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Time-Dependent Development of the Coulomb Gap
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We show that the time development of the Coulomb gap in a Coulomb glass can inv
very long relaxation times due to electron rearrangement and hopping. We find that an ap
magnetic field reduces the rate of electron hopping and, hence, Coulomb gap formation. T
results are consistent with recent conductance experiments on thin semiconducting and metallic
[S0031-9007(99)09201-7]
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The competition between interactions and disord
results in glassy dynamics that are often associated w
very long relaxation times extending over many decad
One might not expect the same to be true in an electro
system since electrons typically respond very quickl
However, in this paper we show that in the presen
of strong disorder, electrons can indeed have very lo
relaxation times. This occurs in a Coulomb glass whic
is an insulator with randomly placed electrons that ha
Coulomb interactions. Heavily doped semiconducto
and disordered metals are examples of such syste
Coulomb interactions between localized electrons res
in a so-called Coulomb gap in the single particle dens
of states that is centered at the Fermi energy [1–3]. W
have done a calculation in which we follow the tim
development of the Coulomb gap. In order to produce th
gap, electron rearrangement must occur and the associ
hopping can involve very long time scales.

These long relaxation times are consistent with rece
experiments on thin semiconducting [4,5] and metallic [
films which have shown that in the presence of stron
disorder, electronic systems can relax very slowly. The
films were grown on insulating substrates which separa
them from a gate electrode that regulated the electr
density, and hence the chemical potential, of the film
The conductanceG was measured as a function of th
gate voltageVG . If VG sat at a particular value,V0,
for a long time and then was varied over a range
voltages, there was a dip in the conductance centered
V0 [7]. We identify this dip with the Coulomb gap in
the density of states because the value of the conducta
depends on the density of states at the Fermi ene
[5,8]. In Mott’s picture of variable range hopping, the
hopping conductivity increases when the density of sta
at the Fermi energy increases, since there are then m
states to which an electron at the Fermi energy can h
[3]. We identify sweepingVG by varying the chemical
potential without allowing time for equilibration. In
effect the sweeps scan the density of states. Thus
expect the conductance to increase with the density
states and hence as the gate voltageVG moves away
from V0.
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In the experiments, if the gate voltage was chang
suddenly from, say,V0 to V1, the conductance had a ver
fast initial rise, followed by a period of rapid relaxation
which in turn was followed by a long period of very slow
relaxation. In some cases the relaxation was logarithm
in time. Our interpretation of this is that when the ga
voltage is changed, the Fermi energy changes, and ti
dependent relaxations arise because the system must
new hole in the density of states at the new Fermi ene
and remove the old hole at the old Fermi energy. Inde
Vaknin, Ovadyahu, and Pollak [5] found that subseque
sweeps of the gate voltage revealed that the old dip in
conductance atV0 fades with time while a new dip centere
at V1 increased with time. The dip in the conductan
and the long time relaxation were present only at very lo
temperatures, not at higher temperatures (T * 20 K).

Ovadyahu and Pollak [4] also found that in a magne
field (H ­ 9 T ) the long time relaxation rate associate
with a change in the gate voltage was even slower.
addition to the spin mechanism that they propose [4], t
result is consistent with the fact that the magnetic fie
reduces the spatial extent of the electron wave functio
in the directions transverse to the field. This reduces
wave function overlap of neighboring electrons, resulti
in a decrease of the electron hopping rate and henc
decrease in the rate at which a Coulomb gap forms. T
is confirmed by our calculations.

Our model of the Coulomb glass follows that o
Baranovskĭi, Shklovskĭi, and Éfros (BSE) [9]. In this
model, the electrons occupy the sites of a periodic latti
and the number of electrons is half the number of sit
Each site has a random on site energyfi chosen from
a uniform distribution extending from2A to A. Thus,
g0, the density of states without interactions, is flat.
site can contain zero or one electron. In order to follo
the time development of the Coulomb gap, we assu
that the Coulomb interactions are turned on at timet ­ 0.
The Hamiltonian can be written as

H ­
X

i

fini 1
X
i.j

e2

krij
ninjustd , (1)

where the occupation numberni equals 1
2 if site i is
© 1999 The American Physical Society
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occupied and2 1
2 if site i is unoccupied,e is the electron

charge,k is the dielectric constant, and the step functio
ustd is 0 for t , 0 and 1 fort $ 0.

