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Simulation of Hard Particles in a Phase-Separating Binary Mixture
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We simulate the motion of spherical particles in a phase-separating binary mixture. By combining
cell dynamical equations with Langevin dynamics for particles, we show that the addition of hard
particles significantly changes both the speed and the morphology of the phase separation. At the late
stage of the spinodal decomposition process, particles significantly slow down the domain growth, in
qualitative agreement with earlier experimental data. [S0031-9007(99)09130-9]

PACS numbers: 64.75.+¢g, 64.60.Ak, 66.30.Jt

Phase separation plays a significant role in determining We consider a phase-separating symmetric binaBy
the morphology and properties of polymer compositesmixture that is characterized by the scalar order parameter
which typically involve a blend of various macromolecu- ¥. The phase separation dynamics are described by the
lar fluids and solid “filler” particles [1]. Despite the Cahn-Hilliard equation
utility of these composites, there is little understanding v ST
of the kinetic processes (including phase separation and — =TV>— + ¢, Q)
wetting) that occur in the complex mixtures. While phase ot oW
separation in binary systems has been studied extensivelyherel is a kinetic coefficient¢ is a conserved zero mean
theoretically and experimentally [2,3], the influence of Gaussian white noise with covarian¢&r, 1)é(r’, ) =
solid additives on the mixtures is still poorly understood.—G,V?8(r — r/)8(r — /), andF is a free energy usually
Recent studies have shed light on the interactions betweegjiven by the Ginzburg-Landau functional
a phase-separating fluid and a stationary wall [4], sphere c
[5], or substrate [6,7], but much less is known about the F = f dr{—r g2 Hagpd = (qu)z}, (2)
kinetics of mixtures that contain mobile particles. To 2 4 2

address this problem, Tanalet al.[8] examined the |ntg this system, we introduce spherical particles of radius
properties of a polymeric mixture undergoing a critical g, that undergo Brownian motion. The particle dynamics

quench in the presence of small glass particles, which argre described by the following Langevin equation:
preferentially wet by one of the components. Their results

revealed that even a small concentration of hard particles R; = Mf; + i, (3)
significantly changes the morphology and dynamics of the
phase-separation process. However, no theoretical avhere M is the mobility, f; is the force acting on the
computational model was developed to characterize thes¢h particle due to all the other particles, amdrepre-
changes. sents Gaussian white noise withi. (r,7)n;s(r’, ) =

In this Letter, we report the first simulations of hard G,6(r — r)6(r — t/)6;;6.5. In this study, we neglect
mobile particles in a phase-separating binary mixtureinteractions between particles (i.&,= 0) and only take
Unlike earlier dynamical models of ternary systems (dedinto account the particles’ diffusive motion. We also dis-
veloped mostly for oil-water-surfactant mixtures [9—12]), regard osmotic effects (i.e., coupling between the particle
we explicitly take into account the “excluded volume” in- motion and the order parameter field).
teraction between the particles and the background fluid. The simulation is carried out in two dimensions; our lat-
Furthermore, we can vary the particle-fluid interactionstice is256 X 256 sites in size, with periodic boundary con-
allowing for a richer range of behavior than that of aditions in both thex andy directions. A cell dynamical
surfactant. Thus, the model presents a new means of egystems (CDS) method [13] is used in place of a direct for-
ploring the physical properties of complex mixtures con-ward integration of Eq. (1) to update the valuelofor the
taining colloidal particles. Here, we consider particlesphase-separatingB mixture. Note thatV = 1 (—1) cor-
that are preferentially wet by one of the two componentgesponds to the equilibrium order parameter forAhech
and show that the boundary and excluded volume condiB-rich) phase. By employing CDS modeling [rather than
tions at the particle surfaces significantly slow down thea conventional discretization of Eq. (1)], we can signifi-
domain growth and change the morphology at the lateantly increase the computational speed of the simulation.
stage of the phase separation. To simulate the particle dynamics, we discretize Eq. (3)
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and only allow the particles to move between different lat-
tice sites. A “Kawasaki exchange” mechanism is used for
each particle move: first, the order parameter values from
all the cells to be occupied by a patrticle in its “new” po-
sition are moved to the “old” position; next, the boundary
and excluded volume conditions are imposed for the order
parameter at the “new” particle position. This mechanism r
ensures the conservation of the order parameter. Such dy-
namics may break down for high particle mobilities, so we
considered only the case where the diffusion constant is
rather low (almost all particle “jumps” are to neighboring
sites). The discretized equations of motion have the fol-

