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Reentrant Charge Order Transition in the Extended Hubbard Model
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We study the extended Hubbard model with both on-site and nearest neighbor Coulomb repulsioU
andV , respectively) in the dynamical mean field theory. At quarter filling, the model shows a transit
to a charge ordered phase with different sublattice occupanciesnA fi nB. The effective mass increases
drastically at the criticalV and a pseudogap opens in the single-particle spectral function for high
values ofV . The VcsTd curve has a negative slope for small temperatures, i.e., the charge orde
transition can be driven by increasing the temperature. This is due to the higher spin entropy o
charge ordered phase. [S0031-9007(99)09148-6]

PACS numbers: 71.10.Fd, 71.27.+a, 71.45.Lr
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The possibility of crystallization of electrons due to
their long-range Coulomb repulsion was first propose
by Wigner [1]. He considered an electron system
in a uniform positive background at sufficiently low
densities. The Wigner lattice is formed when th
gain in Coulomb energy due to the localization o
the electrons exceeds the gain in kinetic energy f
the homogeneous electron distribution. It is exper
mentally realized in the two dimensional electron ga
in a GaAsyAlGaAs heterostructure [2]. Because o
the reduced dimensionality, the effect of the Coulom
interaction is enhanced so that the transition to th
ordered state occurs at experimentally accessible elect
densities.

Crystallization of charge carriers (charge ordering) ca
also be observed in three dimensional systems, ev
at very high densities [3]. Here the kinetic energ
of the electrons or holes has to be reduced drastica
for the charge ordered state to become possible.
4f-electron systems it is the small hybridization of th
well localized 4f orbitals that leads to a reduced kinet
energy. An example is Yb4As3 where a first order charge
ordering transition occurs atTc ø 295 K [4,5]. The
carrier concentration in Yb4As3 (approximately one hole
per four Yb ions) is considerably larger than typical value
for a Wigner lattice. The kinetic energy of the electron
can also be reduced by the interaction with lattice and sp
degrees of freedom. An interplay of these mechanisms
responsible for the charge order transition occurring in
variety of rare earth manganites (e.g., in La12xCaxMnO3
for x $ 0.5 [6]).

In all examples mentioned so far, the charge o
dered phase is the ground state. However, a melting
the charge ordered state ondecreasingthe temperature
(i.e., a reentrant transition) has been found recently
Pr0.65sCa0.7Sr0.3d0.35MnO3 [7] and in LaSr2Mn2O7 [8].

In this Letter, we investigate the simplest model whic
allows for a charge ordering transition due to the compe
tion between kinetic and Coulomb energy. The extend
Hubbard model [9]
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describes fermions on a lattice with an on-site Coulom
repulsionU, a nearest neighbor Coulomb repulsionV , and
a hopping matrix elementt. Thec

y
is scisd denote creation

(annihilation) operators for a fermion at sitei with spins,
theni are defined asni ­ ni" 1 ni# wherenis ­ c

y
iscis,

and
P

kijl indicates the sum over nearest neighbors.
In the following we study the extended Hubbard mode

Eq. (1) within the dynamical mean field theory (DMFT)
[10,11], i.e., in the limit of infinite lattice coordination
numberz. In order to define a nontrivial limit asz ! `,
the parameterst and V are rescaled ast ! ty

p
z and

V ! 2Vyz. This leads to a drastic simplification of the
self-energy diagrams. The self-energy becomes local a
in particular, the nonlocal Coulomb term contributes onl
at the Hartree level, i.e., theV term simply acts as a shift
of the chemical potential [12]. Therefore, the Hamiltonia
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(
P0

j indicates the sum over the nearest neighbors ofi)
leads to the samez ! ` limit as Eq. (1) after rescalingt
andV .

As we are interested in charge ordered phases w
different occupancies on the two sublattices A and
of a bipartite lattice, we have to generalize the DMFT
equations to allow for solutions withnA fi nB. For
this, the model (2) is mapped self-consistently on tw
Anderson impurity models (one for sublattice A and on
for sublattice B). In the Bethe lattice case, where th
density of states is given byDsed ­

2
pW2

p
W2 2 e2

(we set W ­ 1 as the unit for the energy scale), the
© 1999 The American Physical Society
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self-consistency equations simplify to the form

eA
d 1 DAsivnd ­ 2VnB 2 m 1

W2

4
GBsivnd , (3)

eB
d 1 DBsivnd ­ 2VnA 2 m 1

W2

4
GAsivnd . (4)

[GAyBsivnd are the Green functions for the AyB sublat-
tice and DAyBsivnd are the hybridization functions be-
tween impurity and the effective conduction band;nAyB

denote the sublattice occupancies ande
AyB
d are the on-site

energies of the effective impurities].
The remaining problem is the iterative solution (i.e

