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Numerical Study of Spin and Chiral Order in a Two-Dimensional XY Spin Glass
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The two-dimensionalXY spin glass is studied numerically by a finite size defect energy scaling
method at7 = 0 in the vortex representation which allows us to compute the exact (in principle)
spin and chiral domain wall energies. We confirm earlier predictions that there is no glass phase
at any finiteT. Our results strongly support the conjecture that both spin and chiral order have
the same correlation length exponent= v, = 2.70. Preliminary results in 3D are also obtained.
[S0031-9007(99)09184-X]
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The XY spin glass has been the subject of considerwith the conjecture [10] tha; = 6. < 0 in 2D where
able attention and controversy for some time and is stilb; . = —1/v, . are theT = 0 stiffness exponents. In the
not understood. It has been known since the seminabsence of any rigorous testable results, this very plau-
work of Villain [1] that vector spin glass models have sible conjecture is thenly, to our knowledge, analytic
chiral or reflection symmetry in addition to the continu- prediction existing and is the only check we have on
ous rotational symmetry. Consequently, th& spin the validity or otherwise of the numerical method used.
glass may have both spin glass and chiral glass order#.the conjecture is correct, a valid numerical simulation
It is widely accepted that, in 2D and 3D, chiral and spinmust agree with it and the implications go far beyond
variables decouple at long distances and order indepeminor points such as the numerical values of stiffness
dently [2—6] although there is a hint that this may notexponents but implies that much of tB& spin glass
hold in 4D [7]. Numerical estimates of the correlation folklore is incorrect.2 < d; < 3 for both spin and chiral
length exponents; . in 2D, when both spins) and glass order, the chiral glass scenafio< 0 andé. > 0
chiral (c) order set in atT =0 as &, ~ T ", indi- in 3D is not possible but both are positive and the
cate thaty, = 2.57 = 0.003 and v, = 1.29 * 0.02 [6] presently accepted numerical values in 2D and 3D need
which agree with older, less accurate estimates [2,3,5,8teexamination.

These results seem to establish the decoupling of chi- A natural way to investigate order is to compute the
ral and spin degrees of freedom, but analytic work ordomain wall, defect, or droplet energyE (L) of a system
special models [9—11] implies that, fofY spin glasses of size L for several realizations of disorder (samples)
below their lower critical dimensiod; > 2 when order for different values ofL and fit to the finite size scaling
sets in at7 = 0, both correlation lengths diverge with ansatz[13,19,20] (AE(L)) ~ L%<. Here {---) denotes
the sameexponenty;, = v.. To add to the confusion, an average over disordeAE(L) = Ep(L) — Eo(L) the
there is some evidence in 3D that chiral order sets irdefect energy withEy(L) the ground state (GS) energy,
at T > 0 while spin glass order occurs only &t =0  Ep(L) the energy of the system containing a relative
[2-4,12-14]. These numerical investigations have ledpin or chiral defect, and, . is the stiffness exponent.
to the accepted folklore that the lower critical dimen-There are two main difficulties in applying these ideas
sion d; = 4 for spin glass order [14,15]. A very recent to a finite disordered system. The first is how to define
simulation [6] concludes that earlier simulations are mis-E, and Ep for a finite system with disorder since the
leading because the spin defect energy begins to gro®S configuration and energy depend on the imposed
with system sizel. at values ofL just beyond the limit boundary conditions (BC). A spin or chiral defect is
accessible to earlier attempts and that< 3. However, induced by an appropriate change in these BC &pd
chiral order is robust in 3D. In 2D, all simulations agreeis the minimum energy of the system subject to these new
that chiral and spin glass order set in7at= 0 but with  BC. The second is the computational problem of finding
different exponents, = 2y, = 2.6. Ey and Ep sufficiently accurate so the error { E(L))

