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Reentrant Charge Order Transition in the Extended Hubbard Model
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We study the extended Hubbard model with both on-site and nearest neighbor Coulomb reulsion (
andV, respectively) in the dynamical mean field theory. At quarter filling, the model shows a transition
to a charge ordered phase with different sublattice occupangies ng. The effective mass increases
drastically at the criticaV and a pseudogap opens in the single-particle spectral function for higher
values ofV. The V. (T) curve has a negative slope for small temperatures, i.e., the charge ordering
transition can be driven by increasing the temperature. This is due to the higher spin entropy of the
charge ordered phase. [S0031-9007(99)09148-6]

PACS numbers: 71.10.Fd, 71.27.+a, 71.45.Lr

The possibility of crystallization of electrons due to H=1t Z (c,-t,cj[, + c;»r(,ci(,) - ,ch,-T,,cm
their long-range Coulomb repulsion was first proposed (ijyo io
by Wigner [1]. He considered an electron system ' .
in a uniform positive background at sufficiently low + UZ”’T"” £V minj (1)

densities. The Wigner lattice is formed when the i

gain in Coulomb energy due to the localization of describes fermions on a lattice with an on-site Coulomb
the electrons exceeds the gain in kinetic energy fofepulsionU, a nearest neighbor Coulomb repulsionand
the homogeneous electron distribution. It is experi-a hopping matrix element Thec;r(, (c;»-) denote creation
mentally realized in the two dimensional electron gas(annihilation) operators for a fermion at sitavith spin o,

in a GaAs’AIC_;aAS _hete_rostructure [2]. Because of they; are defined as; = n;; + n;; wheren;, = c;racim

the reduced dlmenS|OnaI|ty, the effect of the Coulombandz<ij> indicates the sum over nearest neighbors_
interaction is enhanced so that the transition to the |n the following we study the extended Hubbard model
ordered state occurs at experimentally accessible electrgry. (1) within the dynamical mean field theory (DMFT)
densities. [10,11], i.e., in the limit of infinite lattice coordination

Crystallization of charge carriers (charge ordering) camumberz. In order to define a nontrivial limit as — oo,
also be observed in three dimensional systems, evefie parameters and V are rescaled as — 7/./z and
at very high densities [3]. Here the kinetic energyy — 2v/;. This leads to a drastic simplification of the
of the electrons or holes has to be reduced draSticallge”-energy diagramsl The Se|f-energy becomes local and,
for the charge ordered state to become possible. Ifh particular, the nonlocal Coulomb term contributes only
4f-electron systems it is the small hybridization of the gt the Hartree level, i.e., the term simply acts as a shift
well localized 4f orbitals that leads to a reduced kinetiCOf the chemical potentia| [12] Therefore, the Hamiltonian
energy. An example is Yf/\s; where a first order charge
orde_rlng transition occurs af, = 295_ K [4,5]. The H = Z(V ZI<”1> B ,u)c;r(rcia
carrier concentration in YjAs; (approximately one hole — 7
per four Yb ions) is considerably larger than typical values " t f ot
for a Wigner lattice. The kinetic energy of the electrons +t Z (CigCjo T CjoCis) T UZCiTCiTCilCil
can also be reduced by the interaction with lattice and spin (ij)o i @)
degrees of freedom. An interplay of these mechanisms is
responsible for the charge order transition occurring in E(Z} indicates the sum over the nearest neighbors)of
variety of rare earth manganites (e.g., i LgCa,MnO;  leads to the same —  limit as Eq. (1) after rescaling
for x = 0.5 [6]). andV.

In all examples mentioned so far, the charge or- As we are interested in charge ordered phases with
dered phase is the ground state. However, a melting dfifferent occupancies on the two sublattices A and B
the charge ordered state aecreasingthe temperature of a bipartite lattice, we have to generalize the DMFT
(i.e., a reentrant transition) has been found recently irequations to allow for solutions wituy # ng. For
Pry.65(Cay7S1h3)0.35MNO;5 [7] and in LaSsMn, 07 [8]. this, the model (2) is mapped self-consistently on two

In this Letter, we investigate the simplest model whichAnderson impurity models (one for sublattice A and one
allows for a charge ordering transition due to the competifor sublattice B). In the Bethe lattice case, where the
tion between kinetic and Coulomb energy. The extendedensity of states is given by (e) = #\/W2 — €2
Hubbard model [9] (we setW =1 as the unit for the energy scale), the
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self-consistency equations simplify to the form 0.8
w? ‘
65 + Ap(iw,) = 2Vng — M+ TGB(ia)n), (3) F e

W2 : L
edB + Ag(iw,) = 2Vnp, — u + TGA(iw,z). 4

[Ga/s(iw,) are the Green functions for the/B sublat- - o4 2% O
tice andA,/g(iw,) are the hybridization functions be-
tween impurity and the effective conduction bamdg; s

denote the sublattice occupancies aﬁéB are the on-site
energies of the effective impurities].

