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Absence of a Finite-Temperature Melting Transition in the Classical Two-Dimensional
One-Component Plasma
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Vortices in thin-film superconductors are often modeled as a system of particles interacting via a
repulsive logarithmic potential. Arguments are presented to show that the hypothetical (Abrikosov)
crystalline state for such particles is unstable at any finite temperature against proliferation of screened
disclinations. The correlation length of crystalline order is predicted to grow as

p
1yT as the

temperatureT is reduced to zero, in excellent agreement with our simulations of this two-dimensional
system. [S0031-9007(99)09164-4]
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It has been commonly assumed for many years no
that, for the physically important case of particles movin
in two dimensions interacting with each other via
repulsive logarithmic potential (a situation sometime
called the two-dimensional one-component plasma pro
lem), one would have the usual phases expected on
Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY)
scenario. This scenario describes two-dimension
melting as a defect-mediated phenomenon (Halperin a
Nelson [1] and Young [2]) and is based on ideas
Kosterlitz and Thouless [3]. It is supposed that the cry
talline phase—a triangular lattice—melts at a continuo
transition into a hexatic liquid due to the proliferation
of dislocations. The hexatic liquid becomes an ordina
liquid at temperatures which permit the creation of disc
nations. This scenario is well established for particl
with short-range interactions [4], but we will argue tha
particles interacting with a logarithmic potential behav
completely different. For them we can show that th
crystalline state is unstable at any temperature agai
the proliferation of (screened) disclinations and, as
consequence, the system stays in the liquid state do
to arbitrarily low temperatures. The ground state of th
system is of course crystalline; the correlation length
short-range crystalline order is predicted to grow as

p
1yT

as the temperatureT approaches zero. Our numerica
simulations reported here confirm this behavior.

The one-component plasma problem is of considera
physical significance as it relates to the thermodynam
of vortices—“the particles”—in thin-film superconduc
tors. For thin enough films the screening length in th
intervortex potential may be greater than the transve
dimensions of the film, which makes the logarithmic po
tential an accurate approximation for the potential. Mo
papers on thin-film superconductors assume the vortic
have a freezing transition at low enough temperatures (
a review, see Ref. [5]), although clear experimental ev
dence for this is lacking. For a contrary view, howeve
see [6] and references cited therein.
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For particles interacting with a repulsive potential
device is needed to stop them from escaping to infini
In numerical studies of two-dimensional melting the mo
commonly used device is periodic boundary condition
Unfortunately the use of this boundary condition wi
either short-range interactions or with the logarithm
interaction [7] produces an apparently first-order transiti
between the crystal and liquid states rather than
KTHNY scenario. (For a review of early work on shor
range interactions, see [8]; for some more recent wo
see Ref. [9] or [10]). This is probably a finite-size effec
Studies on systems with over 60 000 particles indicate t
the van der Waals loops associated with the apparent fi
order transition shrink in these very large systems [9,1
We have found that placing the particles on the surface
a sphere is very effective for short-range interactions [1
No van der Waals loops occur with this topology and t
results obtained even with modest numbers of partic
are in excellent agreement with expectations based
KTHNY theory. As a consequence, the numerical wo
which we are reporting in this paper has been carried
for the two-dimensional system represented by the surf
of a sphere.

The ground state configuration of the particles on t
sphere has to contain at least 12 disclinations (fivef
rings) by Euler’s theorem. We have made extensive st
ies of these ground states and discovered that for lar
systems the disclinations are screened by lines of dis
cations [6,12]. These defects within the crystalline sta
seem to overcome the problem of the spurious first-or
transition induced by finite-size effects when period
boundary conditions are employed and so enable one
get results closer to those obtained in the thermodyna
limit. It is noteworthy that an early simulation of the one
component plasma on the surface of a sphere [13] did
find a finite-temperature phase transition either, in agr
ment with our results.

