ­ nc ø 2.70. Preliminary results in 3D are also obtained.
[S0031-9007(99)09184-X]

PACS numbers: 75.10.Nr, 05.70.Jk, 64.60.Cn
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The XY spin glass has been the subject of conside
able attention and controversy for some time and is s
not understood. It has been known since the semi
work of Villain [1] that vector spin glass models have
chiral or reflection symmetry in addition to the continu
ous rotational symmetry. Consequently, theXY spin
glass may have both spin glass and chiral glass orde
It is widely accepted that, in 2D and 3D, chiral and sp
variables decouple at long distances and order indep
dently [2–6] although there is a hint that this may no
hold in 4D [7]. Numerical estimates of the correlatio
length exponentsns,c in 2D, when both spin (s) and
chiral (c) order set in atT ­ 0 as js,c , T2ns,c , indi-
cate thatnc ­ 2.57 6 0.003 and ns ­ 1.29 6 0.02 [6]
which agree with older, less accurate estimates [2,3,5
These results seem to establish the decoupling of c
ral and spin degrees of freedom, but analytic work o
special models [9–11] implies that, forXY spin glasses
below their lower critical dimensiondl . 2 when order
sets in atT ­ 0, both correlation lengths diverge with
the sameexponentns ­ nc. To add to the confusion,
there is some evidence in 3D that chiral order sets
at T . 0 while spin glass order occurs only atT ­ 0
[2–4,12–14]. These numerical investigations have l
to the accepted folklore that the lower critical dimen
sion dl $ 4 for spin glass order [14,15]. A very recen
simulation [6] concludes that earlier simulations are mi
leading because the spin defect energy begins to gr
with system sizeL at values ofL just beyond the limit
accessible to earlier attempts and thatdl , 3. However,
chiral order is robust in 3D. In 2D, all simulations agre
that chiral and spin glass order set in atT ­ 0 but with
different exponentsnc ø 2ns ø 2.6.

The situation is very confused since, to our knowledg
there is no unambiguous proof of any of the folklor
outlined above [16–18], numerical simulations are co
tradictory [6], and analytic work [9–11] contradicts th
apparentlyunambiguous numerical simulations in 2D. I
this Letter, we attempt to clarify the situation and ou
essential conclusion is that, by carefully defining sp
and chiral defect energies, we find numerical agreem
0031-9007y99y82(20)y4094(4)$15.00
r-
till
nal

-

rs.
in
en-
t

n

,8].
hi-
n

in

ed
-
t
s-
ow

e

e,
e
n-
e
n
r

in
ent

with the conjecture [10] thatus ­ uc , 0 in 2D where
us,c ­ 21yns,c are theT ­ 0 stiffness exponents. In the
absence of any rigorous testable results, this very pl
sible conjecture is theonly, to our knowledge, analytic
prediction existing and is the only check we have o
the validity or otherwise of the numerical method use
If the conjecture is correct, a valid numerical simulatio
must agree with it and the implications go far beyon
minor points such as the numerical values of stiffne
exponents but implies that much of theXY spin glass
folklore is incorrect.2 , dl , 3 for both spin and chiral
glass order, the chiral glass scenarious , 0 and uc . 0
in 3D is not possible but both are positive and th
presently accepted numerical values in 2D and 3D ne
reexamination.

A natural way to investigate order is to compute th
domain wall, defect, or droplet energyDEsLd of a system
of size L for several realizations of disorder (sample
for different values ofL and fit to the finite size scaling
ansatz [13,19,20] kDEsLdl , Lus,c . Here k· · ·l denotes
an average over disorder,DEsLd ­ EDsLd 2 E0sLd the
defect energy withE0sLd the ground state (GS) energy
EDsLd the energy of the system containing a relativ
spin or chiral defect, andus,c is the stiffness exponent.
There are two main difficulties in applying these idea
to a finite disordered system. The first is how to defin
E0 and ED for a finite system with disorder since th
GS configuration and energy depend on the impos
boundary conditions (BC). A spin or chiral defect i
induced by an appropriate change in these BC andED

is the minimum energy of the system subject to these n
BC. The second is the computational problem of findin
E0 and ED sufficiently accurate so the error inkDEsLdl
can be controlled and kept small. The numerical data
fitted to the scaling form in an attempt to verify the scalin
ansatz and to obtain numerical values of the fundamen
stiffness exponentsus,c. The numerical constraints limit
the accessible sizesL to very small values when the
BC have large effects and it is essential to treat the B
properly to defineE0 andED consistently for a fit of the
numerical data to a scaling form to have any meaning.
© 1999 The American Physical Society
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The Hamiltonian of a6J XY spin glass on aL 3 L
square lattice is

