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The projected shell model analysis is carried out using the triaxial Nilsson1 BCS basis. It is
demonstrated that, for a better description of the moments of inertia of nuclei in the transitional region,
it is necessary to take the triaxiality into account and perform the three-dimensional angular momentum
projection from the triaxial Nilsson1 BCS intrinsic wave function. [S0031-9007(99)09068-7]
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The major advancement in the studies of deform
nuclei has been the introduction of the Nilsson potent
[1]. It was shown that the rotational properties o
deformed nuclei can be described by considering nucleo
to move in a deformed potential. The description o
medium and heavy deformed nuclei in terms of th
standard (spherical) shell model is almost impossib
despite the recent progress in the computer technolo
The Nilsson model has provided a useful nomenclature
the observed rotational bands adjusted to the proper s
filling of the individual nucleus. The Nilsson or deforme
state is defined in the intrinsic frame of reference in whic
the rotational symmetry has been broken so that, in ord
to calculate the observable properties, it is necessary
restore the broken rotational symmetry, which can
done by using the standard angular momentum project
operator [2]. This method has been used to project out
good angular momentum states from the Nilsson1 BCS
intrinsic state [3–6]; see also the review article [7] an
references cited therein. In this approach, the angu
momentum projection is carried out from a chosen s
of Nilsson1 BCS states near the Fermi energy. Th
projected states are then used to diagonalize a shell mo
Hamiltonian. This approach, referred to as the project
shell model (PSM), follows the basic philosophy of th
standard shell model approach. The only difference
that, in the PSM, the deformed basis is employed rath
than the spherical one. This makes the truncation
the many-body basis very efficient, so that the sh
model calculations even for heavier systems can be ea
performed.

The PSM approach has been used to describe a br
range of nuclear phenomena such as backbending
signature dependence [9,10], superdeformed [11,12], a
identical bands [13] with a considerable success. So f
the assumption in the PSM approach has been the a
symmetry for the deformed system to keep the compu
tion simple. In fact, this is a reasonable assumption f
well-deformed nuclei. However, for transitional nucle
its validity is questionable. The inadequacy of the axial
symmetric basis can be clearly demonstrated by mome
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of inertia (the backbending plots) of the transitional nucl
in the rare-earth region. It has been shown [7] that, in t
low spin region (i.e., spin not greater than 10), observ
moments of inertia for lighter rare-earth nuclei (for in
stance,156Er, 158Er, 158Yb, and162Hf ) and for the heavier
rare-earth (for instance,172W, 174W, and 176W) increase
quite steeply with increasing rotational frequency as co
pared to the moment of inertia calculated by the axia
symmetric PSM approach (see Figs. 14–17 in [7]). Th
can be easily understood if one notes that the horizon
(vertical) line in the backbending plot represents the ro
tional (vibrational) limit since the energyEI as a function
of spin I behaves proportional toI2 sId. In this sense,
the experimental data slant towards the vibrational s
in comparison with the axial PSM results. On the oth
hand, the spectrum of a triaxial rotor [14] is known t
vary from rotational spectrum to a vibrational one as t
triaxiality parameterg increases from 0± to 30± and, using
this model, it has been demonstrated (see Fig. 18 in [
that the backbending plot indeed approaches towards
vibrational limit wheng is made larger. It is therefore ex
pected that the moments of inertia and other properties
the transitional nuclei may be described more accurat
by using the triaxial basis in the PSM. As pointed out
[7], the major problem here lies rather in the ground sta
band. This part of the spectrum is quite insensitive
the configuration mixing since the spin (and energy) va
ues are still lowsI , 10d, so that an improvement of the
ground band can be done only by allowing some triaxia
ity. The purpose of the present work is to develop a tria
ial projected shell model (referred to as TPSM hereaft
for the description of transitional nuclei. This require
a three-dimensional angular momentum projection whi
has not been so intensively studied till now except f
two investigations in the early eighties [15,16]. We hav
taken up this problem once again from a different point
view. The necessity of triaxiality will be demonstrated b
comparing the numerical results with experimental data

The shell model Hamiltonian employed in the prese
work is the same as the one used in the axially sy
metric PSM approach [7]. This will make the differenc
© 1999 The American Physical Society
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of the present approach to the earlier (axial) PSM pa
ticularly clear. It consists ofQ ? Q 1 monopole pair-
ing 1 quadrupole pairing forces,

Ĥ ­ Ĥ0 2
x

2

X
m

Q̂y
mQ̂m 2 GMP̂yP̂ 2 GQ

X
m

P̂y
mP̂m .

