
VOLUME 82, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 17 MAY 1999

to a
d in

3972
Elastic Transfer: A Nondispersive Component in the Optical Potential,
and its Effect on the12C 1 24Mg Elastic Scattering
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It is emphasized that the coupling of the elastic channel to an elastic transfer channel leads
nondispersive polarization potential with a periodic energy dependence. Evidence of this is foun
the elastic scattering data of12C 1 24Mg at low energies. The finding hints at a significant12C 1 12C
clustering effect in the ground state of24Mg. [S0031-9007(99)09159-0]

PACS numbers: 24.10.Ht, 25.70.Bc, 27.30.+ t
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Clustering in many-fermion systems is a very intriguin
phenomenon. A well-known example of this is the pairin
effect in superconductors and in nuclei. Here bosonlik
entities become effective degrees of freedom in the ot
erwise Fermi environment. Heavier clusters, such asa

particles in nuclei, are also known to be important degre
of freedom. Usually, well-formed cluster states in nucle
are found above the ground state, such as the famous Ho
3 a resonance in12C and the quasilinear 6a chain in24Mg.
It is certainly very interesting to assess whether there is
hierarchy of clustering:a, 12C, etc. As is already well
known,24Mg contains an important component in severa
of its excited state wave functions, which corresponds
two 12C clusters. How much of the12C clustering is there
in the ground state of such a nucleus?

The purpose of this Letter is to supply evidence o
such a ground state clustering effect. We show this
providing an analysis of the elastic scattering angul
distributions at low bombarding energies of the system
12C 1 24Mg and 12C 1 28Si. The importance of the
elastic transfer, a manifestation of such clustering
clearly demonstrated for the former system. The bas
of our analysis is the nondispersive nature of the elas
transfer polarization potential, which we describe below

The dispersive optical potential usually referred to a
the Feshbach potential [1], obeys a dispersion relation.
the heavy ion context this relation has gained notorie
in recent years and is usually referred to as the thresh
anomaly. As eloquently explained by Satchler [2], th
dispersion relation of the Feshbach potential comes ab
as a consequence of the polarization nature in the se
that the potential has the general structure

VFsr, r 0d ­
nX

i­1

V0isrd krj
1

E 2 Hi 1 ie
jr 0lVi0sr 0d .

(1)

The intermediate channel Green operator,sE 2 Hi 1

ied21, has the simple structure

sE 2 Hi 1 ied21 ­ 2ipdsE 2 Hid 1 P
1

E 2 Hi
,

(2)
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whereP stands for the principal part andHi is taken for
simplicity to be Hermitian. Clearly, one can write

P
1

E 2 Hi
­ P

Z
dz

dsz 2 Hid
E 2 z

­ 2
P
p

Z
dz

2pdsz 2 Hid
E 2 z

. (3)

From Eqs. (1) and (3), one finds the dispersion relation

ReVFsr , r 0, Ed ­
P
p

Z
dz

ImVFsz, r , r 0d
z 2 E

, (4)

which can be generalized to the wholeVF [Eq. (1)]. The
generalization of the dispersion relation for the case
non-HermitianHi is given in Ref. [3]. This reference
shows that Eq. (4) still holds. In actual use in data ana
sis one relies on local potentials. The intrinsically nonlo
cal dispersive Feshbach potential is therefore transform
into a local-equivalent one. This brings in more subt
energy dependence. We should point out that the nond
persive “bare” part of the interaction is also nonlocal ow
ing to the Pauli exchange effects. In its local-equivale
version the bare interaction also carries important ener
dependence as has been stressed recently in [4–6].
practical application, it was found [7] that the local
equivalent Feshbach potential, at a given value of the n
one spatial variabler, still satisfies Eq. (4).

We now raise the following question: Do all channe
couplings result in a dispersive Feshbach potential? T
answer is “no,” at least in cases involving elastic transfe
Here we mean a process which involves the elas
scattering of the following objects:

sa 1 bd 1 b ! sa 1 bd 1 b , (5)

sa 1 bd 1 b ! b 1 sa 1 bd . (6)

The two corresponding amplitudes add coherently. Sin
the projectile-target system, in the second process,
comes the target-projectile system (no change in inter
structure), the second process in Eq. (6), the elastic tra
fer process, is important at large angles. The Feshba
© 1999 The American Physical Society
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potential that takes into account the coupling of the elas
channel to the elastic transfer channel is found to be [8

V elastic transfer
F ­ s21dlFsrd , (7)

wherel is the orbital angular momentum andFsrd is an
approximate transfer form factor of the second proce
in Eq. (6). Generally, owing to the strong nonloca
character of the exchange process, the form factorFsrd
should be taken to be the local equivalent version
the otherwise nonlocal form factor. This implies
nondispersiveenergy dependence inV elastic transfer