The situation is very confused since, to our knowledgecan be controlled and kept small. The numerical data are
there is no unambiguous proof of any of the folklore fitted to the scaling form in an attempt to verify the scaling
outlined above [16-18], numerical simulations are con-ansatz and to obtain numerical values of the fundamental
tradictory [6], and analytic work [9—11] contradicts the stiffness exponentd, .. The numerical constraints limit
apparentlyunambiguous numerical simulations in 2D. In the accessible sizes to very small values when the
this Letter, we attempt to clarify the situation and ourBC have large effects and it is essential to treat the BC
essential conclusion is that, by carefully defining spinproperly to definek, and Ep consistently for a fit of the
and chiral defect energies, we find numerical agreemenmumerical data to a scaling form to have any meaning.
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The Hamiltonian of a+J XY spin glass on & X L
square lattice is

H = Z V(G,‘ - 0]'
(i)
whereV(¢) is an evem27 periodic function of¢ with
a maximum at¢ = 7, usually taken to beV(¢;;) =
—Jij cog¢;;) with the coupling/;; = J > 0 for ij near-
est neighbor sites of a square lattice. The random bon
variablesA;; = 0,7 with equal probability1/2 corre-
spond to ferro- and antiferromagnetic coupling betwee
neighboring spins. We imagine the system of Eq. (1) o
a torus which corresponds to imposing periodic BC o
the phase®; ; = 0+, = 6;i+r Withi,, =1,...,L
and coupling spins on opposite faces by some interactio
‘7(0[‘,,'“, 01,,'“) andV(H,;hL, 0,'“1) which define the BC. We
definethe GS by minimizing the energy with respect to
the L? bulk variablesd; and the form of V. Because
of the symmetries of th&Y spin glass [1], we restrict
the form of V to those which can induce a spin or chiral
defect. For a spin defect, = v(9; — 6, — A;;) where
the A;; between corresponding sités' on opposite faces
may be varied to find the minimum enerdy. It is not
necessary to vary every;; as each elementary plaquette
on the torus is equivalent and the plaquettes betwe
opposite faces are indistinguishable from the others an
play no special role. We therefore keep fixed the frus
trations fr = > o, A;j/27m where the sum is over the
bonds in a clockwise direction around the siteof the
dual lattice. We are still free to choodé to impose a
global phase twisAA , in the directionu around the torus.
The lowest energy=y(A,,) is 27 periodic in A, with a
minimum at someA% which depends on the particular
sample. To introduce a spin domain wall perpendicu
lar to x, one simply changes the twists from their best
twist (BT) valuesA), — AY + 76, , and finds the mini-
mum energy subject to these BC, which yields the en
ergy with a spin defeck;p(L) > Eo(L). The spin defect
energyAEBT(L) = E;p(L) — Eo(L) is computed for dif-
ferent samples and sizésand fitted to
(AEPT(L)) ~ L% 2

to obtain the spin stiffness exponeaf®. A chiral
domain wall is imposed by reflective BC [4,10] which

— Ajij), 1)

e

L%" to obtain #3T. This does not affecAEET as
both E;p and E, contain identical chiral defects. The
procedure described above using the phase representation
of Eq. (1) is similar to that of most previous studies [2—
4,6,8] except that these omit the minimization with respect
to the twistsA,, apply naive periodic and antiperiodic
BC, and call the lowest energi&s, andE,,. Neither of
these BC is compatible with the GS and both must induce
ome excitation fromE,. Nevertheless, the spin defect
energy is defined adERT = |E,, — E,| and the spin

'Liffness exponent defined BAERT(L)) ~ L. We

r?:all this a random twist (RT) measurement as both BC

are equivalent to some random choiceof relative to

A% for each sample. There is no good reason to expect
ne . .
AERT(L) to scale ad.? but if it does, there is less reason
to expect any relation betwe#® T anddB3T or 6...

