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Vortices in thin-film superconductors are often modeled as a system of particles interacting via a
repulsive logarithmic potential. Arguments are presented to show that the hypothetical (Abrikosov)
crystalline state for such particles is unstable at any finite temperature against proliferation of screened
disclinations. The correlation length of crystalline order is predicted to grow/BAT as the
temperaturel” is reduced to zero, in excellent agreement with our simulations of this two-dimensional
system. [S0031-9007(99)09164-4]

PACS numbers: 74.60.—w, 64.70.—p

It has been commonly assumed for many years now For particles interacting with a repulsive potential a
that, for the physically important case of particles movingdevice is needed to stop them from escaping to infinity.
in two dimensions interacting with each other via aln numerical studies of two-dimensional melting the most
repulsive logarithmic potential (a situation sometimescommonly used device is periodic boundary conditions.
called the two-dimensional one-component plasma probbnfortunately the use of this boundary condition with
lem), one would have the usual phases expected on thether short-range interactions or with the logarithmic
Kosterlitz-Thouless-Halperin-Nelson-Young  (KTHNY) interaction [7] produces an apparently first-order transition
scenario. This scenario describes two-dimensionabetween the crystal and liquid states rather than the
melting as a defect-mediated phenomenon (Halperin angTHNY scenario. (For a review of early work on short-
Nelson [1] and Young [2]) and is based on ideas ofrange interactions, see [8]; for some more recent work,
Kosterlitz and Thouless [3]. It is supposed that the cryssee Ref. [9] or [10]). This is probably a finite-size effect:
talline phase—a triangular lattice—melts at a continuousStudies on systems with over 60 000 particles indicate that
transition into a hexatic liquid due to the proliferation the van der Waals loops associated with the apparent first-
of dislocations. The hexatic liquid becomes an ordinaryorder transition shrink in these very large systems [9,10].
liquid at temperatures which permit the creation of discli-We have found that placing the particles on the surface of
nations. This scenario is well established for particlesa sphere is very effective for short-range interactions [11]:
with short-range interactions [4], but we will argue thatNo van der Waals loops occur with this topology and the
particles interacting with a logarithmic potential behaveresults obtained even with modest numbers of particles
completely different. For them we can show that theare in excellent agreement with expectations based on
crystalline state is unstable at any temperature again®tTHNY theory. As a consequence, the numerical work
the proliferation of (screened) disclinations and, as awvhich we are reporting in this paper has been carried out
consequence, the system stays in the liquid state dowfior the two-dimensional system represented by the surface
to arbitrarily low temperatures. The ground state of theof a sphere.
system is of course crystalline; the correlation length of The ground state configuration of the particles on the
short-range crystalline order is predicted to grow/dg$7  sphere has to contain at least 12 disclinations (fivefold
as the temperatur& approaches zero. Our numerical rings) by Euler's theorem. We have made extensive stud-
simulations reported here confirm this behavior. ies of these ground states and discovered that for larger

The one-component plasma problem is of considerableystems the disclinations are screened by lines of dislo-
physical significance as it relates to the thermodynamicsations [6,12]. These defects within the crystalline state
of vortices—"“the particles”—in thin-film superconduc- seem to overcome the problem of the spurious first-order
tors. For thin enough films the screening length in thetransition induced by finite-size effects when periodic
intervortex potential may be greater than the transversboundary conditions are employed and so enable one to
dimensions of the film, which makes the logarithmic po-get results closer to those obtained in the thermodynamic
tential an accurate approximation for the potential. Mostimit. It is noteworthy that an early simulation of the one-
papers on thin-film superconductors assume the vorticeomponent plasma on the surface of a sphere [13] did not
have a freezing transition at low enough temperatures (fofind a finite-temperature phase transition either, in agree-
a review, see Ref. [5]), although clear experimental eviiment with our results.
dence for this is lacking. For a contrary view, however, The Hamiltonian for particles moving on the sur-
see [6] and references cited therein. face of the sphere interacting via a logarithmic potential is
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H=—J In(r; —x;l/R), (1)
i<j

wherer; is the position of theth particle on the surface
of the spherepR is the radius of the sphere, addis a
measurement of the magnitude of the repulsive forces be-
tween the particles. The key feature which distinguishes A avaVa
the logarithmic potential from other potentials is that all of N Egg;ﬁﬁﬁ}:&
the stationary states @f have zero dipole moment [14].
This was proved by noting that the force on ttik par- --
ticle due to all of the others must be directed radially for AVATAVAYAVAVAYAYAYAYAY,

L . ) ; ) . VY,
any equilibrium configuration since otherwise the particle "%VV"""""‘Q
would move along the sphere, so

