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High Order Correlation Tensors in Turbulence
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High order correlation tensors for the spatial derivatives of the velocity field are studied with an
emphasis on angular dependencies and sensitivity of these correlations to the effect of intermittency.
In particular, it is found that the sum of longitudinal and transverse correlations of the deformation
rates is proportional to the intermittency deviation from the classical scale similarity of velocity field.
[S0031-9007(99)09207-8]

PACS numbers: 47.27.Eq, 02.50.Fz

The dynamics of turbulent motion is better understooddinal) component of the velocity increment. The inter-
in terms of characteristics of motion which are local inmittency deviation from the Kolmogorov’sg“law” [10]
physical space and have a mechanism of amplificatiois expressed in terms of the breakdown coefficients [11].
[1]. For three-dimensional (3D) turbulence the primary 4 (2/3) has been proved to be negative [11] and is known
local characteristics are the vorticity field and the deforto be small experimentally. Formula (1) is obtained for
mation rates [2—6]. The vorticity amplification is due to the three-dimensional locally homogeneous and isotropic
the effect of vortex stretching. For 2D turbulence theturbulence with the use of the incompressibility condition:
corresponding local characteristic is the vorticity gradient P
[6,7]. Apart from the general theory, the local character- — (ujug) = 0. 4)
istics of turbulence are also important in the modeling of o or; ) ]
the small-scale turbulence for the large-eddy simulations From the definition (2) the two-point correlation tensors
[8]. In this Letter we begin a systematic study of the highOf spatial derivatives of velocity can be expressed in the
order correlation tensors for spatial derivatives of the veform
locity field. Special attention will be paid to the angular M, 9" vy, _(=pmr o gmn
dep_enden_cies of such cqrrelations and to the sensitivity to 9xj, -+ 9xj, Ox] - 0x] o 2 arj, -7
the intermittency correction.

n

Let us start from the correlation of the velocity incre- X {ujug) (5)
ments in the inertial range (see, for example, [9]): For the corresponding spectral tensor we get the simple
formula
2+« a
2
Uy = Sik — — pi 1 s E(p) -
<lelk> <u,>< > ik B Pzpk) ( ) (_l)n(l)m+n p2 pi - 'p1,1(51k — pipkp 2), (6)
47 p
u = vl — v, pi = ri/r w, = uipi, (2) where E(p) is t_hle_ energy spectrum and in the inertial
rangeE(p) ~ p~'~“. The spatial structure of the tensor
2N o« _2_ 2 (5) is more complex and physically revealing, as we will
<ur> r, o 3 /1’(3) . (3) see beIOW

Here () indicates statistical averaging,; is the unit In this Letter we consider the fourth order tensor with

tensor,v; is the velocity field at poink, prime indicates m = n = 1. Substitution of (1) and (3) into (5), after
a field at pointx’ = x + r, andu, is a radial (longitu- | some algebra, gives

v; v,
<a —]f> = q(N[Q2 + a)dudji — 8udj — 80 — (4 — aP)dup;pi
Xj axl

+ 2 — a)(8ijprp1 + Supjpx + Sjpipi + Sjpipk + Supip))

— (@4 - )2 - a)pipjprpi], (1)
where | ( Y )
2 v B+a)2 -«
q(r) _ a4<;i2r> (8) <wka1> = 5 C](’”)
X (eijkpjp1 + &ijipjpr) - ()]

Using definitions of vorticityw; = &;x0vi/0x; (&ijk
is the unit antisymmetric tensor) and deformation rates This tensor is determined by only one scalar and its
D;; = %(av,-/axj + dv;/dx;), from (7) we get structure is universal. The dependence of the scalar is
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such that the intermittency correction is not significant. Awhere ¢ is the angle between direction of vorticity and

more general correlation tensor r. We see that this correlation is always positive (in
vl the inertial range) and the longitudinal correlatigh =

<a)i —,> = -3 + a)g(r)[em + 2 — a)eijkpjpi] 0) is 2/a = 3 times bigger than the transvers@h =
9x) (10) m/2). Thus, even on the level of second order vorticity

correlation, we see a tendency for formation of coherent
vortex filaments in 3D turbulent flows. We note that
analysis of the third order vortex correlations [5] leads
to the “vortex strings” scald, ~ L X Re /10 inside
. . - the inertial range I is the external scale; Re is the
. Let us consider correlation for one vorticity componentReyno|ds number). This scaling has now an experimental
(i =k=1): support [12,13].

(wiw)) = (3 + a)q(r)[a + 2 — a)cos ], (12) Now we turn to the deformation rates. Symmetrization

p1 = COPp, | of (7) gives
q(r)

p
(DijDyy) = T[Z(l + a)(8udj + 8jdu) — 40:j6u

has two scalars and its structure dependsrpbut again
the scalars are nat sensitive. A similar situation is for
the vorticity correlation tensor, as follows from (7):

(wiwp) = B + a)g(r)[ady + (2 — a)pipi]. (11)

+ Q2 - a) — a)Bupjpi + Sjxpip1 + Supjpx + 8jipipi)
+ 42 — @) (8ijprp1 + Supipj)) — 44 — a)(2 — a)pipjpipi]. (13)

Consider correlation for one component of deformatibrturbulence. Particularly, formula (16) presents a natural
Dy = dvy/ox;. Formula (13) [or (7)] gives way to measure the intermittency correction, which is the
_ I\ subject of controversy in the literature.
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— 4 - a)2 - a)cos e, (15) 0186.
where, as beforep; = cosp, ¢(r) depends ona im-
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