H ­
X
kijl

V sui 2 uj 2 Aijd , (1)

whereV sfd is an even2p periodic function off with
a maximum atf ­ p, usually taken to beV sfijd ­
2Jij cossfijd with the couplingJij ­ J . 0 for ij near-
est neighbor sites of a square lattice. The random bo
variables Aij ­ 0, p with equal probability1y2 corre-
spond to ferro- and antiferromagnetic coupling betwee
neighboring spins. We imagine the system of Eq. (1) o
a torus which corresponds to imposing periodic BC o
the phasesuix ,iy ­ uix1L,iy ­ uix ,iy 1L with ix,y ­ 1, . . . , L
and coupling spins on opposite faces by some interacti
Ṽ suL,iy , u1,iy d andṼ suix ,L, uix ,1d which define the BC. We
definethe GS by minimizing the energy with respect to
the L2 bulk variablesui and the form of Ṽ . Because
of the symmetries of theXY spin glass [1], we restrict
the form of Ṽ to those which can induce a spin or chira
defect. For a spin defect,̃V ­ V sui 2 uj 2 Aijd where
the Aij between corresponding sitesi, j on opposite faces
may be varied to find the minimum energyE0. It is not
necessary to vary everyAij as each elementary plaquette
on the torus is equivalent and the plaquettes betwe
opposite faces are indistinguishable from the others a
play no special role. We therefore keep fixed the fru
trations fr ­

P
hr Aijy2p where the sum is over the

bonds in a clockwise direction around the siter of the
dual lattice. We are still free to choosẽV to impose a
global phase twistDm in the directionm around the torus.
The lowest energyE0sDmd is 2p periodic in Dm with a
minimum at someD0

m which depends on the particular
sample. To introduce a spin domain wall perpendic
lar to x, one simply changes the twists from their bes
twist (BT) valuesD0

m ! D0
m 1 pdm,x and finds the mini-

mum energy subject to these BC, which yields the e
ergy with a spin defectEsDsLd . E0sLd. The spin defect
energyDEBT

s sLd ; EsDsLd 2 E0sLd is computed for dif-
ferent samples and sizesL and fitted to

kDEBT
s sLdl , LuBT

s (2)
to obtain the spin stiffness exponentuBT

s . A chiral
domain wall is imposed by reflective BC [4,10] which
means that there is a seam encircling the torus in (sa
the y direction across which the spins interact asṼ ­
V sui 1 uj 2 Aijd which is equivalent to a reflection of
the spins around some arbitrary axis. In principle, one c
follow the same procedure as for the spin defect to obta
the chiral defect energyDEBT

c sLd ­ EcDsLd 2 E0sLd
where EcD is the minimum energy with the modified
interactions on a seam. However, there is no reason
expect thatEcD . E0 as the BC definingE0 may trap a
chiral defect in some samples in which cases the modifi
interactions cancel the chiral defect andEcD , E0, as in
fact does occur. We therefore defineDEBT

c ­ jEcD 2

E0j, average this over disorder, and fit tokDEBT
c sLdl ,
nd
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LuBT
c to obtain uBT

c . This does not affectDEBT
s as

both EsD and E0 contain identical chiral defects. The
procedure described above using the phase representa
of Eq. (1) is similar to that of most previous studies [2–
4,6,8] except that these omit the minimization with respec
to the twistsDm, apply naive periodic and antiperiodic
BC, and call the lowest energiesEp andEap. Neither of
these BC is compatible with the GS and both must induc
some excitation fromE0. Nevertheless, the spin defect
energy is defined asDERT

s ; jEap 2 Epj and the spin
stiffness exponent defined bykDERT

s sLdl , LuRT
s . We

call this a random twist (RT) measurement as both BC
are equivalent to some random choice ofDm relative to
D0

m for each sample. There is no good reason to expe
DERT

s sLd to scale asLus but if it does, there is less reason
to expect any relation betweenuRT

s anduBT
s or uc.

The procedure in terms of the phase representation
the XY spin glass Hamiltonian of Eq. (1) is followed by
previous studies. The aim is to obtainDEsLd by inde-
pendently minimizing the Hamiltonian with respect to the
ui to obtainED andE0. This requires finding essentially
exact global minima for each sample to control the error
in kDEsLdl to be purely statistical andOsN21y2d where
N is the number of samples. If the minimization algo-
rithm fails to find the true global minima, the errors in
kDEsLdl will be uncontrolled and very large, making the
data point useless. Since theui are continuous, one has to
perform a numerical search of a huge configuration spac
most of which does not even correspond to alocal en-
ergy minimum. To reduce the volume of the space, w
transform to a Coulomb gas (CG) representation whic
eliminates spin wave excitations and parametrizes th
problem in terms of integer valued vortex or charge con
figurations, each of which is a local energy minimum
This reduces the space to be searched to a managea
size at the price of introducing long ranged Coulomb
interactions between vortices. The potentialV sfd in
Eq. (1) is taken as a piecewise parabolic potential equiv
lent to a Villain [21] potential atT ­ 0 with Hamilton-
ian H ­ J