Zg=fm. 2

By multiplying both sides by;, one can show that; =
(N — 1)/2R?, whereN is the total number of particles.
By summing Eq. (2) over ali and using the fact that FIG. 1. Dislocation series screening a fivefold disclination.
r; — r; is antisymmetric ini and j, it follows that the
dipole moment} ; r;, is zero. No other potential has this
feature and it has important consequences. First let us review some features of two-dimensional
Our basic contention is that thermally excited screenegontinuum elasticity theory [4]. Small strains;;(r)
disclinations will destroy crystalline order for particles in- are related to the stress field by Hooke's law,; =
teracting with each other via a logarithmic potential. TheBdijuw + 2u(uij — 8ijuw/2), where B is the bulk
energy cost of an unscreened disclinatio®igv) [4] and ~ modulus andu is the shear modulus. In the presence
such a disclination will not be thermally created in a crys-of topological defects it is convenient to introduce the
talline state. However, disclinations can be “screened” byAiry stress functiony defined byo;; = €eixejdrdx. A
a cloud of dislocations, and it turns out that the energyfivefold disclination is defined by a change in bond angle
cost of such screened disclinations can be much smalle?7/6 when a path encircles the defect. Dislocations are
o(In(N)) for nonlogarithmic potentials and(1/N) for ~ defined by their Burgers vector density figkdr) which
the logarithmic potential. The phenomenon of screenfor the dislocations in Fig. 1 points perpendicular to the
ing of a disclination by dislocations is well known [4,6], line upon which they lie. The stress field is related to the
and is illustrated in Fig. 1 which is taken from [6]. The densities of disclination(r) and dislocations via
figure shows a fivefold coordinated ring—a disclina- 1,
tion—screened by five lines of dislocations where the dis- VX = s(r) — €xVibi(r) = 3(r), 3)
locations are spaced a distandg apart;/y is the lattice 2
spacing. The strain field of the central disclination canwhereY, = 4Bu /(B + ). For a single disclination at
be largely cancelled by that arising from the lines of dis-the origin as in Fig. 1s(r) = (277/6)8(r). 3(r) can be
locations. The resulting strain field from the dislocationsregarded as a total disclination density made up of a “free”
along a line may be approximated at large distances bglisclination density(r) and a “polarization” contribution
that which arises from a positive and negative disclination—¢€; Vi b; from dislocations. The energy of the screened
at each end of the line with a “disclination” charge of sizedisclination expressed in Fourier space is
gs = 1/c (whereq, = +1 for a fivefold disclination). If 1 g 1
we consider a line of dislocations with = 5 and five E=30 ] 6o — S(@3(-q). (4)
lines as in Fig. 1, the strain field of the central disclina- q
tion is exactly screened away. As shown in Ref. [6] theThe expectation [6] for nonlogarithmic interaction poten-
contribution of the disclinations at the other end of thetials is that the screening can at best make the Fourier
lines can be made arbitrarily small by allowing the spactransform of 5, 5(q) = ¢lof(¢S) when the amount of
ing of the dislocations to increase with distancdrom  “disclination charge” within a region of radiu$ around
the disclination as(r) = 5 + S/lyg(r/S) with the con-  the disclination is ofO(ly/S). Substituting this form
dition thatg(0) = 0; S is the size or scale of the screenedfor 5(q) into Eq. (4), one finds that in a system of
disclination. Then the residual charge associated with thparticles the energy of the screened disclination would
screened disclination can be made as smalD&g/S) be O(InN)—which explains why screened disclinations
but, as we shall show, must be as smaltg$l,/5)?) for ~ would be unlikely to modify the KTHNY scenario for
the special case of the logarithmic potential. nonlogarithmic interactions.
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The change in the particle density due to the presenceonfined to move on the surface of a sphere and inter-
of the topological defects is, when Fourier transformedacting via the logarithmic potential. Reduced units were

given by used, i.e.;m = kg = R = J = 1, wherem is the mass of
3 p the particle andy is the Boltzmann constant. The accel-
Ap(q) = —puii(q) = 254 x(q), (5)  erationa; of the ith particle equals;/m, wheref; is the

. . . force produced by the other particles on tile particle.
wherep is the number density of the particles. A featureAﬂer a small time intervabt¢, the position of the particle

of the logarithmic potential is that for it the bulk modulus | . o ' 1 ) o
B is not constant [15] but diverges at small wave vector:WIII be x; =r;(t) + vi1)or + ; a;(1)31", wherev; (1) is

_ 27 9 : .the velocity of the particle. In generat; will not lie
ﬁ(q:) JPZ/ST_JP Eéﬁaﬁ O'I;]r;e(i?e:r: dm(c;)(;u::l;sn|SS¥\I/IeIlI3:euhSaevdecilf. on the surface of the sphere. Tk particle is brought

the replacements, — 4, and B — B(q) are employed. back to the surface by acting on it with a fictitious force

At small wave vector it follows that, for the logarithmic ~2Airi(1), where
potential, = n) - xi - V() - xi? — R[Ixi* — R’]
) 1 ' R2512 '
Ap(q) = . 5(q). (6) (8)