The remaining problem is the iterative solution (i.e.,
the calculation of the Green functions) of an effective
single impurity Anderson model. We use three different 0
methods, an exact diagonalization (ED) technique for fi-
nite temperatures, the noncrossing approximation (NCA),
and the numerical renormalization group (NRG) methodF!G. 1. Phase diagram for the extended Hubbard mdde(

; ; ; : ; 2, quarter filling). The various symbols show the results for
'I_'h_e ED method dlagonall_zes an Impu_rlty mOd.el.Wlth Athe phase boundary between the homogeneous and the charge
finite numberN of conduction band orbitals. Within the gered phase (CO) from ED (circles), NCA (squares), and

self-consistency procedure we define the mapping of theiRG calculations (diamond). The inset shows the ED result
full Green functionsG /s (iw,) to the hybridization func- for the V dependence of the lattice occupanciesfor= 2 and
tions Ap/a(iw,) by expanding both sides of (3) and (4) T = 0.2.
in powers of(iw,) ! and match coefficients up to the or-
der of (iw,) " ?N. This approximation is similar in spirit homogeneous phase dominates and the system shows the
to the projection method based on the continued fractiomisual melting behavior.
representation used f@ = 0 [11]. The NRG is applied The inset of Fig. 1 shows the ED result for thé
here for the first time to a particle-hole asymmetric prob-dependence of the sublattice occupancigs and ng
lem within the DMFT. The method is an extension of (T = 0.2, U = 2). The transition is clearly continuous,
earlier work on the (not extended) symmetric Hubbardin contrast to the result folf = 0 where the NRG
model [13]. Details of the NCA approach are summa-gives a first order phase transition with a jump in the
rized in [14]. order parametedn = ny — ng from 0 to én = 0.7.
Figure 1 shows thdT-V)-phase diagram fot/ = 2 Unfortunately, it is not possible to clarify numerically
and quarter filling. The results of the different methodshow the first order transition & = 0 evolves from the
agree remarkably well in their corresponding range ofcontinuous transition at finitd". There are numerical
applicability. For high temperaturgd” > 0.4), the ED indications thatn increases more rapidly at the transition
results forN = 5 shown in Fig. 1 can already be obtainedwhen T is reduced. However, the convergence of the
from an N = 3 calculation (within numerical accuracy). iterative procedure is extremely slow near the phase
The ED method cannot be used for very low temperatureboundary.
since only a small number of orbitals is taken into The NRG results for the A and B spectral functions
account. The NCA is applicable down to much lowerfor T = 0 are shown in Fig. 2. Below = V., the A
temperatures and we find that the slope of "i€7) and B spectral functions are equal and independent of
curve changes its sign @& =~ 0.1. The NCA encounters (the extended Hubbard model in the DMFT reduces to
problems in the very low temperature limit. Neverthelessthe ordinary Hubbard model as long as the homogeneous
the extrapolation of the/.(T) curve toT = 0 agrees phase is considered; the solution shown in Fig. 2 for
well with the critical V obtained from the NRG method V = 0.65 is therefore also the solution for the Hubbard
V(T = 0) = 0.66. model with V = 0). The discontinuous transition to a
The reentrant behavior in the intervald7 <V <  finite §n at V. is reflected in a redistribution of spectral
0.66 is due to the higher spin entropy of the chargeweight in the spectral functions above.
ordered state. As we have neglected the possibility of an For V = 0.665 the system is still a Fermi liquid with
additional magnetic ordering in the charge ordered statey strongly enhanced effective mags’/m =~ 120) and a
the contribution of the spin degrees of freedom to thevery narrow quasiparticle resonance at the Fermi level.
entropy is approximately In(2) per occupied site. TheThe effective mass increases further on increasihg
entropy of the homogeneous phase, which is a Fermand an extreme narrow quasiparticle resonance is still
liquid, grows linearly withT. On further increasing presentforV = 1.5 (the width of this resonance is below
the temperature, the increasing charge entropy of théhe energy resolution used in Fig. 2 so that the peak
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FIG. 2. NRG results for the A and B spectral functions FIG. 3. NCA results for the A and B spectral functiopéw)
p(w) (solid and dashed lines, respectively) for= 2, T = 0, (solid and dashed lines, respectively) =2, T = 0.2, and
and different values o¥. Below the criticalV, = 0.66, the  different values ofV. ForV = 0.58 charge order sets in and a
spectral functions of both sublattices are equal. pseudogap develops at the Fermi level.