The Coulomb gap arises because the stability of t
ground state with respect to single electron hopping fro
an occupied sitei to an unoccupied sitej requires [3]
n

he
m

D
j
i ­ ´j 2 ´i 2

e2

krij
. 0 , (2)

where the single-site energýi ­ fi 1
P

j
e2

krij
nj . So

we need to subtract from the density of states those st
which violate this stability condition. This leads to [9,10
gs´, td ­ g0

Y
j.i

"
1 2 a3

0

Z A

2A
d´0 gs´0, tdu

√
e2

krij
1 ´ 2 ´0

!
Fsn0

i ­ 1, n0
j ­ 0dussst 2 tijs´0, ´, rijdddd

#
, (3)
,

e
ns
in
e

n
tes
where the single-site energýi ­ ´, ´j ­ ´0, and a0 is
the lattice constant.n0

i ­ ni 1 1y2; so n0
i ­ 1 if site i

is occupied and0 if site i is unoccupied.Fsn0
i , n0

jd is the
probability that donorsi andj have occupation numbers
n0

i and n0
j, respectively, while all other sites have the

ground state occupation numbersñ0
k. t

21
ij is the number

of electrons which jump from sitei to sitej per unit time.
ust 2 tijd represents the fact that at timet, the primary
contributions to the change in the density of states w
be from those hops for whichtij , t [11]. In writing
Eq. (3), we assume that these hops together with phon
have equilibrated the system as much as is possible at t
t. The hopping ratet21

ij is given by [3]

t21
ij ­ go

ij exp

µ
2

2rij

a

∂
f1 1 NsDj

i dgFsn0
i ­ 1, n0

j ­ 0d ,

(4)
ir

ill

ons
ime

wherea ­ kaB is the effective Bohr radius of a donor
andaB is the usual Bohr radius (aB ­ h̄2yme2). We will
set the massm equal to the electron mass so thataB ­
0.529 Å. NsDj

i d is the phonon occupation factor and
reflects the contribution of phonon assisted hopping. W
are also allowing for spontaneous emission of phono
since we are considering a nonequilibrium situation
which electrons hop in order to lower their energy. Th
coefficientgo

ij is given by [3]

go
ij ­

E2
1 jD

j
i j

pds5h̄4

"
2e2

3ka

#2
r2

ij

a2

241 1

√
D

j
i a

2h̄s

!2
3524

, (5)

whereE1 is the deformation potential,s is the speed of
sound, andd is the mass density. Following BSE, we ca
derive a self-consistent equation for the density of sta
gs´, td,
gs´, td ­ g0 exp

"
2

1
2

Z A

2A
d´0 gs´0, td

Z `

a0

dr 4pr2Fsssns´d ­ 1, ns´0d ­ 0dddu
µ

e2

kr
1 ´ 2 ´0

∂
ussst 2 ts´0, ´, rdddd

#
.

(6)
b
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At low energies large distances play an important role a
so we have replaced the sum by an integral overr in the
exponent. The origin is at sitei. ns´d is the occupation
probability of a site with energý . ts´0, ´, rd is given
by (4) with rij replaced byr, ´i replaced bý , and ´j

replaced bý 0.
Since it is not clear how the stability condition of Eq. (2

can be applied to finite temperatures, we will confin
our calculations to the case ofT ­ 0. In this case the
phonon occupation factorNsDj

i d ­ 0 and the electron
occupation factorFsni ­ 1, nj ­ 0d ­ 1, if ´i , 0 and
´j . 0. OtherwiseFsni ­ 1, nj ­ 0d ­ 0. We set the
Fermi energym ­ 0. We can solve Eq. (6) iteratively
on the computer. For the first iteration we start wit
gs´0, td ­ g0 and calculategs´, td. This is then used as the
input for gs´0, td in the next iteration. Because successiv
iterations converge by alternating above and below t
correct answer with decreasing amplitude, after the fi
two iterations we use the average of the input and out
of a given iteration as the input for the next iteration. Afte
11 iterations the typical difference between success
iterations is typically less than 1 part in105. Because there
is particle-hole symmetry, we only need to calculategs´, td
for ´ , 0. Figure 1a shows the density of statesgs´, td
nd