GC—ON=25
G—F1N=50

lowing form: @
W(r,t + 1) = F[¥(r,1)] ! T t T 7
— (F[¥(r,0)] — V(r,0)) + &(r,1), . | | | | | |
F[¥(r,1)] = f(¥(r,1) + D[(V(r,1)) — ¥(r,1)], o ON25
(4) G—+HIN=50

f(¥) = Atanh(V),
Ri(t + 1) = Ri(t) + Mf; + ni(1),

where((*)) is the isotropic spatial average over the nearest-
neighbor and the next-nearest-neighbor sites,[&rd) — p
*] can be thought of as a discrete generalization of the
Laplacian.

At the surface of each particle, the lattice boundary
conditions (specified order-parameter value and zero
order-parameter flux) are imposed ¥r,s) = ¥, and

01

Slope 0.33

9,F(r,t) =0, if Rg < |r — Ri(#)| = Ry + a, wherea (b)
is the lattice spacing and, denotes the “lattice” normal Pr e ™ 0 10 107
derivative. Here, we se¥; = 1 so that the particles are <

“coated” by fluidA. Thed,F = 0 condition ensures zero g 1. Characteristic length as a function of time: (a) un-

flux of ¥ into the particles sincé plays the role of a scaledR vs #; (b) scaled coordinatep = Rn'/2/(1 + an)

chemical potential. vs 7= m*? where n = N/L* (data averaged over 3
The functionF in Eq. (4) has a local driving ternf ~ runs). Growth exponent =~ 1/3 in the early time range

and a term arising from the interaction with other sites;10 > < 7 < 10"

the mapf(¥) controls the local dynamics at each site.

It is critical that f has a single unstable fixed point and total interfacial “area.” Foe = 2 this becomes

two stable fixed points symmetrically located on each side 12

of the unstable fixed point. Its exact functional form R = N TN (5)

is not important for studying the universal properties of x ¥

the phase separation dynamics [13]. Here, we select thehere L is the system sizely, and N, are the numbers

map f(¥) = Atanh(V), with A < 1 above the critical of broken bonds (pairs of nearest neighbors with opposite

temperature, and > 1 below. signs of ¥ in thex andy directions, respectively). This
We perform simulations for systems containing 0, 25measure of a characteristic length empirically yields the

50, 100, 150, 300, and 400 particles of radius 1 (all lengthsorrect asymptotic behavior for both critical and off-

are given in units of the lattice spacing [14]. Each critical quenches in binary mixtures.

system was averaged over 3 runs of 20 000 time steps each.The simulations reveal that the presence of particles

For all systems, the following values of the parameterslows down the domain growth in the late stage. It can

were usedA = 1.3, D = 0.5, G; = 0, G, = 0.5. The be seen that for large particle numbéns > 100), R(r)

initial fluctuations of ¥ are Gaussian with a variance of undergoes a change from a Lifshitz-Slyozov [16] regime,

0.05. For all runs, the composition of the fluid is fixed atwith the growth exponent of /3, to a new regime. This

50:50 (representing a critical mixture). new, slow-growth behavior is also characterized by a new
The characteristic lengtR(¢) of the evolving domains morphology, different from the critical or slightly-off-

is plotted as a function of time in Fig. 1(a). F&(z) critical pattern of bicontinuous domains [17]. The change

we use the “broken bond” formula [15R ~ LY/ A(t),  in morphology can be seen by comparing order-parameter

where L is the volume of the system andl(¢) is the patterns and particle positions for the systéim= 300
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at timest = 300 [Fig. 2(a)] andr = 3000 [Fig. 2(b)]. a particle-free system. This growth continues until the
The slower domain growth and altered structure of thecharacteristic domain size becomes comparable to the
mixture are qualitatively similar to the observations ofaverage interparticle distange!/2. At that point, the wet-
Tanakaet al. [8]. ting phasgA) percolates to form a single infinite domain

