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Simulation of Hard Particles in a Phase-Separating Binary Mixture
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We simulate the motion of spherical particles in a phase-separating binary mixture. By combin
cell dynamical equations with Langevin dynamics for particles, we show that the addition of h
particles significantly changes both the speed and the morphology of the phase separation. At th
stage of the spinodal decomposition process, particles significantly slow down the domain growth
qualitative agreement with earlier experimental data. [S0031-9007(99)09130-9]
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Phase separation plays a significant role in determini
the morphology and properties of polymer composite
which typically involve a blend of various macromolecu
lar fluids and solid “filler” particles [1]. Despite the
utility of these composites, there is little understandin
of the kinetic processes (including phase separation a
wetting) that occur in the complex mixtures. While phas
separation in binary systems has been studied extensiv
theoretically and experimentally [2,3], the influence o
solid additives on the mixtures is still poorly understoo
Recent studies have shed light on the interactions betw
a phase-separating fluid and a stationary wall [4], sphe
[5], or substrate [6,7], but much less is known about th
kinetics of mixtures that contain mobile particles. T
address this problem, Tanakaet al. [8] examined the
properties of a polymeric mixture undergoing a critica
quench in the presence of small glass particles, which
preferentially wet by one of the components. Their resu
revealed that even a small concentration of hard partic
significantly changes the morphology and dynamics of t
phase-separation process. However, no theoretical
computational model was developed to characterize th
changes.

In this Letter, we report the first simulations of har
mobile particles in a phase-separating binary mixtur
Unlike earlier dynamical models of ternary systems (d
veloped mostly for oil-water-surfactant mixtures [9–12]
we explicitly take into account the “excluded volume” in
teraction between the particles and the background flu
Furthermore, we can vary the particle-fluid interaction
allowing for a richer range of behavior than that of
surfactant. Thus, the model presents a new means of
ploring the physical properties of complex mixtures con
taining colloidal particles. Here, we consider particle
that are preferentially wet by one of the two componen
and show that the boundary and excluded volume con
tions at the particle surfaces significantly slow down th
domain growth and change the morphology at the la
stage of the phase separation.
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We consider a phase-separating symmetric binaryAB
mixture that is characterized by the scalar order param
C. The phase separation dynamics are described by
Cahn-Hilliard equation

≠C

≠t
­ G=2 dF

dC
1 j , (1)

whereG is a kinetic coefficient,j is a conserved zero mea
Gaussian white noise with covariancekjsr, tdjsr0, t0dl ­
2G1=2dsr 2 r0ddst 2 t0d, andF is a free energy usually
given by the Ginzburg-Landau functional

F ­
Z

dr
Ω
2

r
2

C2 1
u
4

C4 1
C
2

s=Cd2

æ
. (2)

Into this system, we introduce spherical particles of rad
R0 that undergo Brownian motion. The particle dynami
are described by the following Langevin equation:

ÙRi ­ Mfi 1 hi , (3)

where M is the mobility, fi is the force acting on the
ith particle due to all the other particles, andh repre-
sents Gaussian white noise withkhiasr, tdhjbsr0, t0dl ­
G2dsr 2 r0ddst 2 t0ddijdab. In this study, we neglect
interactions between particles (i.e.,fi ­ 0) and only take
into account the particles’ diffusive motion. We also di
regard osmotic effects (i.e., coupling between the part
motion and the order parameter field).

The simulation is carried out in two dimensions; our la
tice is256 3 256 sites in size, with periodic boundary con
ditions in both thex andy directions. A cell dynamical
systems (CDS) method [13] is used in place of a direct f
ward integration of Eq. (1) to update the value ofC for the
phase-separatingAB mixture. Note thatC ­ 1 s21d cor-
responds to the equilibrium order parameter for theA-rich
(B-rich) phase. By employing CDS modeling [rather th
a conventional discretization of Eq. (1)], we can signi
cantly increase the computational speed of the simulat
To simulate the particle dynamics, we discretize Eq.
© 1999 The American Physical Society
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and only allow the particles to move between different la
tice sites. A “Kawasaki exchange” mechanism is used f
each particle move: first, the order parameter values fro
all the cells to be occupied by a particle in its “new” po
sition are moved to the “old” position; next, the boundar
and excluded volume conditions are imposed for the ord
parameter at the “new” particle position. This mechanis
ensures the conservation of the order parameter. Such
namics may break down for high particle mobilities, so w
considered only the case where the diffusion constant
rather low (almost all particle “jumps” are to neighborin
sites). The discretized equations of motion have the f
lowing form:

Csr, t 1 1d ­ FfCsr, tdg
2 kkFfCsr, tdg 2 Csr, tdll 1 jsr, td ,

FfCsr, tdg ­ fsssCsr, tdddd 1 DfkkCsr, tdll 2 Csr, tdg ,

fsCd ­ A tanhsCd ,
(4)

Rist 1 1d ­ Ristd 1 Mfi 1 histd ,

wherekkpll is the isotropic spatial average over the neare
neighbor and the next-nearest-neighbor sites, andfkkpll 2

pg can be thought of as a discrete generalization of t
Laplacian.

At the surface of each particle, the lattice bounda
conditions (specified order-parameter value and ze
order-parameter flux) are imposed asCsr, td ­ Cs and
≠nFsr, td ­ 0, if R0 , jr 2 Ristdj # R0 1 a, wherea
is the lattice spacing and≠n denotes the “lattice” normal
derivative. Here, we setCs ­ 1 so that the particles are
“coated” by fluidA. The≠nF ­ 0 condition ensures zero
flux of C into the particles sinceF plays the role of a
chemical potential.

The functionF in Eq. (4) has a local driving termf
and a term arising from the interaction with other site
the mapfsCd controls the local dynamics at each site
It is critical that f has a single unstable fixed point an
two stable fixed points symmetrically located on each si
of the unstable fixed point. Its exact functional form
is not important for studying the universal properties o
the phase separation dynamics [13]. Here, we select
map fsCd ­ A tanhsCd, with A , 1 above the critical
temperature, andA . 1 below.

We perform simulations for systems containing 0, 2
50, 100, 150, 300, and 400 particles of radius 1 (all lengt
are given in units of the lattice spacinga) [14]. Each
system was averaged over 3 runs of 20 000 time steps e
For all systems, the following values of the paramete
were used:A ­ 1.3, D ­ 0.5, G1 ­ 0, G2 ­ 0.5. The
initial fluctuations ofC are Gaussian with a variance o
0.05. For all runs, the composition of the fluid is fixed a
50:50 (representing a critical mixture).

The characteristic lengthRstd of the evolving domains
is plotted as a function of time in Fig. 1(a). ForRstd
we use the “broken bond” formula [15],R , LdyAstd,
where Ld is the volume of the system andAstd is the
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FIG. 1. Characteristic length as a function of time: (a) u
scaled R vs t; (b) scaled coordinatesr ­ Rn1y2ys1 1 and
vs t ­ tn3y2, where n ­ NyL2 (data averaged over 3
runs). Growth exponentn ø 1y3 in the early time range
1022 , t , 100.

total interfacial “area.” Ford ­ 2 this becomes

R ­
L2

Nx 1 Ny
, (5)

whereL is the system size,Nx and Ny are the numbers
of broken bonds (pairs of nearest neighbors with oppos
signs ofC in the x andy directions, respectively). This
measure of a characteristic length empirically yields t
correct asymptotic behavior for both critical and of
critical quenches in binary mixtures.

The simulations reveal that the presence of partic
slows down the domain growth in the late stage. It c
be seen that for large particle numberssN . 100d, Rstd
undergoes a change from a Lifshitz-Slyozov [16] regim
with the growth exponent of1y3, to a new regime. This
new, slow-growth behavior is also characterized by a n
morphology, different from the critical or slightly-off-
critical pattern of bicontinuous domains [17]. The chang
in morphology can be seen by comparing order-parame
patterns and particle positions for the systemN ­ 300
4027
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at times t ­ 300 [Fig. 2(a)] and t ­ 3000 [Fig. 2(b)].
The slower domain growth and altered structure of th
mixture are qualitatively similar to the observations o
Tanakaet al. [8].

