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Skyrmions in Disordered Heterostructures
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We have investigated the effect of weak disorder on the ground state of a two-dimensional electron
gas in the quantum Hall regime at filling factors slightly deviating from unity. The Skyrmions
and anti-Skyrmions are found to be present even at filling faeter 1. They may be strongly
squeezed by the disorder. We have studied the effect of temperature on Skyrmion density and size.
[S0031-9007(98)08190-3]
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Recently it has been proved that the lowest energyith respect toa. In this Letter we neglect the slowly
charged excitations of a two-dimensional electron gaghanging logarithmic factor in the Zeeman energy and
(2DEG) in a quantum Hall regime at filling facter = 1 incorporate it tog.
are Skyrmions [1]. These excitations involve many elec- The disorder is brought into a 2DEG mainly by the
trons and can be adequately described in the frameworfonors situated in a layer several hundreds of angstroms
of a semiclassical- model as the topologically nontrivial away from the electron layer. We incorporate the effect
spin textures of an isotropic ferromagnet [2]. Owing toof disorder in a fourth term in the energy functional. For a
the incompressibility of the quantum Hall ground state theSkyrmion at positionry in a random donor potentidl (r)
topological charge of a Skyrmion is equal to its electricthis energy reads
charge [3]. _ 2

There is a convincing experimental evidence for these Eqis(ro) = [ d’rp(r = ro,a)V(r), (2)
collective excitations [4]. However, the experiments
show only qualitative agreement with the theory [5,6]. It
has been suggested [5,6] that the agreement will be bett

where p(r,a) = (a/r* + a*)?/7 is the charge density
of a Skyrmion with radiusz. The potentialV (r) is not

&Ereened by the electrons of the 2DEG, since at integer

if the effects of disorder are taken into account. DespitqiIIing factors the 2DEG is an insulator. We assume the
the importance of the topic, very few theoretical StUdieSGaussian distribution of (r) with a corrélator
[7,8] deal with Skyrmions in disordered heterostructures.

The weak disorder limit has received no attention. 2 Us

In this Letter we show that even a weak disorder gives vyl = ? (3)
rise to (anti-)Skyrmions even at filling facter= 1. In o ) .
the limit of a small Zeeman energy the Skyrmion radius igvhich is calculated by averaging over donor positions.
decreased by the disorder potential. We present the resulfé€ak disorder required/y < Eo. If we assume that
for the (anti-)Skyrmion density at filling factors deviating donor positions do not correlate, we come up with an
from unity. We have found an interesting temperaturednrealistically big estimate o/, = ¢*/ed, d being the

effect on Skyrmion density and radius. We attempted tcgistance between the 2DEG and the.donor plane. In real-
compare our results with experimental data of [6]. istic heterostructures the observed disorder is known to be

In the limit of smallg < 1, which stands for the ratio Much weaker, possibly due to correlations between donor

. " >
between the Zeeman and exchange energy, Skyrmions cRRSitions. Therefore, we assume that << e”/d, Eo. Uy
be described with an effective energy functional derivedt@n be extracted from the experimentally measured mobil-

in [1]. The energy of a single Skyrmion as a function of Ity &t zero magnetic field. _
its radiusa reads [1,9] At a very gqualitative level, our results are straightfor-

ward. At zero temperature it is energetically favorable
Eq = Eo + Ezeeman + Ecoulomb for a Skyrmion to exist in the potential wells which are
1 [7 ¢ gupBa® [ ry 372 €2 sufficiently deep (Fig. 1), so thdiss < Ep. Since the
2\ 72 zln 2 | + 64 sa’ disorder is weak, such wells are infrequent, so that the
B B . . .
Skyrmion density will be much smaller than the electron
(1) density. These deep wells are expected to be very steep,
whereE, is the Skyrmion gap energyp is the magnetic which compresses the Skyrmion to make it fit into the
length, ¢ is the electrong factor, andr, = Izg'/2. It  well (see Fig. 1). This agrees with the preliminary results
has been assumed that> Iz. Although the gap energy of computer simulations reported in [8].
dominates the total energy, the radius is set by the two At temperatures of the order @f, the Skyrmions may
smaller terms depending en The equilibrium Skyrmion appear in the wells which are less deep (left side of
radius ap can be found by minimizing the total energy Fig. 1), which increases their density. Since the potential

a
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in equilibrium. Since we assume that Skyrmion density
is small, we can consider isolated Skyrmions. It means
that we disregard interactions between Skyrmions when
they are in different wells, but due to strong repulsive in-
teraction within the well there is onlpne Skyrmionn
V(r) each well. In this case a Skyrmion interacts only with the
disorder potential. This results in three conditions, two
for Skyrmion position:d, Eqis = d,Eqs = 0 and one for
Skyrmion radius:d,Eqs = —d.Es. The actual density

of Skyrmions is to be found by integratingy (E, a) over

all radii andE < Ey = E,.

