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Localization and the Mobility Edge in One-Dimensional Potentials with Correlated Disorder

F. M. Izrailev and A. A. Krokhin

Instituto de Fsica, Universidad Autonoma de Puebla, Apartado Postal J-48, Puebla, 72570 México
(Received 17 June 1998

We show that a mobility edge exists in 1D random potentials in the presence of specific long-range
correlations. Our approach is based on the relation between the binary correlator of a site potential and
the localization length. We present an algorithm to numerically construct potentials with mobility edges
at any given energy inside the allowed zone. Another way to generate such potentials is to use chaotic
trajectories of nonlinear maps. Our numerical calculations for a few specific potentials demonstrate the
presence of mobility edges in a 1D geometry. [S0031-9007(99)09211-X]
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It is commonly believed that there is no mobility edge D, = Intl J1+ A, sin(26,) + Aﬁ Sirté,, ,
in 1D models with randomlike potentials. This is based "n 4
on the fact that for random potentials all eigenstates A, = —¢,/Sinu, = 2CoSu .

are exponentially localized, no matter how weak theW
randomness is [1]. On the other hand, for potentials wi f]
“correlated disorder” the localization length diverges for
specific values of energy (see, e.g., [2,3]). The well- U= A = lim & Z' (rn+])
studied model of this kind is the so-called “random N

dimer” [4] for which the potential has peculiar short-

range correlations. Though there is no mobility edge fowhich coincides inside the energy bah#| < 2 with the
such potentials, this example shows a highly nontrivialstandard definition [6]A = (In i)y (see details in [7]).
role of correlations. In this Letter we study the relationHere the brackets stand for tﬁe average ower This
between correlations in the site potential of 1D tight-Hamiltonian map approach turns out to be very effective
binding model and localization properties of eigenstatesin the study of completely disordered potentials [7] as well
and give examples of the potentials with mobility edgesas potentials with correlated disorder [5,8].

e use the following definition of the inverse localization
ength (or Lyapunov exponem) [5]:

®)

inside the energy band. Below we consider a general caseanly stationary site
The model under consideration is the discretepotentiale, under the conditione,) < 1. In this case
Schraédinger equation for stationary eigenstatgr), one can expand the logarithm in Eq. (5) and in the second
Ynit + Pnor = (E + )by, 1) order of perturbation theory get
whereE is the eigenenergy ané, is the site potential. o1 _ fen)  (e,sin(260,)) ©)
To study the origin of delocalized states in long-correlated 8siru 2sine

random potentials, we suggest a simple and clear approach
based on the representation of the quantum model (1) in
terms of a classical two-dimensional Hamiltonian map,

Pn+1 = DPn + (E -2 - en)xrm (2)

In order to calculate the correlatote, sin(26,))

with quadratic accuracy, we use the approximate one-

dimensional map for the phagg obtained from Eqg. (3),
sinto,,_

Xp+1 = X + Pn+1, 0” - 0n71 K T € Sin,u, 1 ’ (7)
where p,+1 = x,+1 — x, andx, = ¢,. This map de-
scribes the behavior of a linear oscillator subjected t
linear periodic delta kicks with amplitude depending on
€,. In such an approach, localized quantum states corr

rom Eq. (7) the correlatde, sin(26,)) can be expressed
hrough the precedent on&;, sil2(6,,_1)). Let us intro-
éiuce the following notations:

spond to trajectories which are unbounded in the classi- — (e, %0 1) _oexp—2ip) ,
cal phase spacep, x) whenn — «. Contrary, extended Or = (€ T T2 sine 09k 8
states are represented by bounded trajectories. ( Y= 2£(k) (e2) = &2 (8)

It is convenient to introduce the action-angle variables ~ (€n€n—k) = €¢(k). €l = €0~
(r,#) and represent Egs. (1) and (2) in the following formIt can be shown that the normalized correlatagsare
(see details in [5]): defined by the infinite set of linear equations,

. _ —1 . . . .
Sind,+1 = D, "[sin(0, — u) — A, sind, sinu], 3) ar-y — e dikg, = £(k), l=k<ow. (9
—p-1 i

cod,+1 = D, [cog0, — u) + A, sind, cosu], These equations emerge after multiple application of the

where recursion relation (7) to the correlatoy,.
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According to Eq. (6) the localization length is deter- case of the constant potentig] = ¢j; in both cases the

mined by the only ternay, inverse localization length vanishes. This is consistent
» € € with the perturbative approach developed in [10].