The procedure in terms of the phase representation of
the XY spin glass Hamiltonian of Eq. (1) is followed by
previous studies. The aim is to obtalnZ(L) by inde-
pendently minimizing the Hamiltonian with respect to the
0; to obtainEp andEy. This requires finding essentially
exact global minima for each sample to control the errors
in (AE(L)) to be purely statistical an@ (N ~'/2) where
N is the number of samples. If the minimization algo-

thm fails to find the true global minima, the errors in
AE(L)) will be uncontrolled and very large, making the
data point useless. Since thgare continuous, one has to
perform a numerical search of a huge configuration space,
most of which does not even correspond tdoeal en-
ergy minimum. To reduce the volume of the space, we
transform to a Coulomb gas (CG) representation which
eliminates spin wave excitations and parametrizes the
problem in terms of integer valued vortex or charge con-

figurations, each of which is a local energy minimum.
This reduces the space to be searched to a manageable
size at the price of introducing long ranged Coulomb
interactions between vortices. The potentia{¢) in

Eq. (1) is taken as a piecewise parabolic potential equiva-
lent to a Villain [21] potential af’ = 0 with Hamilton-

ian H = JZ(ij>(¢ij - A,'j)z/z Whereqﬁij =6, — 0]' -
2mn;; with n;; = —nj; any integer on the bondj. By

a duality transformation [10,22,23], the CG Hamiltonian
with periodic BC in the phases becomes

means that there is a seam encircling the torus in (say)

the y direction across which the spins interact ds=
V(6; + 6; — A;;) which is equivalent to a reflection of
the spins around some arbitrary axis. In principle, one cal
follow the same procedure as for the spin defect to obtai
the chiral defect energyAEBT(L) = E.p(L) — Eo(L)
where E.p is the minimum energy with the modified

interactions on a seam. However, there is no reason to

expect thatE.p, > Ey as the BC definingZ, may trap a
chiral defect in some samples in which cases the modifie
interactions cancel the chiral defect afigh < Ej, as in
fact does occur. We therefore defideEBT = |E.p —
Eol, average this over disorder, and fit ¢AEBT(L)) ~

H =272 Z(Qr - fr)G(r - I‘/) (CIr’ - fr’)

n + J(o? + 0')2,)/2L2,

©)

Where

X

_27T[L(Qx1 - fxl) + Z(Qr - fr)y]’

d oy = 2m[L(gy1 — fy1) — Z(Qr — foxl. (4)
1 eik~r -1
G(r) = — :
L? k;) 4 — 2cos, — 2C0%,
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Here,r = (x,y) denotes the sites of the dual lattice and 0.5
G(r) is the lattice Green’s function. In Eq. 4k, =

2an,/L with n, = (0,1,...,L — 1). The topological

charge, ¢,, is the circulation of the phase about the 00
plaquette atr and can be any integer subject to the

neutrality condition) . ¢ = 0. The global frustration _
in the x direction f,; = > 4, A;;/2m is the circulation g o5
around the whole torus on the bonds of plaquettes at

y = 1 andg,; is the global circulation of the phasef,,

andg,, are defined similarly. Periodic BC in the phases -0} ?;.?23‘(,’6{3%

6; restrictg,i, g,1 to be integers. A chiral domain wall g:ggg‘xg;};

is introduced by reflective BC [10] so that there is a seam

encircling the torus in (say) the direction across which -15.5 15 20 25
the phases interact d6 = V(6; + 6; — A;;), which is In(L)

equivalent to a reflection of the original spins aboutris 1. Top to bottom:L dependence ofAEBT, AERT,
some arbitrary axis. A more convenient form of the AERT and AEBT, respectively, forL = 4, 5, 6, 7, 8, and’ 10.
Hamiltonian for simulation purposes is by doubling the Solid lines are ‘power-law fits.

lattice in thex direction to a2L X L lattice with two

chiral defects so that the extra half is a charge conjugated

image of the original with Hamiltonian [10], The original problem of Eq. (1) is invariant under discrete
gauge transformations moduter so the RT measurement

Hp = 772JZ(qr — f)G@x — ) (g — fv), (5) is performed in aandomgauge while the BT measure-

rr/ ment is done in the sample dependent gauge which mini-
whereG(r) is the Green’s function for 4L X L lattice  mizes the energy. We use simulated annealing [24,25] to
with periodicBC andgr+rxs = —¢r, fr+z = —fr- estimate the energy minima, which is much more efficient
To estimate the spin stiffness expon@épf simulations  than simple quenching t6 = 0.
were performed on & X L lattice with Eq. (3) in two The chiral domain wall energy is also measured in

different ways. The first is a RT measurement by impostwo ways. Defining AERT) = (|E,, — (E,)|) [3] where

