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Current Partition: A Nonequilibrium Green’s Function Approach
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We present a solution to the problem of ac current partition in a multiprobe mesoscopic conductor
within the nonequilibrium Green’s function formalism. This allows the derivation of dynamic conduc-
tance which is appropriate for nonequilibrium situations and which satisfies the current conservation
and gauge invariance requirements. This formalism presents a significant generalization to previous
theory: (i) There is no limit in the frequency, and (ii) it allows detailed treatments of interactions in
the mesoscopic region. The formalism is applied to calculate the dynamic conductance of tunneling
structures with and without assuming a wideband limit. [S0031-9007(98)08209-X]

PACS numbers: 73.23.Ad, 72.10.Bg, 73.40.Gk

The problem of electric current partition in a meso- Far from equilibrium, the Keldysh nonequilibrium
scopic multiprobe conductor is a fundamental issue ofsreen’s function [10-17] (NEGF) has been widely
quantum transport. In the familiar dc situation the issueapplied and many problems of great interest have been
is well understood from the Landauer-Buttiker formula-analyzed. However, within this formalism contribution
tion [1]. Under time varying ac conditions, this problem of displacement current has not been included. In other
becomes more complicated due to the presence of disvords the current conservation and gauge invariant
placement current which is induced by the ac fields aceondition have not been satisfied [18]. A direct conse-
cording to electrodynamics [2]. In this case, one needs tquence of neglecting displacement current is to predict
know how to partition the displacement current in addi-incomplete results for dynamic conductance, such as that
tion to the particle current for each probe of the conducfor a parallel plate capacitor. The fact of violating current
tor. Without this knowledge one cannot obtain correctconservation within the nonequilibrium theories has been
results of dynamic conductance: the electric current willrecognized in a number of publications [14,16,19]. The
not be conserved unless the displacement current is takgmoblem is not solved because of a lack of knowledge for
into account. There is another fundamental requirementartitioning the displacement current.
in the transport which is the gauge invariance of the Let us consider a quantum coherent multiprobe conduc-
theory. This simply means that the physics depends onljor with the Hamiltonian
on the voltage difference; thus shifting voltages every-
where by the same constant amount should not not alter

_ T t
o 1O} \ = +
the results. In the ac transport the gauge invariance will H =2 etaldciacta + Henldn, d}

. ; A ; k
not be satisfied without taking into account displacement ¢ ;
current. + D [Tranciadn + c.Cl, 1)
Quantum transport under dynamic conditions is the fo- ka,n

cus of a number of recent experiments [3—7]. Under low

frequency ac fields the system is near equilibrium, thavhere €, (1) = €0a + qVaCOswt. The first term is
problem of current partition can be analyzed using scattethe Hamiltonian of probes where the ac signal is ap-
ing matrix theory (SMT). Biittiker and co-workers have plied; the second term is the general Hamiltonian for
developed a theoretical formalism [8,9] based on SMT tdhe scattering region which is a polynomial {d,d,}
analyze linear ac transport and derived the dynamic corthat commutes with the electron number operator [18]
ductanceG,s(w). Here a subscript denotes a probe. ByN = 3, d/d,; the coupling between the probes and the
including the contribution of displacement current and itsscattering region is given by the last term with coupling
partition among the probes, the derived dynamic conducmatrix T, ». o (Cke) IS the creation (annihilation) op-
tance guarantees current conservation and gauge invagrator inside thex probe;d! (d,) is for the scattering
ance [8]. Obviously, displacement current should be everegion.

more important for higher frequencies and for situations The particle current(conduction current) inside probe
far from equilibrium. In this Letter we address the prob-« can be calculated using the equation of motion for the
lem of current partitiodfiar from equilibrium,and with this  number of carriers inside that probe. In terms of the
information we derive a dynamic conductance expressiosreen’s function and the self-energy, it can be written
which conserves electric current and satisfies the gauga the familiar form [12,14] in frequency representation
invariance under nonequilibrium conditions. (=1,
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- 35(E + 0,E|)G*(E\,E) — 2 (E + 0,E\)G~(E1,E)], (2)

where the Green’s function and self-energy are definedituation would be the wideband limit where the coupling
in the usual manner [12,14]. The double-time Fourierconstantsl’, are independent of energy. Hence, for an
transform is defined as amount of charg® in the scattering region, the probabil-
ity of leaking out through probe is simply I',/I" with
F(Ey, E2) = [ dn f dn, F(1,n)exdi(E\t; — Exn)]. T the total coupling between the probes to the scattering