FIG. 1. Skyrmions in disorder potential. Their size must be 10 Proceed we rewrite this integral as follows. To in-
small to fit into a deep well. corporate the equilibrium conditions we mentioned above,
we transformé functions in terms of the three equilibrium
conditions. The Jacobian of this transformation enters the

minima become less steep, the Skyrmion radius becomd@tegral:|dag(Esc + Eqis)l, with ., 8 = {x,y,a}. Then
bigger. The same consideration is valid also for antiWe average Eq. (4) at= 0 over all possible/, configu-
Skyrmions which are situated in the maxima of therations. We have to take into account that Skyrmions are

random potential. situated in minima, so that all eigenvalues of the Jacobian

Let us make these simple ideas quantitative. T@'e positive. We expresEg in terms of Fourier com-
calculate the Skyrmion density at filling facter= 1 and ~ PONentsE;s(0) = >, Eqis(q), With Eqis(q) = V,4p, and

zero temperature, we consider the following integral: ~ P¢ = aqKi(aq) [1,2]. By adding extra variables we can
rewrite all 6 and @ functions in the form of exponents.

ny (E,a) = fdzr Z S — r,)6(a — ap) Then integration over the random potential appears to be

m Gaussian and can be performed. In the course of averag-

B ) ing the terms like>_, p7(V7) will appear. Formally they

X 8[Eqis(r,a) — E] / / d’r. (4 diverge atg — 0. To deal with this divergence we have
where ny (E, a) is the density of Skyrmions having po- to recall that the interaction between Skyrmions is a long
tential Edis — E with radiusa per interval of energy and 'ange one so that it bgcomes effectively important at Igrge
radius (which we can call Skyrmiatensity of statdsand distances and Skyrmions screen out components of disor-
{r,.an} is a set of Skyrmion positions and radii for a der po_ten'ual having < /nsk, inverse distance between
certain V(r) configuration. Thesér,,,a,} are not arbi- SKYrmions. So we cut off integration gt= ,/n.

trary but determined from the fact that the Skyrmions ?redeﬁ‘;t_?r gti?;‘t"giso?eg‘(’jesr extra variables the expression for
8%

21571043 4 E  9.Eq 9 Esk EY
«(E,a) = —— =+ “—(a - 1) + 2Ex@a - 3) || —=(3 - 6a) + =
nsx(E.a) V3(da — 3)7/2Ug< 3 a2 a (4a ) aFex (4a ) a ( @) a?
L2 2.2
2E? — Ed Egqa + (3,E
X expl —247 3 ke 0sEy)a’e : (5)
U0(4a - 3)
where o2 |
a = ZWZ —;’ = —In(a/ns ). (6)  whereqy is the Skyrmion radius in the absence of arandom
q 4 potential field.

Here we take into account that the sum in Eq. (6) di- Now we can proceed with calculation of the total
verges and must be cut off at= /n;.. We assume that density. We expand the exponent aroune: amax and

any < 1. So thate depends on Skyrmion concentra- £ = —Esx. We restrict ourselves to ghe more interesting
tion and Egs. (5) and (6) form together a self-consistencyimit of small Zeeman energygwl/372 < 1. In this
problem. limit we encounter again two different limits depending

Now we evaluate the radiugs which minimizes the on the strength of the Zeeman energy. The point is
exponent of Eg. (5). We substitute the Skyrmion energythat the prefactor, which is in fact the determinant
of Eqg. (1) in the exponent of Eq. (5). It appears that therddag(Es + Eqis)l, vanishes ati = aop, in the first order
are two limits corresponding to the strength of the Zeemampproximation. In both cases the exponent is the same,
energy ng o« exp2wEd/a). This is sufficient to solve the self-