The Hamiltonian for particles moving on the su
face of the sphere interacting via a logarithmic potentia
© 1999 The American Physical Society
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H  2J
X
i,j

lnsjri 2 rjjyRd , (1)

whereri is the position of theith particle on the surface
of the sphere,R is the radius of the sphere, andJ is a
measurement of the magnitude of the repulsive forces
tween the particles. The key feature which distinguish
the logarithmic potential from other potentials is that all o
the stationary states ofH have zero dipole moment [14].
This was proved by noting that the force on theith par-
ticle due to all of the others must be directed radially fo
any equilibrium configuration since otherwise the partic
would move along the sphere, soX

jfii

ri 2 rj

jri 2 rjj2
 firi . (2)

By multiplying both sides byri , one can show thatfi 
sN 2 1dy2R2, whereN is the total number of particles.
By summing Eq. (2) over alli and using the fact that
ri 2 rj is antisymmetric ini and j, it follows that the
dipole moment,

P
i ri , is zero. No other potential has this

feature and it has important consequences.
Our basic contention is that thermally excited screen

disclinations will destroy crystalline order for particles in
teracting with each other via a logarithmic potential. Th
energy cost of an unscreened disclination isOsNd [4] and
such a disclination will not be thermally created in a cry
talline state. However, disclinations can be “screened”
a cloud of dislocations, and it turns out that the ener
cost of such screened disclinations can be much smal
Osss lnsNdddd for nonlogarithmic potentials andOs1yNd for
the logarithmic potential. The phenomenon of scree
ing of a disclination by dislocations is well known [4,6]
and is illustrated in Fig. 1 which is taken from [6]. The
figure shows a fivefold coordinated ring—a disclina
tion—screened by five lines of dislocations where the d
locations are spaced a distancecl0 apart;l0 is the lattice
spacing. The strain field of the central disclination ca
be largely cancelled by that arising from the lines of di
locations. The resulting strain field from the dislocation
along a line may be approximated at large distances
that which arises from a positive and negative disclinatio
at each end of the line with a “disclination” charge of siz
qs  1yc (whereqs  11 for a fivefold disclination). If
we consider a line of dislocations withc  5 and five
lines as in Fig. 1, the strain field of the central disclina
tion is exactly screened away. As shown in Ref. [6] th
contribution of the disclinations at the other end of th
lines can be made arbitrarily small by allowing the spa
ing of the dislocations to increase with distancer from
the disclination ascsrd  5 1 Syl0gsrySd with the con-
dition thatgs0d  0; S is the size or scale of the screene
disclination. Then the residual charge associated with
screened disclination can be made as small asOsl0ySd
but, as we shall show, must be as small asOssssl0ySd2ddd for
the special case of the logarithmic potential.
be-
es
f

r
le

ed
-
e

s-
by
gy
ler,

n-
,

-
is-

n
s-
s
by
n

e

-
e
e
c-

d
the

FIG. 1. Dislocation series screening a fivefold disclination.

First let us review some features of two-dimension
continuum elasticity theory [4]. Small strainsuijsrd
are related to the stress field by Hooke’s law,sij 
Bdijukk 1 2msuij 2 dijukky2d, where B is the bulk
modulus andm is the shear modulus. In the presenc
of topological defects it is convenient to introduce th
Airy stress functionx defined bysij  eikejl≠k≠lx. A
fivefold disclination is defined by a change in bond ang
2py6 when a path encircles the defect. Dislocations a
defined by their Burgers vector density fieldbsrd which
for the dislocations in Fig. 1 points perpendicular to th
line upon which they lie. The stress field is related to th
densities of disclinationssrd and dislocations via

1
Y2

=4x  ssrd 2 eik=kbisrd ; s̃srd , (3)

whereY2  4BmysB 1 md. For a single disclination at
the origin as in Fig. 1,ssrd  s2py6ddsrd. s̃srd can be
regarded as a total disclination density made up of a “fre
disclination densityssrd and a “polarization” contribution
2eik=kbi from dislocations. The energy of the screene
disclination expressed in Fourier space is