Re(e %*ay),  (10) For y =1 Eq. (1) is reduced to the Harper equation

= +
8 sin? 4sin? e . .
® ® with incommensurate potential. In this case the correla-

which can easily Ee obtained from Eq. (9), tion function £(k) oscillates, &(k) = co92ak), which
_ - . also givesp(u) = 0. Thus, in the Harper model with a
do = k; gk exd=2ip(k = 1)]. (11) weak potential all states are extended [12,13]. F0r 1

the correlatorsé(k) vanish and the localization length
furns out to be the same as for the Anderson model (for
5 " energy close to the band center, see [14]).

;1 €0 e (1) o(w) =1+2 Z £(k) cod2 k). Let us consider now the random dimer model [4] which

As a result, we come to the final expression for the invers
localization length,

~ 8siru’ = is specified by the sequeneg having only two valueg;
(12) ande; each of them appears in pairg €; or €;¢€), and
each pair emerges with probability2. Fully transparent

Here, the function is given by the Fourier series
(1) 9 y states are known to occur f& = €; and E = ¢;; see,

with the coefficientst (k) which are the correlators of the for example, [5] and references therein. Statistical prop-

igitré?,tzniag," .arl:l(;) t;tTy?é que;n(j Ze)(;gfﬂcfsi;? wﬁel?: nd (lerti(;:‘S of t2hi8 model are characterized by the 2\/;;1+r|ga§(3:;e
even the standard Anderson model exhibits peculiaritie§(€1 + €) and two Cosze|at0f9<6n6nfl> = €0 +a)
(see, for example, [7] and references therein). and{e, e, ) = 63% whereA = €;/e,. By substi-

Equation (12) establishes the relation between the lotuting these correlators into Eq. (12), we obtain the in-
calization length and correlations. It allows us to calcu-verse localization length for the dimer,

late the localization length if statistical properties of the 2 5 5
E()(] - )\) E

sequence, are known. Note that only binary correlators I"YE) = . (15)
enter in Eq. (12). This property comes from the Born ap- 8(1 + A2) 4 — E?
proximation and not from restrictions for statistics of The generalization foN-mer when the values; and
[9]. In particular, we do not assume that the statistics is;, appear in randomly distributed blocks of lengthcan
Gaussian. _ _ readily be done. For example, for the trimer we have
Formally, the same result has been derived by different ) 5 o s
methods in [9,10]. For continuous models, the high- I Y(E) = el — A (E° -1 (16)
energy asymptotics of the Lyapunov exponent is also 12(1 + A%) 4 — E?

determined by the correlation function of the site potentialNote that the above explicit expressions for dimer (15)

[6]. To the bes_,t of our knowledge, .the relation (12) d trimer (16) are given for the whole energy range; to
has not been discussed yet concerning the problem %e best of our knowledge, this is a new result

mobility edge. The qdvantage of the gbove 'approach For theN-mer constructed from the standard Anderson
based on the Hamiltonian representation is that it allows fhodel by repeatingV times each random value
ny

simple generalization to the Kronig-Penney model WithE ; ; :

. . g. (12) gives the same result obtained in [15]. In
cprrelated_ disorder [11] and to the mo_qlels with Of.f' articular, this result shows that the correlations do not
d'agof‘a' disorder. The ap_proqch also clarifies the physic ecessarily suppress the localization, they can make it
meaning of the summation in Eq. (12). Namely, theeven stronger than in the Anderson model [16].

chalization appears as a result of multiple ;cattering al The Jocalization length (12) does not depend explicitly
different sites, see Eq. (3), and each scattering enters iff, yq gite potential but on the binary correlatéf) of
the Born approximation, see Eq. (_7)' the potential. Let us consider different types of correla-

To reveal _the role of correlations, let us apply thetions. First, we take a sequenegewith exponential decay
general relation (12) to some known models. First, weys correlations ¢(k) = exp(— 8k). This type of correla-
consider the potential

tion is known to occur in completely chaotic Hamiltonian

€ = €ov2cod2man?) (13)  models without stable regions in the classical phase space.
with « irrational. The correlation functiog (k) for this ~ BY substitutingé(k) into Eq. (12), one gets the following
sequence is given by the sum expression:
1 & | . € sinhB
k) = lim — 2 kn?7). 14 I = - , 17
£ N N ;COS{ myakn’ ) (14) 8siru coshB — cog2u) (A7)