ing standard periodic and antiperiodic BC correspondmg?m = mln(E,,,Ea,,) Eg with Eg the GS energy with re-

to A, = 0, 7, then fitting to(AERT(L)) ~ L%". Thisis flective BC gives the RT measurement ERT and we
just the procedure followed by all previous studies andpbtain6RT = —0.37 = 0.015. The other way is the BT
not surprisingly, gives essentially the same reglit =  measurement which is analogous to thatf8f when the
—0.76 * 0.015 [2—6,8] with sizesL. = 4, 5, 6,7, 8, and  absolute minimum energy is when the boundary terms in
10 and averaging ove560 samples fol. = 8 and1152  Eg. (3) vanish. Since the lowest energy of Eq. (5) may
for L = 10 (see Fig. 1). This does not exploit all the free- contain a chiral but not a spin domain wall, the BT condi-
dom implied by Eg. (3). One finds a global energy mini-tion will hold and any boundary terms must vanish. Even
mum by optimizing the BC by allowing the combinations if, in general, there were boundary contributions to Eq. (5),
(gx1 — fx1) and(gy1 — fy1) to vary independently over they would vanish in the BT condltlon Thus, a BT mea-
any integer or half integer. This corresponds to allowingsurement ofAEBT is obtained frorriE E(’?TI where

the circulations of the phase difference anddgf around EET is the minimum of Eq. (5) and” |s the minimum

the two independent loops encircling the torus to vary. Thef Eq. (3). Fitting to(AEPT(L)) ~ L% yields BT =
absolute minimum energg, is the GS energy (of a par- —0.37 = 0.010. This implies that92T = 95T ~ £0.37
ticular sample) which is realized tyyx flx = AY%27.  to within numerical accuracy, agreeing Wlth the conjec-
A spin domain wall is induced by’; — £, + 1/2. The ture of Ney-Nifle and Hilhorst [10]. Note that the value of
energy minimumgk,, with these BC includes the spin 68T = —0.76 does not satisfy the conjecture. The only
defect energy. Fitting the differenc&EBT(L) = 0, to dlfference between the RT and BT measurements &in
Eqg. (2) yields#BT = —0.37 = 0.015, averaging over the from Eq. (3) where&ER T is obtained with fixed random BC
same number of samples as in the RT measurement. Trdeo ST by also minimizing with respect to the B>,

is equivalent to making a gauge transformation to all bondand EX} are both obtained from Eq. (5) and are identical
in the directionu = (x,y) by A;; — A;; + A,/L. The because this is automatically a BT measurement for the
RT measurement keeps, fixed orA, = 0, calling the special case of the spin glass as the boundary contribu-
lowest energyE,, then changingf,; — f,1 + 1/2 and tions to the energy vanish. Note that both measurements
calling the resulting lowest energy,, and assuming the give identical values for the chiral exponent to within
energy difference scales %" . This procedure is equiva- numerical uncertainty while the spin stiffness exponents
lent to choosing an arbitrary gauge, (r) to computeE, 03T andgRT differ by a factor of 2. All 2D results are in
and thenkE,, is computed in the gaugé, + 76,,/L.  Fig. 1.
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20 ' T appealing to the exponenés .. In 2D an ordered phase
18+ 1 is possible only atT = 0 but its nature is beyond the
6k ] scope of this Letter. Earlier work [8] claims that in 2D
wl o M 1 the ordered phase has no long range order due to many
degenerate ground states which lead$te- 0. This is
e c—osowEn | inconsistent with the droplet picture [20] which has been
g1or ErasnEn verified analytically for a toy model [11] but not for more
08 | mm 1 realistic models, which is a problem for the future.
06 | R ] Computations were performed at the Theoretical
0al Physics Computing Facility at Brown University.
J. M. K. thanks A. Vallat for many discussions & spin
02y 1 glasses and on the importance of the CG representation

00,5 0 5 20 when seeking the ground state.
In(L)

FIG. 2. AEBT andAERT in 3D. The error in thd. = 6 point
is due to rather few samples. The solid line is a power-law fit

and the dotted line is a guide to the eye. .
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