the calculation of the Green functions) of an effectiv
single impurity Anderson model. We use three differen
methods, an exact diagonalization (ED) technique for
nite temperatures, the noncrossing approximation (NCA
and the numerical renormalization group (NRG) metho
The ED method diagonalizes an impurity model with
finite numberN of conduction band orbitals. Within the
self-consistency procedure we define the mapping of t
full Green functionsGAyBsivnd to the hybridization func-
tions DByAsivnd by expanding both sides of (3) and (4
in powers ofsivnd21 and match coefficients up to the or-
der of sivnd22N . This approximation is similar in spirit
to the projection method based on the continued fracti
representation used forT ­ 0 [11]. The NRG is applied
here for the first time to a particle-hole asymmetric prob
lem within the DMFT. The method is an extension o
earlier work on the (not extended) symmetric Hubbar
model [13]. Details of the NCA approach are summa
rized in [14].

Figure 1 shows thesT -V d-phase diagram forU ­ 2
and quarter filling. The results of the different method
agree remarkably well in their corresponding range
applicability. For high temperaturessT . 0.4d, the ED
results forN ­ 5 shown in Fig. 1 can already be obtaine
from an N ­ 3 calculation (within numerical accuracy).
The ED method cannot be used for very low temperatur
since only a small number of orbitals is taken int
account. The NCA is applicable down to much lowe
temperatures and we find that the slope of theVcsT d
curve changes its sign atT ø 0.1. The NCA encounters
problems in the very low temperature limit. Nevertheles
the extrapolation of theVcsT d curve to T ­ 0 agrees
well with the critical V obtained from the NRG method
VcsT ­ 0d ø 0.66.

The reentrant behavior in the interval0.47 , V ,

0.66 is due to the higher spin entropy of the charg
ordered state. As we have neglected the possibility of
additional magnetic ordering in the charge ordered sta
the contribution of the spin degrees of freedom to th
entropy is approximately ln(2) per occupied site. Th
entropy of the homogeneous phase, which is a Fer
liquid, grows linearly with T . On further increasing
the temperature, the increasing charge entropy of t
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FIG. 1. Phase diagram for the extended Hubbard model (U ­
2, quarter filling). The various symbols show the results f
the phase boundary between the homogeneous and the ch
ordered phase (CO) from ED (circles), NCA (squares), a
NRG calculations (diamond). The inset shows the ED res
for the V dependence of the lattice occupancies forU ­ 2 and
T ­ 0.2.

homogeneous phase dominates and the system show
usual melting behavior.

The inset of Fig. 1 shows the ED result for theV
dependence of the sublattice occupanciesnA and nB
sT ­ 0.2, U ­ 2d. The transition is clearly continuous
in contrast to the result forT ­ 0 where the NRG
gives a first order phase transition with a jump in th
order parameterdn ­ nA 2 nB from 0 to dn ø 0.7.
Unfortunately, it is not possible to clarify numerically
how the first order transition atT ­ 0 evolves from the
continuous transition at finiteT . There are numerical
indications thatdn increases more rapidly at the transitio
when T is reduced. However, the convergence of th
iterative procedure is extremely slow near the pha
boundary.

The NRG results for the A and B spectral function
for T ­ 0 are shown in Fig. 2. BelowV ­ Vc, the A
and B spectral functions are equal and independent oV
(the extended Hubbard model in the DMFT reduces
the ordinary Hubbard model as long as the homogene
phase is considered; the solution shown in Fig. 2 f
V ­ 0.65 is therefore also the solution for the Hubbar
model with V ­ 0). The discontinuous transition to a
finite dn at Vc is reflected in a redistribution of spectra
weight in the spectral functions aboveVc.

For V ­ 0.665 the system is still a Fermi liquid with
a strongly enhanced effective masssmpym ø 120d and a
very narrow quasiparticle resonance at the Fermi lev
The effective mass increases further on increasingV
and an extreme narrow quasiparticle resonance is s
present forV ­ 1.5 (the width of this resonance is below
the energy resolution used in Fig. 2 so that the pe
4047
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FIG. 2. NRG results for the A and B spectral function
rsvd (solid and dashed lines, respectively) forU ­ 2, T ­ 0,
and different values ofV . Below the criticalVc ø 0.66, the
spectral functions of both sublattices are equal.

is not visible). The quasiparticle resonance vanishes
the limit V ! `. Although the system is still a Fermi
liquid on an extremely small energy scale, a pseudog
in the A and B spectral functions gradually develop
at V ø 0.9. The spectral weight within the pseudoga
decreases approximately as1yV 2 for largeV .

The NCA result for the spectral function forU ­ 2,
T ­ 0.2, and various values ofV is shown in Fig. 3. The
very narrow quasiparticle peak seen atT ­ 0 is absent
because the temperature exceeds the low-energy s
associated with the Fermi liquid behavior. In contra
to the T ­ 0 case, the transition is continuous whic
is reflected in the continuous transfer of spectral weig
at the transition. A comparison of the NRG and NC
results forV ­ 0.9 andV ­ 1.5 shows a good agreemen
of the main features of the spectral functions. Howeve
the resolution of the high-energy features is limited
the NRG since the spectra are obtained by broadenin
discrete set ofd peaks.