E 
1
2

Y2

Z d2q
s2pd2

1
q4 s̃sqds̃s2qd . (4)

The expectation [6] for nonlogarithmic interaction poten
tials is that the screening can at best make the Four
transform of s̃, s̃sqd  ql0fsqSd when the amount of
“disclination charge” within a region of radiusS around
the disclination is ofOsl0ySd. Substituting this form
for s̃sqd into Eq. (4), one finds that in a system ofN
particles the energy of the screened disclination wou
be OslnNd—which explains why screened disclination
would be unlikely to modify the KTHNY scenario for
nonlogarithmic interactions.
4079
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The change in the particle density due to the presen
of the topological defects is, when Fourier transforme
given by

Dr̃sqd  2ruiisqd 
r

2B
q2xsqd , (5)

wherer is the number density of the particles. A featur
of the logarithmic potential is that for it the bulk modulus
B is not constant [15] but diverges at small wave vecto
Bsqd  2pJr2yq2. The shear modulus is well behaved
m  Jry8. Equations (4) and (5) can still be used i
the replacementsY2 ! 4m andB ! Bsqd are employed.
At small wave vector it follows that, for the logarithmic
potential,

Dr̃sqd 
1

8p
s̃sqd . (6)

Only for the logarithmic case does a finite smallq limit
exist for the density changeDr̃ associated with a screened
disclination.

We now exploit the fact that all stationary states o
H have vanishing dipole moments to show that for th
case of logarithmic interactions between the particles t
screening of the disclination is more efficient than fo
nonlogarithmic interactions. The Fourier transform of th
particle density is defined by

r̃sqd 
X

i

eiq.ri . (7)

(Formally, as our system is the surface of a sphe
rather than a plane, we should use spherical harmon
rather than plane waves, as was done in Ref. [6], but t
distinction is unimportant for our argument.) Conside
now a state which differs from the ground state by th
presence of a screened disclination of sizeS. The density
differenceDr̃sqd of the two states must differ asq ! 0
by terms of Osq2d [if one of the states had a dipole
moment then one can see from expanding the exponen
in Eq. (7) thatDr̃ would have beenOsqd]. Equation (6)
implies thats̃sqd  q2l2

0fsqSd. By Fourier transforming
s̃sqd, one can then show that the disclination charg
within a distanceS of the center of the disclination is of
Ossssl0ySd2ddd.

Substituting this form fors̃ into Eq. (4), one finds
that the energy of the screened disclination is of ord
Jsl0ySd2. By increasing the scaleS it can be made arbi-
trarily small. At a temperatureT a region of linear ex-
tent j, whereJsl0yjd2 ø T , will be unlikely to contain a
disclination and soj will be a measure of the short-range
crystalline order present in the system at temperatureT .
j diverges as

p
1yT as T ! 0. This means that by in-

vestigating numerically the structure factor, one can fin
from the widths of its peaks the correlation lengthj, and
its temperature dependence will tell us whether the arg
ments above are valid.

We studied, using molecular dynamics, specifically
velocity Verlet algorithm [16], a system ofN particles
4080
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confined to move on the surface of a sphere and inte
acting via the logarithmic potential. Reduced units wer
used, i.e.,m  kB  R  J  1, wherem is the mass of
the particle andkB is the Boltzmann constant. The accel
erationai of the ith particle equalsfiym, wherefi is the
force produced by the other particles on theith particle.
After a small time intervaldt, the position of the particle
will be xi  ristd 1 vistddt 1

1
2 aistddt2, wherevistd is

the velocity of the particle. In general,xi will not lie
on the surface of the sphere. Theith particle is brought
back to the surface by acting on it with a fictitious force
22liristd, where

li 
ristd ? xi 2

p
fristd ? xig2 2 R2fjxij

2 2 R2g
R2dt2 .