F quite
distinct from the genuine dispersive Feshbach potent
There is no dispersive energy dependence in (7). Clea
(7) does not satisfy any energy dispersion relation.
course some weak energy dependence may be found
V elastic transfer

F , when higher-order processes are taken in
account, e.g.,

sa 1 bd 1 b ! sa 1 bdp 1 b ! b 1 sa 1 bd . (8)

For simplicity, in the following we ignore these processe
In a recent experiment [10,11] the complete angul

distributions of the elastic scattering of12C 1 24Mg
were measured at fifteen energies near the Coulo
barrier, namely, betweenEc.m. ­ 10.67 and 16.00 MeV.
The data were analyzed in the optical model fram
work (Pot.II) and the best-fit potentials were shallow
energy dependent, real potentials (V0 , 37 MeV,
r0 ­ 1.29 fm, a ­ 0.4 fm) with no continuous ambiguity
and very weak, energy dependent, imaginary potenti
(W0yV0 , 0.01, W0 ­ 0.5 1.5 MeV, ri ­ 1.77 fm,
ai , 0.4 0.8 fm).

We present in Fig. 1a some of the lowest energ
angular distributions, situated at energies under a
at the Coulomb barrier (VCB ­ 12.67 MeV using the
Christensen-Winther radius) together with the optic
model fits. The angular distributions present a cle
oscillatory pattern even at the lowest energies. In Fig.
the low-energy elastic scattering angular distributions
the 12C 1 28Si system are presented. These unpublish
data [12] were also measured at the Pelletron Laborat
of the São Paulo University, and will be published in th
near future together with an optical model analysis. T
optical model used to reproduce the data is much mo
absorptive (3 to 5 times more) than the Pot.II used for t
12C 1 24Mg system. The Christensen-Winther Coulom
barrier for the12C 1 28Si system isVCB ­ 14.36 MeV.
We indicate in the figure caption the ratioEc.m.yVCB
to allow a quantitative comparison between angul
distributions of Figs. 1a and 1b.

While the oscillations are clear for the12C 1 24Mg
system, even at energies under the Coulomb barr
they are smooth and nonoscillating for the12C 1 28Si
system at the same energies. Even at energies 12% ab
the Coulomb barrier, where the very back angle regi
of the 12C 1 28Si begins to show one oscillation, the
12C 1 24Mg system shows much more oscillation in th
intermediate angle region.
tic
,9]
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FIG. 1. (a) The12C 1 24Mg elastic scattering angular distri
butions, measured at the indicated energies, are represe
by the dots. The solid lines are optical model calculatio
with our best-fit optical potentials (Pot.II). TheEc.m.yVCB
values at these energies are respectively, 0.947, 1.026,
1.105, with VCB ­ 12.67 MeV. (b) The 12C 1 28Si elastic
scattering angular distributions, measured at the indicated
ergies, are represented by the dots. TheEc.m.yVCB values at
these energies are, respectively, 0.926, 1.023, and 1.120
VCB ­ 14.36 MeV.

Both optical potentials are dependent on the bomba
ing energy. From the point of view of radial dependenc
their differences can be pinned down in the notch t
[11]. It showed very different results for the two system
For the 12C 1 28Si system the notch test presents a l
calized peak atR1 1 R2 ­ 7.3 fm, which means that the
elastic data are sensitive to the optical potential only
a radially restricted region at the nuclear surface at ab
7.3 fm. For the12C 1 24Mg system the notch test indi-
cates that the elastic data are sensitive to the optical
tential on the surface and in the nuclear interior, from 3
8 fm, results compatible with the very transparent optic
potentials used to fit the data [11].

Such optical potentials will introduce reflections in th
effective potentials which would dominate the intern
wave contribution and whose interference with the ext
nal wave would result in the oscillations seen in the cro
sections [13]. The internal wave contribution seems, ho
ever, completely damped in the12C 1 28Si system. What
causes the great qualitative difference between the po
tials of the two systems may be related to the fact th
24Mg and28Si have quite different cluster properties.

The differences between the two potentials beco
even more interesting when they are compared from
point of view of their energy dependences, through t
dispersion relation [Eq. (4)]. While the optical potentia
of the 12C 1 28Si system satisfy the dispersion relation
the R ­ 7.3 fm, the optical potentials of the12C 1 24Mg
3973
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system do not satisfy the dispersion relation at any radi
(see Fig. 2). Nevertheless, the volume integrals of th
optical potentials of the12C 1 24Mg system satisfy the
dispersion relation as shown previously [10,11].