(1)

Here, Ĥ0 is the spherical harmonic-oscillator single
particle Hamiltonian with a properl ? s force while the
operatorsQ̂ andP̂ are defined as

Q̂m ­
X
ab

Qmabcy
acb , P̂y ­

1
2

X
a

cy
ac

y
ā ,

P̂y
m ­

1
2

X
ab

Qmabcy
ac

y

b̄ ,

(2)

where the quadrupole matrix elements are given by

Qmaa0 ­ dNN 0sNjmjQmjN 0j0m0d . (3)

Here, a ­ hNjmj while ā represents the time-reversed
state ofa. The Hartree-Fock-Bogoliubov (HFB) approxi-
mation of the shell model Hamiltonian Eq. (1) leads to th
quadrupole mean field which is similar to the Nilsson po
tential. Therefore, instead of performing the HFB varia
tional analysis of the Hamiltonian in Eq. (1), the Nilsso
potential can be directly used to obtain the deformed bas
In the present work, we use the triaxial Nilsson potenti
specified by the deformation parameterse ande0,

ĤN ­ Ĥ0 2
2
3

h̄v

√
eQ̂0 1 e0 Q̂12 1 Q̂22p

2

!
, (4)

to generate the deformed single-particle wave function
The Q ? Q coupling constant is adjusted such that th
input deformation parametere should be equal to the
one resulting from the HFB calculation [7]. It can be
easily seen that the rotation operatore2ıspy2dĴz transforms
the Nilsson HamiltonianĤN into the opposite triaxiality
se0 ! 2e0d leaving the eigenvalues unchanged. It will b
shown later that the projected energy is independent of t
sign of e0 so that it is sufficient to consider only the non
negativee0. The volume conservation also restricts th
range ofe ande0 values to

23 , e ,
3
2

, je0j ,
p

3

√
1 1

e

3

!
. (5)

The triaxial Nilsson potential has been solved for the rar
earth region with three major shellsN ­ 4, 5, 6 s3, 4, 5d for
neutrons (protons).

In the next step, the monopole pairing Hamiltonian
treated based on the triaxial Nilsson basis. We use t
standard strengths for the pairing interaction of the form

GM ­

√
G1 7 G2

N 2 Z
A

!
1
A

, (6)

where2 s1d is the neutrons (protons) whileG1 and G2
are chosen, respectively, as 21.24 and 13.86 MeV. T
r-

-

e
-
-

n
is.

al

s.
e

e
he
-
e

e-

is
he

he

strength of the quadrupole pairing is set toGQ ­ 0.18GM ,
which is the standard value used in the PSM. Th
(static) pairing correlations are treated by the usual BC
approximation to establish the Nilsson1 BCS basis. The
three-dimensional angular momentum projection is th
carried out on the quasiparticle states obtained in this w

The angular momentum projection operator is given b

P̂I
MK ­

2I 1 1
16p2

Z
dV DI

MK sVdR̂sVd , (7)

with R̂sVd ­ e2ıaĴz e2ıbĴy e2ıgĴz being the rotation op-
erator andDI

MK sVd ­ knIMjR̂sVdjnIKlp its irreducible
representaiton, wherehjnIMlj is a complete set of states
for the specified angular momentum quantum numberIM.
Since the spectral representation of the projection opera
Eq. (7) is represented by

P̂I
MK ­

X
n

jnIMl knIKj , (8)

it is easy to see thatjF0l ; e2ıspy2dĴz jFl, i.e., the state of
the opposite triaxiality to a statejFl, is projected to give

P̂I
MK jF0l ­ P̂I

MKe2ıspy2dĴz jFl ­ s2d2ıspy2dKP̂I
MK jFl .

(9)
This state differs only by a phase factor from̂PI

MK jFl
and thus represents the same physical state. It there
proves that the result of the angular momentum projecti
should be independent of the sign ofe0. We have used
this property to check the programming since it is
nontrivial relation. Note that this justifies the above
mentioned restrictione0 $ 0. Details of the projection
technique and algorithm are discussed in Appendix A
Ref. [7].