)
e

h

e
he
rst
put
r

ive

as a function of energy at different times, while Fig. 1
showsgs´, td as a function of time at different energies
Notice the development of the Coulomb gap occurs o
many decades in time. The functional form of the tim
dependence ofgs´, td varies with the energý and with
g0. For example, at the Fermi energygsm, td , lnt for
g0 ­ 2 3 105 statesyK Å3 andgsm, td , t20.05 for g0 ­
6.25 3 105 statesyK Å3. After an infinite amount of time,
the density of states at the Fermi energym goes to zero and
gs´d , ´2. For finite times,gs´d , j´j in the vicinity of
the Fermi energy, though there will be thermal smeari
at finite temperatures. For different values of the initi
density of statesg0, we find the same qualitative behavio
as a function of time with the depth of the dipg0 2 gsm, td
increasing asg0 increases. Figure 2 shows that the wid
W of the dip increases withg0. Experimentally the width
W increases with the carrier concentrationn [5]. This is
consistent with our results since the noninteracting den
of statesg0 increases withn, though other parameters suc
ask may also depend onn. The range of widths in Fig. 2
is comparable to that deduced from experiment [5].

The temporal development of the Coulomb gap
qualitatively consistent with the experimental observati
of the long time relaxation of the conductance after t
4075
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FIG. 1. (a) Density of statesgs´d as a function of energy
for different times. (b) Density of states as a func
tion of time for various energies. Parameters used a
g0 ­ 2 3 105 statesyK Å3, T ­ 0, A ­ 104 K, k ­ 10,
d ­ 7.18 gycm3, s ­ 5.0 3 105 cmysec, E1 ­ 5 3 103 K,
and a0 ­ 4 Å. The densityd is chosen to be that of In2O3.
The energy is measured from the Fermi energym ­ 0.

gate voltageVG has been changed. The exact relatio
between the conductance and the density of states
difficult to ascertain in this case because the system
not in equilibrium. However, it is reasonable to assum
that the conductance reflects the density of states at
Fermi energy. A well-known example is Mott’s formula
for conductivitys due to variable range hopping [3].

s ­ so exp

"
2

µ
T0

T

∂1y4
#

, (7)

where T0 ­ ayfkBgsmda3g, a is a numerical constant,
and gsmd is the density of states at the Fermi energ
While strictly speaking this equilibrium formula does no
apply to our nonequilibrium situation, we see qualita
tively that an increase (decrease) ingsmd leads to an in-
crease (decrease) in the conductivity. In the experimen
rapidly sweeping the gate voltageVG varies the chemical
potential without allowing time for equilibration. Relat-
ing the conductance to the density of states means t
the sweeps overVG scan the density of states. To get
qualitative feel for this connection, we will use Eq. (7)
We identify gsmd with gs´d and useT0 ­ ayfkBgs´da3g.
For most of the scan the density of states has the line
form gs´d ­ gs´0d 1 as´ 2 ´0d where´0 and the slope
a are constants. The exponent of1y4 is appropriate for
this case. The experiments on indium oxide [4] were do
4076
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FIG. 2. Width of the Coulomb gap as a function ofg0 at
t ­ 1018 sec and at infinite time. The width is measured
halfway between the minimumgsmd and the maximumg0 in
the density of states. Inset: Density of statesgs´d as a function
of time for different values of the magnetic fieldH. For both
curves the energý ­ m and g0 ­ 6.25 3 1025 statesyK Å3.
The rest of the parameters are the same as in Fig. 1 for b
the inset and the main figure.

at 4.11 K, so we setT ­ 4 K and use thegs´d shown in
Fig. 1. The result is shown in Fig. 3.