We will be int ted in th i i region. This gives the displacement current partition for
e will be interested in the current component linearg ., prober? = (I',/T)I.

in voltage [20]; hence we simplify Eq. (2) by keep-
ing the first order in voltage. The dynamic conduc-
tance coefficientG,z(w) due to the particle current is
defined ag(w) = > 5 Goplw)Vg(w). Goglw) is just
the frequency dependent admittance matrix due to particl
current. Without introducing confusion, throughout the
following we shall use notatio with subscripts to de-
note conductance, while that without subscripts (unles
otherwise stated) to denote Green’s function.

In the presence of ac fields, the particle current aloné'
is not conserved due to charge accumulation in the 4 dE -
scattering regionQ(z), i.e., >, IS # 0. It is the total Gg = _qwf gTr[gﬁ(E + w,E)] (5)
current which is conserved [14},, IS(¢) + dQ(t)/dt =
0, where I = dQ/dt is the displacement current. In
Fourier space,

More generally, we shall use two fundamental require-
ments of the theory to patrtition the displacement current:
current conservation and gauge invariance. Since cur-
rent in probea is I, = ZB G.pVpg, current conserva-
flon means)_., G, = 0, while gauge invariance means
25 Gap = 0. We partition the total displacement cur-
rent/? into the contributions from individual probesin
the following form:1, = IS + AuI¢, 0r Gop = Gop +
Gf;, where

is obtained from Eq. (4). The partition coefficiems,
must satisfy> , A, = 1 to conserve the total current. To
determineA,, we apply the gauge invariance condition

S I5(0) = iw0(w), 3) and obtaind, = —(%, G¢,)/(X, GJ). This gives the
o following form for the dynamic conductance:
where 3. G
Gap = Gip — Gt = - (6)
dE aB ap B d
Q(w) = —Ziq[ gTr[gE(E + w,E)]Vg 4 Z?’ Gy
B Hence by calculating the Green’s functions and using

is the ac charge accumulation in the scattering regioiEgs. (2) and (5), we obtain the dynamic conductance
andg; is the small-signal component of the Green'swhich now satisfies the current conservation and gauge
function G= defined as} 5 gpVs =G~ — G, in the invariance conditions. We further point out that result (6)
linear regime [14]; herequ is for equilibrium. This is quite general: it is suitable for ac transport coefficient in
charge is related to the displacement fi#@dof the in- general terms ofv. It can also be applied to the strongly
ternal Coulomb potential via Poisson equation [9] (moreinteracting system such as the Anderson model in the
generally the potential satisfies Helmhotz equatidn). large U limit by including the contribution of displacement
D(r,w) = 47p(r,w) with Q = [ pdr. Hence the dis- current. For that model the Green’s functiagis andG”
placement current—i(w/47) [Ddr is just the time have been obtained by Ng in Ref. [11].
derivative of the pileup chargex, I¢ = dQ/dt. Thus Result (6) is in agreement with the formula derived
the total current in prober is 1/°" = I¢ + I4. Current using SMT, i.e., Eq. (16) of Ref.[8]. However, the
conservation means,, I’' = 0. quantities involved in Eq. (6) are calculated within NEGF
From Eg. (3), only the total displacement currentand we now derive these necessary quantities. In the
I“(w) = —iwQ(w) is known. We thus need to partition mean field approximation it is straightforward to obtain,
it into each probex. To give an example, the easie:tst from Egs. (2) and the expression Kf(w ),

dE P a S\ =r S < =a ~r = = a ~< —a —r
Ggﬁ(w) = _le ﬁTr[gE(an — 20q) T gBEO<0z - 20<ozgﬁ + (Go‘T; - §Go + G()<Ua - ‘TaGo<)5aB]’ (7)

where we have used the abbreviatigr= g(E) and g = g(E + ), etc. In the above equatior, and X <"

are the equilibrium Green's function and self-energy functior;"“ is the self-energy function due to the ac
field: 65 = (ig/w)[Tof — Tof] and 2% = (q/w)[20n — 2041, Where f is the equilibrium Fermi distribution
function (at timetr = —«) of the leads far away from the scattering region. We have assumed that there is no dc

~r,a _
0

bias at timer = —x. The lesser, retarded and advanced Green’s funcgors' are defined agl* = Go“ .Gy
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andgs = Gya Gi + Ghal,Gy + Gy a°G§. We em- 1
phasize that while equilibrium quantities such as the
Fermi function do appear in this formalism, they only
represent the “initial” condition: the system was in equi-
librium at + = —o. For ¢+ > —oo, the nonequilibrium
Green’s function approach describes the full nonequi-
librium dynamic process. With the above definitions
and quantities, the dynamic conductanGgz(w) can

be evaluated for a variety of systems near or far from
equilibrium.