The difference between the real part of the fit optica
potential and the real potential obtained through th
dispersion relation using the fit imaginary part is plotte
in Fig. 3. In the case of the12C 1 28Si system, at least
at these very low energies, the difference ReVnondispersive

is zero, while for the12C 1 24Mg system it presents a
clearly oscillatory pattern, as a function of energy an
with a decreasing amplitude, when the radius increas
If we assume that the nondispersive part of the potent
is responsible for the coupling of the elastic channel
the elastic transfer channel, then, from the point of vie
of Eqs. (4) and (7), we can write

ReVopt mod 2 ReVF ­ ReVnondispersive

­ s21dlFsrd

­ cossssplsr, EddddFsrd , (9)

where a semiclassical interpretation was invoked to tran
form the l dependence intor andE dependences. Here,
lsr , Ed is a function to be obtained from the classical turn
ing point condition

E ­ V srd 1
h̄2lsl 1 1d

2mr2 . (10)

Then, qualitatively, the nondispersive part of the potenti
should have an oscillatory characterscospld and decrease
in amplitude with increasingr fFsrdg, as it appears in
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FIG. 2. The imaginary and the real depths of the best-
optical potentials of the12C 1 24Mg system, as a function of
the laboratory energies (squares) forR ­ 7.1 fm. We also used
data at higher energies (Elab ­ 37.9 and40.0 MeV [10,11]) to
fix the imaginary part of the potential. The dispersion relatio
calculations are indicated by solid lines and the disagreeme
with the real optical potential is evident.
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Fig. 3. We also show in Fig. 3 a very qualitative fit t
ReVnondispersive by a cosine function. We assumed tha
the argument of the cosine function, which isp l̃, wherel̃
is an orbital angular momentumlike quantity, varies as

p
E

and linearly withr. The argument for the cosine function
in the three fits was roughly

p l̃ ­ const3
p

E r . (11)

This is different from that obtained from the classic
turning point relatioñl ­ const

p
1 2 VyE

p
E r.

Note that the volume integral of the right-hand sid
of Eq. (9) is roughly zero, in accordance with our earli
discussion.

The reaction amplitudes of Eqs. (5) and (6) can interfe
only in case the clusterb is present in the target. Thus
from the nuclear structure point of view the crucial que
tion is whether or not the (exotic) cluster corresponding
the projectile nucleus is present in the ground state of
target. The phenomenon of clustering in light nuclei h
received considerable attention in the literature [14].

For different samples of light nuclei selection rule
obtained from Us3d symmetry [15,16] have been applie
systematically [17]. As a result we have found that (
the leading term approximation) the12C cluster is present
in the ground state of the24Mg nucleus, but is absent
from the ground state of the28Si. (For these two nuclei
more detailed cluster calculations have also been carr
out in the algebraic framework, which incorporated a lar
number of excited states as well [18].)
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FIG. 3. The difference between the real part of the optic
potential and the real part of the dispersive potential (calcula
by the dispersion relation) as a function of the laborato
energy, at three radial positions,R ­ 5.5, 6.5, and 7.1. See
text for discussion of the solid line.
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The different oscillatory pattern of Figs. 1a and 1b
as well as the different nature of the correspondin
potentials, as discussed previously, seems to justify t
predictions of the nuclear cluster model. Actually, th
coherence effect between the reaction amplitudes
Eqs. (5) and (6) can be considered as the fingerprint of t
exotic (projectilelike) clusterization in the ground state o
the target nucleus.

Before concluding, we raise a second question: Name
since the light nuclei considered here are known to exhib
significanta clustering, what would be the relevance o
a-transfer couplings to our conclusions? This question h
been extensively discussed and answered in an earlier p
lication [11]. To begin with, the absence of oscillations i
the 12C 1 28Si system already indicates that this effect i
strongly damped at these energies. Accordingly, the cor
sponding dispersive polarization potentials are expected
be unimportant. The situation changes at higher energ
[19,20], where these polarization potentials become na
rower inl space and stronger in intensity, thus affecting th
back-angle elastic angular distributions more. Although
energies significantly higher than ours, both12C 1 24Mg
and12C 1 28Si show marked “quasimolecular” structure
in the elastic excitation functions, no such feature is se
at the low energies considered here [11,21].

In conclusion, we have shown that the fits to th
12C 1 24Mg elastic scattering data with a shallow poten
tial produce conspicuous oscillatory structures in the a
gular distributions, which we attribute to the coupling t
the elastic transfer channel. The energy dependence
our best-fit real shallow potential is identified with nondis
persive parity-dependent polarization effects. Thus, cle
experimental evidence has been presented in this pa
in favor of a nondispersive component in the Feshba
potential, which is traced to the coupling of the elast
channel to an elastic transfer channel. This finding m
shed light on the cluster effect in the ground state of lig
nuclei. Further, the findings in this paper may prove o
great value in reactions induced by halo nuclei, whe
clustering of the type core + halo is important. Appli
cations to the elastic transfer process in the11Be 1 10Be
at low energies is in progress [22].

The first three authors are partially supported b
CNPq and FAPESP and the last two by OTKA (Gran
No. T22187).
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