In the early stage of phase separation, the formation
interfaces occurs as in a normal critical mixture, as wou
be expected as long as the concentration of particles
small, i.e., the interparticle distance is much larger than t
particle radius. During this time, the initial domain growt
satisfies the Lifshitz-Slyozov law, with the prefactorEsnd
smoothly depending on the particle density,

Rstd ­ Esndt1y3, (6)

where n ­ NyL2 is the particle density, andEsnd ­
E0s1 1 and, with E0 ø 0.4 being a growth prefactor in

FIG. 2. Order-parameter patterns and particle positions
N ­ 300 particles att ­ 300 (a) and t ­ 3000 (b). Black
circles represent particles, dark grey regions are theA-phase
domains, light grey regions are theB-phase domains, and white
points are interfacessC ø 0d.
4028
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a particle-free system. This growth continues until th
characteristic domain size becomes comparable to
average interparticle distancen21y2. At that point, the wet-
ting phasesAd percolates to form a single infinite domai
[see Fig. 2(b)], and droplets of theB phase are trapped
inside this domain. Further coarsening ofB domains is
inhibited by the particles acting as obstacles to the mot
of interfaces.

To describe the dependence of the characteristic size
both time and the particle density, we use the followin
scaling function:

Rstd ­ n21y2s1 1 andGsbtngy2d , (7)

where b ø 1 is a “metrical factor,” Gsxd behaves as
Gsxd ø G0x1y3 for small x sb1y3G0 ­ E0d, and g ­ 3
(which is required to satisfy the transition to the Lifshitz
Slyozov growth law forn ! 0). There is clearly a slow-
ing of growth at large time, and it is reasonable to assu
Gsxd , xd with a small powerd (or even logarithmic
growth) for largex. A similar scaling form as Eq. (7) was
used by Gyureet al. [18] to describe the dependence o
the domain growth on the number of impurities in an Isin
model. We introduce the additional factor1 1 an to ac-
count for the effective off-criticality induced by particles
To illustrate this scaling behavior, we plot the character
tic size in scaled coordinatesr ­ Rstdn1y2ys1 1 and vs
t ­ tn3y2. For a ­ 13.1, it can be seen [Fig. 1(b)] that
all data fit reasonably well onto one master curve, with t
exception of theN ­ 400 case, where additionaln depen-
dence is presumably required.

The observed slowing down of the domain growth
reminiscent of the interface pinning in Ising-type sy
tems with quenched impurities [18–21]. In all those stu
ies, impurities reduced local interfacial tension and th
enforced late-time pinning, with domain growth slowin
down logarithmically,R ~ slntdh . A similar effect was
also seen in the “hybrid” model of Kawakatsuet al. [12]
for a binary mixture with surfactant molecules. On th
other hand, our hard particles, which do not behave
surfactants and prefer to be in the bulksAd phase, act
as obstacles to the interface motion. When the char
teristic domain size becomes comparable to the interp
ticle distance, interface coarsening becomes hindered
these obstacles, and the slowing down occurs. It is like
that at the very late stage the domain growth would st
completely (as indicated by the behavior of theN ­ 400
curve), however, it is difficult to verify this hypothesis
computationally.

To elucidate the importance of wetting on the slowin
down, we performed a simulation with hard, mobile pa
ticles and no preferential adsorption, i.e., with the follow
ing boundary conditions on the surface of the particle
≠nCsr, td ­ 0, ≠nFsr, td ­ 0. ForN ­ 300 particles and
no wetting, we observed no deviation from the Lifshitz
Slyozov growth law within the time scale of our simula
tions (20,000 time steps). This result indicates that t
slowing down is clearly enhanced by the strong wettin
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and not merely by the effects of excluded volume or pa
ticle mobility. Indeed, nonwetting particles neither pin no
block interfaces, and thus have only minimal effect on th
dynamics of the late-stage coarsening.

Although the simulations were performed for two
dimensional systems, we believe that the major featur
(the initial off-criticality and the late-stage slowing down
would be found in three dimensions as well. Indee
in 3D, the particles still would represent a network o
obstacles for the coarsening 2D interfaces. Howeve
verifying this prediction remains a major computationa
challenge, even though the proposed model can be ea
extended to three dimensions.

In the computations described here, we have not tak
into account hydrodynamic interactions or the dependen
of viscosity on the order parameter. We also have n
considered systematically the dependence of the grow
behavior on such factors as temperature (which manife
itself in the effective diffusion constantDeff), the cluster-
ing of particles that could lead to additional domain pin
ning (an effect observed by Tanakaet al. [8] at very high
particle densities), the dependence on the nature of the
terparticle potential, and other features. These phenome
will be the subjects of future studies.
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