is not visible). The quasiparticle resonance vanishes ithe process of taking out one electron from an (singly
the limit V — o, Although the system is still a Fermi occupied) A site, the peak &, is due to the addition of
liquid on an extremely small energy scale, a pseudogapn electron to an A site, and the peakEatcomes from
in the A and B spectral functions gradually developsthe addition of an electron to a B site.
atV = 0.9. The spectral weight within the pseudogap It is tempting to explain the opening of the charge
decreases approximately 85V? for largeV. order gap by the change of the unit cell alone, reflecting
The NCA result for the spectral function fa&f = 2,  the broken AB symmetry of the lattice. Although the
T = 0.2, and various values df is shown in Fig. 3. The AB symmetry is, of course, broken at the charge order
very narrow quasiparticle peak seen7at= 0 is absent transition, our results for the spectral function cannot be
because the temperature exceeds the low-energy scaladerstood within a one-particle picture. First of all, the
associated with the Fermi liquid behavior. In contrastcharge order gap visible in the spectral function is not
to the T = 0 case, the transition is continuous which a real hard gap but only a pseudogap (i.e., an energy
is reflected in the continuous transfer of spectral weightegime of strongly reduced spectral weight) even at zero
at the transition. A comparison of the NRG and NCAtemperature. From an experimental point of view this
results forV = 0.9 andV = 1.5 shows a good agreement difference is irrelevant. However, a pseudogap cannot
of the main features of the spectral functions. Howeverbe obtained by a simple band splitting due to a reduced
the resolution of the high-energy features is limited insymmetry. To demonstrate the many-particle character
the NRG since the spectra are obtained by broadening @ the bands, we have doped the extended Hubbard
discrete set 0b peaks. model away from quarter filling (see Fig. 4). Note that
In the homogeneous phase, the NCA spectral functiomwithin our approach the charge ordered state on the
shows the splitting in the upper and lower Hubbard bandA/B sublattice exists also for # 1. A rapid weight
The weight of the upper Hubbard band in the B-spectratransfer between the high- and the low-energy scale is
function is considerably larger compared to the NRGobserved, which is a characteristic feature of strongly
result for T = 0. The weight decreases on increasingcorrelated electron systems. A well examined example is
V in the charge ordered phase because the occupantye usual half filled Hubbard model, where the weight of
of the B sites is suppressed. In addition, the bands ithe lower Hubbard band decreases faster than the doping
the spectral function narrow due to the reduced hopping [15,16]. In the extended Hubbard model we find the
of the electrons in the charge ordered phase. In theame behavior.
limit of large V, perfect charge order evolves— 1 In conclusion, we have found that the charge order
andng — 0). Therefore, in this limit the total spectral transition in the infinite dimensional extended Hubbard
function of the extended Hubbard model has a simplenodel shows a number of very interesting features.
three-peak structure with peaksit = —u, E, = U —  For low temperatures, the system is a Fermi liquid for
m, and E; = 2V — u. The peak atE; corresponds to both V < V. andV > V.. Nevertheless, the effective
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than the one induced by a nearest neighbor Coulomb
repulsion, we find the same behavior in our model as a
function of V/W. We take this as an indication that the
occurrence of a reentrant charge order transition does not
depend on details of the localization mechanism.

Finally, in photoemission experiments of charge or-
dered materials the many-particle character of the system
should be seen in a weight transfer upon doping with ad-
ditional charges.

The authors would like to thank P. van Dongen and
P. Thalmeier for helpful discussions.

*Present address: Theoretische Physik 1llI, Elektronische
Korrelationen und Magnetismus, Universitat Augsburg,
D-86135 Augsburg, Germany.