P
kijlsfij 2 Aijd2y2 where fij ­ ui 2 uj 2

2pnij with nij ­ 2nji any integer on the bondij. By
a duality transformation [10,22,23], the CG Hamiltonian
with periodic BC in the phases becomes

H ­ 2p2J
X
r,r0

sqr 2 frdGsr 2 r0d sqr0 2 fr0d

1 Jss2
x 1 s2

ydy2L2, (3)

where

sx ­ 22pfLsqx1 2 fx1d 1
X

r
sqr 2 frd yg ,

sy ­ 22pfLsqy1 2 fy1d 2
X

r
sqr 2 frdxg , (4)

Gsrd ­
1

L2

X
kfi0

eik?r 2 1
4 2 2 coskx 2 2 cosky

.
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Here,r ­ sx, yd denotes the sites of the dual lattice an
Gsrd is the lattice Green’s function. In Eq. (4),ka ­
2pnayL with na ­ s0, 1, . . . , L 2 1d. The topological
charge, qr , is the circulation of the phase about th
plaquette atr and can be any integer subject to th
neutrality condition

P
r qr ­ 0. The global frustration

in the x direction fx1 ­
P

hx Aijy2p is the circulation
around the whole torus on thex bonds of plaquettes at
y ­ 1 andqx1 is the global circulation of the phase.fy1
andqy1 are defined similarly. Periodic BC in the phase
ui restrict qx1, qy1 to be integers. A chiral domain wall
is introduced by reflective BC [10] so that there is a sea
encircling the torus in (say) they direction across which
the phases interact as̃V ­ V sui 1 uj 2 Aijd, which is
equivalent to a reflection of the original spins abo
some arbitrary axis. A more convenient form of th
Hamiltonian for simulation purposes is by doubling th
lattice in the x direction to a2L 3 L lattice with two
chiral defects so that the extra half is a charge conjuga
image of the original with Hamiltonian [10],

HR ­ p2J
X
r,r0

sqr 2 frdG̃sr 2 r0d sqr0 2 fr0d , (5)

whereG̃srd is the Green’s function for a2L 3 L lattice
with periodicBC andqr1Lx̂ ­ 2qr , fr1Lx̂ ­ 2fr.

To estimate the spin stiffness exponentus, simulations
were performed on aL 3 L lattice with Eq. (3) in two
different ways. The first is a RT measurement by impo
ing standard periodic and antiperiodic BC correspondi
to Dx ­ 0, p, then fitting tokDERT

s sLdl , LuRT
s . This is

just the procedure followed by all previous studies an
not surprisingly, gives essentially the same resultuRT

s ­
20.76 6 0.015 [2–6,8] with sizesL ­ 4, 5, 6, 7, 8, and
10 and averaging over2560 samples forL # 8 and1152
for L ­ 10 (see Fig. 1). This does not exploit all the free
dom implied by Eq. (3). One finds a global energy min
mum by optimizing the BC by allowing the combination
sqx1 2 fx1d and sqy1 2 fy1d to vary independently over
any integer or half integer. This corresponds to allowin
the circulations of the phase difference and ofAij around
the two independent loops encircling the torus to vary. T
absolute minimum energyE0 is the GS energy (of a par-
ticular sample) which is realized byf1x ­ f0

1x ­ D0
xy2p.

A spin domain wall is induced byf0
x1 ! f0

x1 1 1y2. The
energy minimumEsD with these BC includes the spin
defect energy. Fitting the difference,DEBT

s sLd $ 0, to
Eq. (2) yieldsuBT

s ­ 20.37 6 0.015, averaging over the
same number of samples as in the RT measurement. T
is equivalent to making a gauge transformation to all bon
in the directionm ­ sx, yd by Aij ! Aij 1 DmyL. The
RT measurement keepsfx1 fixed or Dm ­ 0, calling the
lowest energyEp , then changingfx1 ! fx1 1 1y2 and
calling the resulting lowest energyEap and assuming the
energy difference scales asLuRT

s . This procedure is equiva-
lent to choosing an arbitrary gaugeAmsrd to computeEp

and thenEap is computed in the gaugeAm 1 pdm,xyL.
4096
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FIG. 1. Top to bottom:L dependence ofDEBT
s , DERT

s ,
DERT

c , and DEBT
c , respectively, forL ­ 4, 5, 6, 7, 8, and 10.