In the present work, we have diagonalized the Ham
tonian Eq. (1) within the space spanned byhP̂I

MK jFlj
wherejFl is the (triaxial) quasiparticle vacuum state. Th
TPSM eigenvalue equation with the eigenvalueEI for a
given spinI thus becomesX

K 0

sHI
KK 0 2 EINI

KK 0dFI
K 0 ­ 0 , (10)

where the matrix elements are defined by

HI
KK 0 ­ kFjĤP̂I

KK 0 jFl, NI
KK 0 ­ kFjP̂I

KK 0 jFl .
(11)

This TPSM equation has been solved for several nuc
in the rare-earth region up toI ­ 10, below which the
2- and higher-quasiparticle bands would be less importa
The results of a selected few are presented in Figs
and 2.

The deformation parameterse used in Fig. 1 are
exactly the same as those used in the earlier calculati
with the axially symmetric basis [7], i.e.,e ­ 0.20,
0.20, and 0.225 for156Er, 158Yb, and176W, respectively.
Therefore, the results withe0 ­ 0.0 in Fig. 1 correspond
to the earlier axially symmetric calculations. Note that th
experimental moments of inertia (represented by circl
3969
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FIG. 1. The experimental and the calculated moments of inertiasQd are plotted as a function of the rotational frequencysvd for
156Er, 158Yb, and176W. It is clearly seen that the experimental moments of inertia are reproduced with the triaxialitye0 . 0.15 for
all three cases.
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in the figures) increase quite steeply. The calculatio
with e0 ­ 0.0, on the other hand, depict a very slow
increase and is typical of an axially deformed rotation
band. The moments of inertia in Fig. 1 become steep
with the increasing value ofe0 and the value close to
e0 ­ 0.15 reproduces the experimental data. Rough
speaking, thise0 value corresponds tog ­ 35±. It should
be noted that the experimental moment of inertia show
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FIG. 2. The experimental and the calculated moments of inertiasQd are plotted as a function of the rotational frequencysvd for
184Os, 186Os, and188Os. For184Os, the experimental moment of inertia is very well reproduced withe0 . 0.15. For 186Os and
188Os, it can be described withe0 between 0.10 and 0.15.
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in Fig. 1 slightly increases, in particular, for176W, at the
higher end, whereas the theoretical moment of inert
shows a drop. This increase in the observed mome
of inertia can be explained by the fact that, at aroun
spin I ­ 121, a 2-quasiparticle band (i.e., thes band)
will cross with the ground band and the energy of th
higher spin states will thus be depressed, so that t
moment of inertia will effectively increase. In the presen
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calculations, the projection has been carried out only fro
the ground (i.e., the 0-quasiparticle) band and this effe
is not taken into account. The projection from 2- an
higher-quasiparticle states requires further work and w
be reported elsewhere.

In a similar fashion, Fig. 2 shows the moments o
inertia for some Os isotopes. It is known that thes
isotopes areg soft with very low-lying g bands. A
study of theg bands will be reported elsewhere. It is
clear from Fig. 2 that, for184Os, the moment of inertia is
well reproduced withe0 ­ 0.15. For 186Os and188Os, the
experimental moment of inertia can be explained withe0

between 0.10 and 0.15.
In summary, it has been clearly shown in the prese

work that the three-dimensional angular momentum pr
jection from a triaxial Nilsson1 BCS deformed intrinsic
wave function is essential for a better description of th
transitional nuclei. The moments of inertia of these nucl
depict a steep increase as functions of the rotational f
quency in the low spin regionsI , 10d and this can be ex-
plained only with a triaxial deformation ofg . 30± since
the inclusion of the 2- and higher-quasiparticle bands w
contribute little in this low spin (and low excitation en-
ergy) region.

The present work is of a preliminary nature. For
detailed study, the projected energy surface has to
analyzed as a function ofe and e0 to look for the opti-
mal deformation. In the present work, the deformatio
parametere has been taken from the earlier studies i
which the axial symmetry was assumed. In a more co
sistent treatment, bothe ande0 have to be varied in order
to search the minimum of the ground state energy [16
although it is not obvious whether or not a schemat
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Hamiltonian such as the present one (Q ? Q 1 monopole
pairing 1 quadrapole pairing force model) can correctl
describe the problem associated with the absolute (grou
state) energy. In contrast to this, the relative (excitatio
energies are insensitive to details of the Hamiltonian a
can thus be described rather reliably as proved in Appe
dix B of Ref. [7]. At the moment, we are working on the
electromagnetic properties to study the effect of triaxiali
on the transitions. This will be reported elsewhere.
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