FIG. 4. NRG results for the A and B spectral functigng») ~ [1] E. Wigner, Trans. Faraday Sag4, 678 (1938).
(solid and dashed lines, respectively) for= 1.0, T =0, [2] E.Y. Andrei, G. Deville, D.C. Glattli, F.I.B. Williams,

U = 2, and different occupancies A transfer of weight from E. Paris, and B. Etienne, Phys. Rev. Létd, 2765 (1988);
the lower Hubbard band (of both A and B spectral functions) to I. V. Kukushkin, N.J. Pulsford, K. v. Klitzing, R. J. Haug,
the Fermi level is clearly visible. K. Ploog, and V.B. Timofeev, Europhys. Lef3, 211

mass undergoes a rapid change at the transition. Th%] élggjﬁe Ann. Phys. (Leipzicg, 178 (1997)

corresponding very narrow quasiparticle peak at the Ferm|[4] A. Ochiai, T. Suzuki, and T. Kasuya, J. Phys. Soc. &

energy will hardly be seen in photoemission experiments” ~ 44,9 (1990); M. Kohgi, K. Iwasa, A. Ochiai, T. Suzuki
of charge ordered materials. However, the huge mass j_u. Migno’t, B. Gilloln, A Gu’kasov, 3. ,Schweizer’,

enhancement at the transition has drastic consequences on K. Kakurai, M. Nishi, A. Dénni, and T. Osakabe,
the transport properties, e.g., on the resistivity. This is  Physica (Amsterdan)30B—-232B 638 (1997); M. Rams,

the case in YAs;, where the charge order transition is K. Kélas, K. Tomala, A. Ochiai, and T. Suzuki, Hyperfine
accompanied by a jump in the resistivity. Interact.97—-98 125 (1996).

In our model calculations, we find a real first order [5] P. Fulde, B. Schmidt, and P. Thalmeier, Europhys. Lett.
transition only forT = 0, although the transition remains 31, 323 (1995).

6] C.H. Chen and S.-W. Cheong, Phys. Rev. L&8, 4042

sharp also for small" # 0. The occurrence of a first .
(1996); S. Mori, C.H. Chen, and S.-W. Cheong, Nature

B e e o e - London)32 73 (133 |
. ... . [7] Y. Tomioka, A. Asamitsu, H. Kuwahara, and Y. Tokurai,

dom are involved. Indeed, the charge order transition in™ " 5 Phys. Soc. Jpi66, 302 (1997).
YbyAs; is accompanied by a structural phase transition. g} T. Kimura, R. Kumai, Y. Tokura, J.Q. Li, and Y. Matsui,

For a particular range of the nearest neighbor Coulomb™ ~ phys. Rev. B58, 11081 (1998).
repulsion V. the extended Hubbard model shows [9] R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev.
reentrant behavior, i.e., a transition from the charge  Mod. Phys.62, 113 (1990); K. Penc and F. Mila, Phys.
ordered to the homogeneous phase withcreasing Rev. B 49, 9670 (1994); P.G.J. van Dongen, Phys. Rev.
temperature. This behavior is experimentally seen in  Lett. 74,182 (1995).
Ply.6s(Cay7SM3)0.3sMnO; [7] and in LaSgMn,O; [8]. [10] W. Metzner and D. Vollhardt, Phys. Rev. Le@2, 324
Moreover, the bandwidth in B§s(Ca -,Sr,)o35MNnO; (1989). _
can be varied by doping with Sr or by applying a[ll] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
magnetic field. For sufficiently small kinetic energy of Rev. Mod. Phys68, 13 (1996).

) » 12] E. Mdller-Hartmann, Z. Phys. B4, 507 (1989).

the eleptrons o_nIy one charge order transition occur 13] R. Bulla, A.C. Hewson, and Th. Pruschke, J. Phys.
Increasing the kinetic energy, a reentrant regime is found ~ condens. Mattel0, 8365 (1998).
until for high dopings or magnetic fields the charge ordefi4] s. Blawid, Phys. Rev. B9, 4777 (1999).
is totally suppressed. Although the localization mecha{15] A. Harris and R. Lange, Phys. Rel57, 295 (1967).
nisms in the rare-earth manganites are more complei6] H. Eskes and A. OlePhys. Rev. Lett73, 1279 (1994).

4049