3w 13y ~1/3Eo consistencEy problem. The leading approximatiortis
(27§) lp =ao, &g >1, - £ . . o

lopt = | 3o S (7) @ = 7 g, the next order approximation is necessary
i alp <K ao, g1/372 <1, to evaluate the prefactor. Finally we obtain for the density
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U, E 5 E U
e — {71(5_2)9/4% exp(—2/7 7). g8« (Lyns, o
0 =

~E U, E ~ E U
VRE G e exp =27 £, B g > (B,

wheren, is theelectrondensity in the 2DEGy; = 9 X |
1074, andy, = 6 X 103 are numerical factors. Here we
have taken into account that the number of Skyrmion 512 A 5f
at v = 1 is equal to the number of anti-Skyrmions, andz sk } = |—= + 0 *—=. (9
those two equally contribute tay. ask 4 5f2 ++Jof* + 1608 2

Therefore we find three regimes in dependence of the
relative strength of the Zeeman energy with respect to These densities are plotted in Fig. 2, together with the
disorder. The most probable Skyrmion radius is equatatio of the total number of spin flipg, + n. and the
to its disorderless value agl/3f,—i > | and toae, =  number of spin flips a6 f = 0. The latter quantity can be
9%2 ZETUIB < ap in the opposite limit. Atg1/3% ~ O]Pserveq eXperimentally since it determines the rounding
Uo\1 /3 0 o of the spin pol_anzanon peak [4]. N _
(%)"/° the prefactor changes. Let us stress that in both |et us consider the effect of a finite temperature. Still
cases: > Ig andg < 1 so that the conditions of valid- e have to assume that the Skyrmion density is much
ity of Eg. (1) are satisfied. smaller than the electron density, thatis< E,. Also

Let us evaluate Skyrmion densities at filling factorsthe temperature should be low enough for Coulomb inter-
slightly deviating from unity. In the absence of disor- action to make it impossible for two Skyrmions to occupy
der, Skyrmion and anti-Skyrmion densities are proporthe same potential well. Under these circumstances the
tional to the filling factor deviation (Fig. 2)nscask =  Skyrmions effectively behave as fermions, so we can make
+£5f0(=6f), wheresf = n.(v — 1). Thisisno longer yse of Fermi statistics [10]. To calculate the total den-
correct in the presence of disorder potential. We note thadjty at » = 0 we integrate the density of states of Eq. (5)
at unity filling factor the chemical potential lies precisely multiplied by the Fermi distribution functiomyy (E, a) X
in the middle of the gap between Skyrmion and anti-¢(g — E,) (see Figs. 3a and 3b). If we expand the ex-

Skyrmion states. If the filling factor deviates from unity, ponent inny (E) near E = Ey yielding a term linear
we have to recalculate the densities for a shifted chemim £ — £, we see that the integral converges only at

cal potentialu. Fortunately, this is simple. The den- 7 < 7. 7, = Uo/4JT.

sity of states exhibits exponential dependence on energy, of course, it does not mean that the density actually
ng(E) = exp—E/Q), Q = 2aUj/Eo. This is why the diverges at7’ = 7,. Rather, it indicates an exponential
Skyrmion density is changed by a factor exp/Q), temperature dependence of the densityrat T.. To
whereas the anti-Skyrmion one by €xp/(}). Attention  reveal this one, we go back to the expression (5) and
should be paid to the fact that the change of the chemiconsider the most important term in the exponent which
cal potential also affects. We note that the total charge js quadratic in energy. This term competes with the
per unit area must correspond to the filling factor, that isexponent of the Fermi distribution tail. The minimum
nsk — nask = 6f. This allows us to expresg interms  is achieved atE = Enn, = aT2T. Solving the self-

of 5 f and obtain for the densities consistency problem gives(T) = Eo/(2T + 2T2/T).
0
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FIG. 3. Temperature dependence of the Skyrmion density.
Solid line presents our theoretical results; the squares and
FIG. 2. Skyrmion densities versus filling factor. crosses present the fitted data of Ref. [6].
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At the critical temperaturety,in = Eo, as it should be. vated is theimobility rather than concentration. It is no