In the early stage of phase separation, the formation dsee Fig. 2(b)], and droplets of the phase are trapped
interfaces occurs as in a normal critical mixture, as wouldnside this domain. Further coarsening Bfdomains is
be expected as long as the concentration of particles ishibited by the particles acting as obstacles to the motion
small, i.e., the interparticle distance is much larger than thef interfaces.
particle radius. During this time, the initial domain growth  To describe the dependence of the characteristic size on
satisfies the Lifshitz-Slyozov law, with the prefact®fz)  both time and the particle density, we use the following

smoothly depending on the particle density, scaling function:
R(t) = E(n)t'/3, (6) R(t) = n='2(1 + an)G(btn"'?), 7)
where n = N/L? is the particle density, and'(n) = where b =~ | is a “metrical factor,” G(x) behaves as

Eo(1 + an), with Eq = 0.4 being a growth prefactor in  G(x) = Gox'/? for small x (b'/3Gy = E;), andy = 3
(which is required to satisfy the transition to the Lifshitz-
Slyozov growth law fom — 0). There is clearly a slow-
ing of growth at large time, and it is reasonable to assume
G(x) ~ x? with a small powers (or even logarithmic
growth) for largex. A similar scaling form as Eq. (7) was
used by Gyureet al. [18] to describe the dependence of
the domain growth on the number of impurities in an Ising
model. We introduce the additional factbr+ an to ac-
count for the effective off-criticality induced by particles.
To illustrate this scaling behavior, we plot the characteris-
tic size in scaled coordinatgs = R(r)n'/2/(1 + an) vs

T = m*?. Fora = 13.1, it can be seen [Fig. 1(b)] that
all data fit reasonably well onto one master curve, with the

; ‘—1_(”1\ 3 " B Lo, LAY exception of theV = 400 case, where additional depen-
(=, ;;k-. ;{ if‘\f::al- 2 B j ) dence is presumably required.
- (.° 5 NP R o aNE The observed slowing down of the domain growth is

reminiscent of the interface pinning in Ising-type sys-
tems with quenched impurities [18—21]. In all those stud-
ies, impurities reduced local interfacial tension and thus
enforced late-time pinning, with domain growth slowing
down logarithmically,R < (Inz)7. A similar effect was
also seen in the “hybrid” model of Kawakatsti al. [12]

for a binary mixture with surfactant molecules. On the
other hand, our hard particles, which do not behave as
surfactants and prefer to be in the bulk) phase, act

as obstacles to the interface motion. When the charac-
teristic domain size becomes comparable to the interpar-
ticle distance, interface coarsening becomes hindered by
these obstacles, and the slowing down occurs. It is likely
that at the very late stage the domain growth would stop
completely (as indicated by the behavior of the= 400
curve), however, it is difficult to verify this hypothesis
computationally.

To elucidate the importance of wetting on the slowing
down, we performed a simulation with hard, mobile par-
ticles and no preferential adsorption, i.e., with the follow-
ing boundary conditions on the surface of the particles:
] N 9, ¥(r,t) =0,9,F(r,t) = 0. ForN = 300 particles and
FIG. 2. Order-parameter patterns and particle positions fon;10 wetting, we observed no deviation from the Lifshitz-

N = 300 particles atr = 300 (a) andt = 3000 (b). Black o : .
circles represent particles, dark grey regions are Akghase Slyozov growth law within the time scale of our simula-

domains, light grey regions are tephase domains, and white tions (20,000 time steps). This result indicates that the
points are interface€V =~ 0). slowing down is clearly enhanced by the strong wetting
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