In the homogeneous phase, the NCA spectral functi
shows the splitting in the upper and lower Hubbard ban
The weight of the upper Hubbard band in the B-spectr
function is considerably larger compared to the NR
result for T ­ 0. The weight decreases on increasin
V in the charge ordered phase because the occupa
of the B sites is suppressed. In addition, the bands
the spectral function narrow due to the reduced hoppi
of the electrons in the charge ordered phase. In t
limit of large V , perfect charge order evolves (nA ! 1
and nB ! 0). Therefore, in this limit the total spectra
function of the extended Hubbard model has a simp
three-peak structure with peaks atE1 ­ 2m, E2 ­ U 2

m, and E3 ­ 2V 2 m. The peak atE1 corresponds to
4048
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FIG. 3. NCA results for the A and B spectral functionsrsvd
(solid and dashed lines, respectively)U ­ 2, T ­ 0.2, and
different values ofV . For V $ 0.58 charge order sets in and a
pseudogap develops at the Fermi level.

the process of taking out one electron from an (sing
occupied) A site, the peak atE2 is due to the addition of
an electron to an A site, and the peak atE3 comes from
the addition of an electron to a B site.

It is tempting to explain the opening of the charg
order gap by the change of the unit cell alone, reflecti
the broken AB symmetry of the lattice. Although th
AB symmetry is, of course, broken at the charge ord
transition, our results for the spectral function cannot
understood within a one-particle picture. First of all, th
charge order gap visible in the spectral function is n
a real hard gap but only a pseudogap (i.e., an ene
regime of strongly reduced spectral weight) even at ze
temperature. From an experimental point of view th
difference is irrelevant. However, a pseudogap cann
be obtained by a simple band splitting due to a reduc
symmetry. To demonstrate the many-particle charac
of the bands, we have doped the extended Hubb
model away from quarter filling (see Fig. 4). Note tha
within our approach the charge ordered state on t
AyB sublattice exists also forn fi 1. A rapid weight
transfer between the high- and the low-energy scale
observed, which is a characteristic feature of strong
correlated electron systems. A well examined example
the usual half filled Hubbard model, where the weight
the lower Hubbard band decreases faster than the dop
x [15,16]. In the extended Hubbard model we find th
same behavior.

In conclusion, we have found that the charge ord
transition in the infinite dimensional extended Hubba
model shows a number of very interesting feature
For low temperatures, the system is a Fermi liquid f
both V , Vc and V . Vc. Nevertheless, the effective
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FIG. 4. NRG results for the A and B spectral functionsrsvd
(solid and dashed lines, respectively) forV ­ 1.0, T ­ 0,
U ­ 2, and different occupanciesn. A transfer of weight from
the lower Hubbard band (of both A and B spectral functions)
the Fermi level is clearly visible.

mass undergoes a rapid change at the transition. T
corresponding very narrow quasiparticle peak at the Fer
energy will hardly be seen in photoemission experimen
of charge ordered materials. However, the huge ma
enhancement at the transition has drastic consequence
the transport properties, e.g., on the resistivity. This
the case in Yb4As3, where the charge order transition i
accompanied by a jump in the resistivity.

In our model calculations, we find a real first orde
transition only forT ­ 0, although the transition remains
sharp also for smallT fi 0. The occurrence of a first
order transition atfinite temperatures in the above men
tioned examples indicates that lattice degrees of fre
dom are involved. Indeed, the charge order transition
Yb4As3 is accompanied by a structural phase transition

For a particular range of the nearest neighbor Coulom
repulsion V the extended Hubbard model show
reentrant behavior, i.e., a transition from the charg
ordered to the homogeneous phase withdecreasing
temperature. This behavior is experimentally seen
Pr0.65sCa0.7Sr0.3d0.35MnO3 [7] and in LaSr2Mn2O7 [8].
Moreover, the bandwidth in Pr0.65sCa12ySryd0.35MnO3
can be varied by doping with Sr or by applying
magnetic field. For sufficiently small kinetic energy o
the electrons only one charge order transition occu
Increasing the kinetic energy, a reentrant regime is fou
until for high dopings or magnetic fields the charge ord
is totally suppressed. Although the localization mech
nisms in the rare-earth manganites are more comp
to

he
mi
ts
ss
s on
is
s

r

-
e-
in

.
b

s
e

in

a
f
rs.
nd
er
a-
lex

than the one induced by a nearest neighbor Coulom
repulsion, we find the same behavior in our model as
function of VyW . We take this as an indication that the
occurrence of a reentrant charge order transition does n
depend on details of the localization mechanism.

Finally, in photoemission experiments of charge or
dered materials the many-particle character of the syste
should be seen in a weight transfer upon doping with ad
ditional charges.
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