For0 < y < 1 all the correlators (k) are independent of which establishes a link between the correlation radius
k and equal td, thus, givinge(u) = 0for0 < u < 7.  (paramete3 ') of the site potential, and the localization
Therefore, for this case the result coincides with thdength of eigenstates. In the limiting cage— oo, we get
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the result for uncorrelated sequence (Anderson model),

and for 8 — 0 the result for the constant potential is 1.0}

recovered. A
Concerning the power decay of correlations, one should 0

note that such simple functions @$k) = 1/k or 1/k> 0.75 t

cannot serve as the correlation functions of any random
sequence. Indeed, these functions lead to negative values
of the Lyapunov exponent and do not satisfy the condition 05F
required for any correlation function [17]. Specifically,
the matrix & = £(k — k') must bepositive semidefi-
nite, the property which is not obvious priori for arbi- 0.25
trary positivefunction & (k).
An important application of Eq. (12) is related to the
question about existence of the mobility edge in 1D 0.0 loms-ccmmagns s el
systems. So far the mobility edge has been predicted for 0.0 0.5 10 1.5 E 20
incommensurate potentials Eqg. (13) with< 1 and finite
amplitudee, [18,19], and for Kronig-Penney model with FIG. 1. Rescaled Lyapunov exponem(E) for two site
constant electric field [20]. potentialse, constructed6by Eqg. (19) f&00 correlatorst (k) =
The relation (12) allows us to construct site potentialsf(_k) andn = 1,...,10%
with mobility edges. Rewritten in the form

5 [ sequences with different values of critical exponents at the
k) == f o(u)cod2kpm)du, (18)  mobility edge. These examples demonstrate the existence
™ Jo of mobility edges for 1D site potentials with long-range
this relation gives a solution of the “inverse problem,” correlations.
namely, it shows how to calculate the correlation function Another way to obtain explicitly the sequeneg with
&(k) of the random potential if the normalized Lyapunov a mobility edge is to use weakly chaotic nonlinear maps.

exponentAO(E) = %go[arCCOsE/z)] is known. In other Let us take the well-knowstandard maﬁ22],
words, for any dependencd, there exists a set of P, = P, + Ksin27X, (modl),
sequences, with correlation functions (k). (20)
To reconstruct the sequence via the correlation func- Xnt1 = Xn + Pyt (modl).
tion, we have used the following algorithm [21]: For K < 1 there are trajectories close to separatrices of
= nonlinear resonance, with a very slow decay of corre-
€ =A > EK)Zusr, (19) lations. For one of such trajectories (see the inset of
= Fig. 2) we have constructed the sequemgeas follows,
where A is the normalization constant aril, are ran- ¢, = 2¢,sin27X,), and calculated the Lyapunov expo-
dom numbers from the intervaD, 1]. As an example, nent Ay(E) = 8A sinz/,b/eé from Eq. (5). The depen-
we consider two sequences which exhibit the mobil-  dence given in Fig. 2 foe, = 0.1 clearly indicates the
ity edges at£ = *1. The first one was obtained from presence of two mobility edges. It is important that the
Eq. (19) by substituting (k) = ﬁ sin(@) andA = 1.  mobility edges are stable with respect to rather wide varia-
This corresponds to the step-function dependence of thions of y. Independent computation of eigenenergies of
Lyapunov exponentAy = 0 for |[E| < 1andAy = 1for  Eq. (1) with the corresponding potentig] demonstrates
1 < |E| < 2. The circles in Fig. 1 show the dependencethat the energy region shown in Fig. 2, indeed, belongs to
Ao(E) calculated numerically for the reconstructed se-the energy spectrum.
quencee, using Eq. (5). The step function is reproduced It is interesting to note that inside a narrow chaotic
quite well and oscillations af£| > 1 are mainly due to region like that shown in the inset of Fig. 2, the time
the finite length of the sequenc¥, = 10°. dependence of trajectoryX{, P,) is given by regular
Another sequence, was generated in order to get rotation around the resonance of period 3 with the fol-
a smooth increase\o(E) for |E| = 1; see squares in lowing chaotic motion in the vicinities of the crossed
Fig. 1. To do this, we used the correlatafék) which  separatrices. This type of motion can be compared to the
are the Fourier components (18) of the linear functionso-called intermittency [23] which is well studied in 1D
Ao(E) = 1.53(|E|] — 1) for |E|] = 1. As one can see, maps. Therefore, one can expect that there is a direct link
actual dependencé(E) in Fig. 1 for E > 1 clearly between the correlations in the site potential and the inter-
differs from the linear one. This results from the fact mittency in the evolution of the corresponding dynamical
that in a general case the algorithm (19) reconstructs thmodel which generates this potential (see also [24]).
sequences, with correlationsé(k) only asymptotically, In conclusion, we have shown the existence of the mo-
for k > 1 [21]. Nevertheless, it allows us to generatebility edge in 1D random potentials. The relation (12)
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