Solid lines are power-law fits.

The original problem of Eq. (1) is invariant under discre
gauge transformations modulo2p so the RT measuremen
is performed in arandomgauge while the BT measure
ment is done in the sample dependent gauge which m
mizes the energy. We use simulated annealing [24,25
estimate the energy minima, which is much more efficie
than simple quenching toT ­ 0.

The chiral domain wall energy is also measured
two ways. DefiningkDERT

c l ; kjEm 2 kEmljl [3] where
Em ­ minsEp , Eapd 2 ER with ER the GS energy with re-
flective BC gives the RT measurement forDERT

c and we
obtainuRT

c ­ 20.37 6 0.015. The other way is the BT
measurement which is analogous to that foruBT

s when the
absolute minimum energy is when the boundary terms
Eq. (3) vanish. Since the lowest energy of Eq. (5) m
contain a chiral but not a spin domain wall, the BT cond
tion will hold and any boundary terms must vanish. Ev
if, in general, there were boundary contributions to Eq. (
they would vanish in the BT condition. Thus, a BT me
surement ofDEBT

c is obtained fromjEBT
R 2 EBT

0 j where
EBT

R is the minimum of Eq. (5) andEBT
0 is the minimum

of Eq. (3). Fitting tokDEBT
c sLdl , LuBT

c yields uBT
c ­

20.37 6 0.010. This implies thatuBT
c ­ uBT

s ø 20.37
to within numerical accuracy, agreeing with the conje
ture of Ney-Nifle and Hilhorst [10]. Note that the value o
uRT

s ø 20.76 does not satisfy the conjecture. The on
difference between the RT and BT measurements is inE0
from Eq. (3) whereERT

0 is obtained with fixed random BC
andEBT

0 by also minimizing with respect to the BC.EBT
cD

andERT
cD are both obtained from Eq. (5) and are identic

because this is automatically a BT measurement for
special case of the spin glass as the boundary contr
tions to the energy vanish. Note that both measureme
give identical values for the chiral exponentuc to within
numerical uncertainty while the spin stiffness expone
uBT

s anduRT
s differ by a factor of 2. All 2D results are in

Fig. 1.
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FIG. 2. DEBT
s andDERT

s in 3D. The error in theL ­ 6 point
is due to rather few samples. The solid line is a power-law
and the dotted line is a guide to the eye.

Since the numerical estimates ofuBT
s and uBT

c agree
with the crucial test in 2D [10], we can regard this a
supporting our contention that we have a good definitio
of the defect energies and our numerical method is fair
accurate. We have done simulations on the 3DXY spin
glass to estimate the spin stiffness exponentus and find
uBT

s ­ 10.10 6 0.03 with L ­ 2, 3, 4, 5, and 6 (Fig. 2).
This is larger and more accurate than the estimate
Ref. [6]. The large error is due to fitting over only
four data points. The negative slope ofkDERT

s sLdl for
L ­ 2, 3, and 4 is expected to become positive at larg
L [6]. At present, we have been unable to derive the 3
analog of Eq. (5), so we have no estimate ofuc [6] in 3D.

Although we are unable toprove assertions such as
the scaling ansatz, we believe that our BT method giv
reliable estimates of the fundamental quantitiesus,c in
2D and 3D. Our definition of the GS of a finite system
does ensure that the fundamental disordering excitatio
have positive energy unlike the RT method. Also, th
BT estimates agree with the analytic conjecture and t
scaling ansatzkDEBTsLdl , Lu is obeyed very well in 3D
unlike kDERTsLdl. They give a coherent, self-consisten
picture which does not contradict any known result. On
may object to our claims on the grounds that they a
very BC dependent and that only the largeL behavior
is relevant. Since any simulation is limited to smallL,
a more relevant question is whether our BT scheme c
constitute a smooth monotonic approach to this lim
This is beyond our expertise but we see no reason
believe the contrary and numericallykEBT

0,DsLdl behave
monotonically and smoothly withL.

The issue addressed here is the possible existence
a distinct thermodynamic phase at sufficiently lowT by
fit
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appealing to the exponentsus,c. In 2D an ordered phase
is possible only atT ­ 0 but its nature is beyond the
scope of this Letter. Earlier work [8] claims that in 2D
the ordered phase has no long range order due to ma
degenerate ground states which leads toh . 0. This is
inconsistent with the droplet picture [20] which has bee
verified analytically for a toy model [11] but not for more
realistic models, which is a problem for the future.

Computations were performed at the Theoretic
Physics Computing Facility at Brown University.
J. M. K. thanks A. Vallat for many discussions onXY spin
glasses and on the importance of the CG representat
when seeking the ground state.
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