Ovadyahu and Pollak noticed that when a magne
field is applied to their indium oxide films, the relaxa
tion rate decreases and the magnetoresistance is pos
[4]. They attributed this to a reduced hopping rate resu
ing from the fact that a polarized spin cannot hop on
a site that is already occupied. Our scenario sugge
an additional mechanism since the magnetic field redu
the wave function overlap in the direction transverse
the field. The reduced overlap means a lower hoppi
rate and a longer relaxation time. Shklovskiĭ and Éfros
[12–14] studied the effect of a magnetic field on variab
range hopping. Since the average hopping distance far
ceeds the mean distanceR between impurities, the hopping
electron scatters from many other donor sites. As a res
when the magnetic field is transverse to the direction
tunneling, the wave function decays as exps2rybd. Here
we have adopted cylindrical coordinates with the ma
netic field along thez axis andr is the radial coordi-
nate transverse to thez axis. The parameterb ­ lyj lnAj

where the magnetic lengthl ­
p

ch̄yeH, andA describes
the scattering and depends on the magnetic fieldH. For
all values ofH, Shklovskĭi [14] has shown thatb, and
hence the wave function overlap, decreases as the m
netic field increases. The functional form ofA depends
on the strength of the field. In the indium oxide exper
ments [4]H ­ 9 T. Since this is in a weak field regime
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FIG. 3. (a) Dimensionless conductivitysys0 as a function
of energy for different times. (b) Dimensionless conductivit
sys0 as a function of time for various energies. Th
conductivity of both (a) and (b) are calculated using Mott
formula (7) with T ­ 4 K, a ­ 5.29177 Å, and a ­ 2.23.
The rest of the parameters are the same as in Fig. 1.

wherel ¿ a andR ø l2ya, we can make the approxi-
mationb ø af1 2 sayld4y3g wherea is the effective Bohr
radius. For a weak field we expect the hopping rate
go ast

21
ij , g

o
ij expf22rijyfszyrijdg where the function

fs0d ; b andfs`d ; a. It is difficult to make a quanti-
tative comparison to the density of states atH ­ 0 since
we do not know the prefactorg

o
ij. To get a qualitative feel

for the effect of the magnetic field, we can use theH ­ 0
form of g

o
ij found in Eq. (5), and in Eq. (4) fort21

ij , we
replace exps22rijyad with exps22rijybd. This is a rea-
sonably good approximation since for a field of 9 T an
a dielectric constant of 10,a ­ 5.29 and b ­ 5.162 Å.
The T ­ 0 result for the density of states atH ­ 0 and
H ­ 9 T is shown in the inset of Fig. 2. Both curves sta
at the same value ofgs´ ­ md ­ g0 at timet ­ 0. Notice
that the curve at 9 T is slightly above the zero field curv
indicating that the relaxation is slower in a magnetic fiel
This is qualitatively consistent with experiment [4]. To
differentiate between our mechanism and spin effects, n
that our mechanism predicts that the magnetoresistanc
greater when the field is perpendicular to the current th
when it is parallel, whereas the magnetoresistance sho
be isotropic in the field if spin effects dominate.

The experiments found that the dip in the conductan
as a function of gate voltageVG and the long relaxation
times of the conductance following a change inVG were
present only at low temperature. These features w
y
e
’s

to

d

rt

e
d.

ote
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an
uld

ce

ere

not observed atT * 20 K. From Eqs. (3) and (4), we
see that an increase in temperature will affectgs´, td in
two ways. First, the thermal smearing of the occupatio
factor Fsn0

i , n0
jd will fill in the Coulomb gap to some

extent. Second, as the number of phonons increases w
temperature, there is an increase in the phonon assis
hopping of electrons. We expect that this leads to a rap
rearrangement of electrons on time scales that are
short to observe experimentally. As a result, no dips
the conductance and no long time relaxation were se
experimentally at higher temperatures. It is difficult t
calculate these effects because it is not clear how
generalize the stability condition (2) to finite temperature
In addition the system is not in equilibrium and henc
temperature is not well defined for the electrons. Howev
the absence of the conductance dips at higher temperat
is consistent with our scenario.

To summarize, we have shown that the time deve
opment of the Coulomb gap in a Coulomb glass ca
involve very long time scales due to electron hoppin
and rearrangement. These results are consistent w
conductance experiments on disordered semiconduct
and metallic films. Although we have only considere
single electron hops, these hops are dependent upon pr
ous hops of other electrons through their cumulative effe
on the single particle density of states. We expect m
tielectron processes to also contribute to the conductan
particularly at long time scales.
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