The density a” > T, thus reads surprise since they have to overcome high potential barri-
T ers when moving between potential minima.
n(T) o« exp(—Eoﬁ> (10) We stress that we have considerednacroscopic
=+ 17 disorder assuming that the sample is homogeneous at

and exhibits a non-Arrenius behavior. The logarithm ofMacroscopicscale. Long range inhomogeneities of the
the density is plotted in Fig. 3 versus inverse temperaturdilling factor and disorder that might be present in a
The optimal size of a (anti-)Skyrmion can be extractegsample quld significantly complicate the interpretation
from the exponent (5). AT > T. and it grows with Of the experimental results.

temperature,a(T) = a(0)T/T., the latter is valid till In conclusion, we have developed the theory of
a(T) < ag. This is because the potential minima becomeSkyrm!ons in weakly disordered hete.rc.)structures. The
less steep at higher energies. Skyrm_lons appeared to be present at filling faoto_# L

With our method, we can also obtain the finite tempera—The dllsorder and temperature strongly affect their density
ture results forr # 1. and size. _

Our results can be checked with spin polarization mea- The authors are indebted to G.E.W. Bauer, H.T.C.
surements. Indeed, the finite density of (anti-)Skyrmions>t00f, and S.E. Korshunov for interesting discussions.
at » = 1 would manifest itself as a rounding of the spin This work is supported by the “Stichting voor Funda-
polarization peak. The reduction of their sizedue to ~Menteel Onderzoek der Materie” (FOM) and the “Ned-
disorder and its restoration @t > T. can be detected as €ffandse Organisatie voor Wetenschappelijk Onderzoek”
a change of Skyrmion spi a2. However, this check (NWO).
requires a very accurate measurement of the spin polar-
ization peak in the close vicinity of = 1 at different
temperatures, that has not yet been performed.

As to transport measurements, we attempted to comparé¢l] S.L. Sondhi, A. Karlhede, S.A. Kivelson, and E.H.
our results with experimental data of Ref. [6]. We Rezayi, Phys. Rev. B7, 16419 (1993).
assume the longitudinal resistivity to be proportional to [2] A-A. Belavin and A.M. Polyakov, JETP Let22, 503
the Skyrmion densityp,, ~ n(T) and the temperature (1975). ) ) .
dependence ofi(T) to be dominated by the exponent [3] A.H. MacDonald, in Quantum Transport in Semicon-

- . . ductor Heterostructuresedited by B. Kramer (Kluwer,
(20). In Fig. 3 the experimental data are fit to the Dordrecht, 1996), p. 110.

theoretical curve, with fit parameter§, = 15 K and 4] S.E. Barrett, G. Dabbagh, L. N. Pfeiffer, K. W. Wets, and

Eo = 12 K. AlthoughU, = E,, we expect our theory to R. Tysko, Phys. Rev. LetfZ4, 5112 (1995); E.H. Aifer,
be qualitatively true since the numerical factors provide B.B. Goldberg, and D. A. Broido, Phys. Rev. L&t6, 680
big exponents. Indeed, in this cage =2 K < E,. (1996).

From the given mobility we extradf, = 10 K . [5] A. Schmeller, J.P. Eisenstein, L.N. Pfeiffer, and K. W.

However, most of the transport measurements [5] ex- ~ West, Phys. Rev. Letf5, 4290 (1995). o
hibit no saturation ofp,, down to 1 K. Although this  [6] D.K. Maude, M. Potemski, J.C. Portal, M. Henini,
can be explained by better quality of the heterostructures L- Eaves, G. Hill, and M.A. Pate, Phys. Rev. Lett,
(Up < 3 K), we hesitate to make a point out of our fit. 7] ;1\684 élrgege?\)'Phys Rev. B7, RO373 (1998)

The point is that all transport measurements, whatever, e ' Pl D : :
interpreted, give an estimation @, which is an order [8] D. Lillienook, K. Lejnell, A. Karlhede, and S.L. Sondhi,

- . . Phys. Rev. B56, 6805 (1997).
of magnitude smaller than the theoretical value. POSSIb|y[9] Yu.)/V. Na\;arov and A_(V_ Krzaetskii Phys. Rev. Le80

this indicates that the assumptipr, ~ »(T) is no good. 576 (1998).

Our results explain how this may happen-. _Indeed, €Vemo] We stress that this is effective statistics that has nothing
at zero temperature and = 1 we have a finite concen- in common with the actual quantum mechanical statistics
tration of (anti-)Skyrmions. What may be thermally acti- of free Skyrmions. The latter is not relevant here.
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