(8)

Then, the velocity Verlet algorithm updates particle po
sitions using the equationrist 1 dtd  xi 2 liristddt2.
We chosedt  0.005smR2yJd1y2. The velocities of the
particles were chosen from a Boltzmann distribution ap
propriate to the temperatureT and were reselected at
equally spaced time intervals [17]. The system was equ
librated at high temperatures, then the temperature w
slowly reduced. For each temperature we determined t
structure factor which is related to the Fourier transform
of the pair correlation functionhsrd by [18]

Ssqd  1 1 2prR2
Z p

0
hsRud sinuJ0sqRud du , (9)

where J0 is the Bessel function of zeroth order. This
adaptation of the conventional relation to particles movin
on the surface of the sphere is valid providedq is Os1d
and notOs1yRd. Peaks in the structure factor grow as th
temperature is reduced at wave vectorsq corresponding
to the reciprocal lattice vectorsjGj of the triangular lattice
expected for the ground state. The correlation lengthj is
the inverse of the width of the first peak of the structur
factor. To determine it, we fitted the first peak to a
Lorentzian curve.

We studied systems of 1442 and 2252 particles. Th
simulation time for each temperature was100 000dt. In
Fig. 2, j is plotted against

p
1yT . The vertical line is

drawn where other authors found a first-order meltin
transition using periodic boundary conditions [7]. The
predicted behaviorj ~

p
1yT is clearly seen in Fig. 2.

When the temperature was reduced toT  0.01 the cor-
relation length for the system of 1442 particles reache
the system size and stopped growing as the tempe
ture was further reduced. However, the simulation wit
2252 particles indicates that this leveling off is just
finite-size effect. True equilibration in numerical studie
of two-dimensional melting phenomena is always prob
lematic [8] and may be the cause of the scatter in Fig. 2

The apparent absence of a finite-temperature pha
transition for particles interacting via a logarithmic po
tential cannot be attributed to the fact that the simulatio
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FIG. 2. Correlation length as a function ofT21y2 for
1442 particles (solid circles) and for 2252 particles (diamond
for the logarithmic potential.

was done for the two-dimensional geometry represent
by the surface of a sphere. We can demonstrate this
simulating particles on a sphere interacting via a1yr12

potential when a finite-temperature melting transition o
KTHNY character is seen. We had already found indic
tions of such a transition [11] but the numbers of particle
used in that reference were small. Using the Verlet alg
rithm described above we were able to simulate a syste
of 5882 particles as it was possible to use look-up tabl
of nearest neighbors in the study of the short-range pote
tial. In the KTHNY picture, the correlation length has the

1
(1/ρ6

-1)
0.36963

1

10

ln
ξ

FIG. 3. Log-log plot of lnj versus s1yr6 2 1d0.36963 for
5882 particles interacting via a1yr12 repulsive potential. The
slope of the straight line is21 according to KTHNY.
s)

ed
by

f
a-
s
o-
m

es
n-

following density dependence along an isotherm for t
1yr12 potential [19]:

jsrd ~ exp

√
b

fsrcyrd6 2 1gn

!
, (10)

wherer is the density andn  0.36963 . . . . In Fig. 3,
ln j is plotted versuss1yr6 2 1d0.36963. We have as-
sumed thatrc  1, a value obtained by other author
[9,19] working at the temperature we used,T  1. The
slope of the straight line is21 which corresponds well
with KTHNY predictions. Note again that finite-size ef
fects cut off the growth ofj when it is OsRd. Thus
simulations on the sphere do produce for a nonlogar
mic potential the expected crystalline phase.

In summary, we have shown that thermal excitati
of screened disclinations removes at nonzero tempera
the crystalline phase of the vortex system. Numeric
simulations have confirmed our prediction that as t
temperature is lowered the correlation length of sho
range crystalline order should grow asj ~

p
1yT .
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