Only for the logarithmic case does a finite smallimit ~ Then, the velocity Verlet algorithm updates particle po-
exist for the density changep associated with a screened sitions using the equation(t + 8¢) = x; — A;r;(1)812.
disclination. We chosest = 0.005(mR2/J)"/2. The velocities of the
We now exploit the fact that all stationary states ofparticles were chosen from a Boltzmann distribution ap-
H have vanishing dipole moments to show that for thepropriate to the temperatur€ and were reselected at
case of logarithmic interactions between the particles thequally spaced time intervals [17]. The system was equi-
screening of the disclination is more efficient than forlibrated at high temperatures, then the temperature was
nonlogarithmic interactions. The Fourier transform of theslowly reduced. For each temperature we determined the
particle density is defined by structure factor which is related to the Fourier transform
, of the pair correlation functiof(r) by [18
@ =Y e, @) p (r) by [18]
1

(Formally, as our system is the surface of a sphere
rather than a plane, we should use spherical harmonioghere J, is the Bessel function of zeroth order. This
rather than plane waves, as was done in Ref. [6], but thadaptation of the conventional relation to particles moving
distinction is unimportant for our argument.) Consideron the surface of the sphere is valid providgds O(1)
now a state which differs from the ground state by theand notO(1/R). Peaks in the structure factor grow as the
presence of a screened disclination of sfzeThe density temperature is reduced at wave vectgrsorresponding
differenceAj(q) of the two states must differ as— 0  to the reciprocal lattice vectot&| of the triangular lattice
by terms of O(¢%) [if one of the states had a dipole expected for the ground state. The correlation lergih
moment then one can see from expanding the exponentittie inverse of the width of the first peak of the structure
in Eq. (7) thatAp would have bee®(g)]. Equation (6) factor. To determine it, we fitted the first peak to a
implies thats(q) = ¢2if(¢S). By Fourier transforming Lorentzian curve.
5(q), one can then show that the disclination charge We studied systems of 1442 and 2252 particles. The
within a distanceS of the center of the disclination is of simulation time for each temperature wh30 0005¢. In
0((1y/9)?). Fig. 2, ¢ is plotted against/1/T. The vertical line is
Substituting this form fors into Eq. (4), one finds drawn where other authors found a first-order melting
that the energy of the screened disclination is of ordetransition using periodic boundary conditions [7]. The
J(lp/S)?. By increasing the scal it can be made arbi- predicted behavio& = /1/T is clearly seen in Fig. 2.
trarily small. At a temperatur@ a region of linear ex- When the temperature was reducedrte= 0.01 the cor-
tent &, whereJ (lo/€)? = T, will be unlikely to contain a relation length for the system of 1442 particles reached
disclination and s& will be a measure of the short-range the system size and stopped growing as the tempera-
crystalline order present in the system at temperalure ture was further reduced. However, the simulation with
& diverges as/1/T asT — 0. This means that by in- 2252 particles indicates that this leveling off is just a
vestigating numerically the structure factor, one can findinite-size effect. True equilibration in numerical studies
from the widths of its peaks the correlation lengthand  of two-dimensional melting phenomena is always prob-
its temperature dependence will tell us whether the arguematic [8] and may be the cause of the scatter in Fig. 2.
ments above are valid. The apparent absence of a finite-temperature phase
We studied, using molecular dynamics, specifically atransition for particles interacting via a logarithmic po-
velocity Verlet algorithm [16], a system ¥ particles tential cannot be attributed to the fact that the simulation

S(q) =1 + 2w pR> /7 h(RO)sindJo(gRO)dO, (9)
0
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following density dependence along an isotherm for the
1/r'? potential [19]:

| b
| o o o ) 09

& where p is the density and’ = 0.36963.... In Fig. 3,

N In ¢ is plotted versus(1/p® — 1)%36%3  We have as-
L sumed thatp. = 1, a value obtained by other authors
I < 1 [9,19] working at the temperature we usdd= 1. The

® slope of the straight line is-1 which corresponds well
oo® with KTHNY predictions. Note again that finite-size ef-
3 P : fects cut off the growth of¢ when it is O(R). Thus
‘ ‘ ‘ ‘ ‘ ‘ ‘ simulations on the sphere do produce for a nonlogarith-
0O 2 4 6 8 10 12 14 mic potential the expected crystalline phase.
1T In summary, we have shown that thermal excitation
of screened disclinations removes at nonzero temperature
FIG. 2. Correlation length as a function of *'2 for  the crystalline phase of the vortex system. Numerical
1442 particles (solid circles) and for 2252 particles (diamondskjmylations have confirmed our prediction that as the
for the logarithmic potential. tem i is | d th lati | th of short-
perature is lowere e correlation length of shor
range crystalline order should grow as< /1/T.
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