The wideband limit—As a first example, it is useful
to derive an analytic expression of admittance in the 0
wideband limit. Let us consider the case of resonant £
tunneling through a quantum dot with a single energy

: o 1oFIG. 1. The real part ofG,(E, w) as a function ofE for
level Eo. In the wideband limit, the steady state Green S'[hree values ofw. Solid line: w = 0.01135; dotted line:

. P
function Gy is w = 0.1022; dashed linew = 0.193. Inset: the corresponding
. 1 imaginary part. The barriers’ strengthi, = 8.81, and the
Gy = m quantum well width is 100 A. Units ofG,, are 2e2/h, of
0 . energyk is eV. We have sek = 1.
At zero temperature and through some straightforward

algebra we obtain from Eqg. (6),
T.Tp T, }X Fig. 2 are due to photon assistant tunneling: the electron

Gap = 4[— 2 + T Oap (8)  can absorb a photon of appropriate energy and exit from the
) ) ) . tunnel structure at another resonance level. This picture is
whereX is the ac conductance of a noninteracting (with-onfirmed by the inset in Fig. 2 where the energy differ-
out Coulomb interaction) symmetrical system obtained inynce and the frequency difference between resonances are
Refs. [21,22]. The noninteracting result does not satisffong to be roughly linear functions of each other, with
current conservation and gauge invariance, while the forgome deviation from perfect linear behavior coming from
mula (8) does: this is due to the prefactordin Eq. (8).  yncertainties due to the width of the peaks. Such a linear
One can confirm, at the linear order of ac frequency, thahenavior has been observed in the experiment of Ref. [7].
the Wldeband result (8) agrees W|_th the scattering matrnpina”y' in Fig. 3 we plotG,; (E;, w) versusw for double
theory [9] if we assume a Breit-Wigner form of the scat-pariers with infinite height: For this case there is no dc
tering matrix. - _ _current which can flow through and the system becomes
Beyond wideband limit—As a main result of this 5 phargllel plate capacitor. Because of the displacement
work, we now present the dynamic conductance beyonﬁem, our formalism predicts a nonzet, (E;, w). We
the wideband limit. For this case the situation is quitengte that not only the imaginary part 6 is nonzero,

different and we can obtain results only numerically.qyen the real part is nonzero. The latter effect gives rise
From Eg. (6) and the expression @f; given above,

we also note that due to the energy dependence of
I', in general the dynamic conductance depends on the 0.5
Fermi function in more complicated fashion than simply
df/dE. In the following let us calculate the admittance
of a symmetric double-barrier resonant tunneling structure !
which consists of twos-function barriers with the same 03 i
strength V,. We solve Eq. (6) numerically using a
method developed by McLenna al. [23].

Figure 1 plotsG,z3(E, w) as a function of the electron 01
Fermi energE for three values ofv. Both real and imag-
inary parts ofG,; show three peaks due to resonance trans-
mission through the quantum well. For very smalle.g.,
o = 0.011 (solid line), the real part o7 (E, w) essen- -0.1 : :
tially coincides with the dc conductance (not shown); and
the imaginary part resembles the emittance obtained from
SMT [24]. Substantial deviations are observed from thes&!G. 2. G (Es, w) as a function ofw, with E; = 0.1533.
known limits whenw is larger. A finitew tends to smear Solid line: read part; dotted line: imaginary part. The peaks

. . are due to photon assisted tunneling. Inset: a roughly linear
out the resonance behavior of the real paGef. INFig. 2 ejationship between the photon energy and the resonance

we plotGay (Ey, @) versusw for Ey =~ 0.15 which is near  energy. Other system parameters and units are the same as
the first resonance energy of Fig. 1. The extra peaks ahose of Fig. 1.
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0.8 Note added—After the submission of our paper, we
became aware of a recent paper [27] which treats photon
assisted tunneling in the SMT formulation. In this paper,
the internal potential has been considered explicitly and
the gauge invariance is satisfied.
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