VOLUME 82, NUMBER 20 PHYSICAL REVIEW LETTERS 17 My 1999

Triaxial Projected Shell Model Approach

J.A. Sheik#>3 and K. Hara
'Physik-Department, Technische Universitat Miinchen, D-85747 Garching, Germany
2Institut de Recherches Subatomiques (IReS), Universite Louis Pasteur, 23 rue du Loess, F-67037 Strasbourg Cedex 2, France
3Tata Institute of Fundamental Research, Colaba, Bombay 400 005, India
(Received 21 December 1998

The projected shell model analysis is carried out using the triaxial Nilss®&CS basis. It is
demonstrated that, for a better description of the moments of inertia of nuclei in the transitional region,
it is necessary to take the triaxiality into account and perform the three-dimensional angular momentum
projection from the triaxial Nilssor- BCS intrinsic wave function. [S0031-9007(99)09068-7]

PACS numbers: 21.60.Cs, 21.10.Hw, 21.10.Ky, 27.70.+q

The major advancement in the studies of deformeaf inertia (the backbending plots) of the transitional nuclei
nuclei has been the introduction of the Nilsson potentiain the rare-earth region. It has been shown [7] that, in the
[1]. It was shown that the rotational properties of low spin region (i.e., spin not greater than 10), observed
deformed nuclei can be described by considering nucleonwoments of inertia for lighter rare-earth nuclei (for in-
to move in a deformed potential. The description ofstance!>°Er, S8Er, 198Yb, and!6?Hf) and for the heavier
medium and heavy deformed nuclei in terms of therare-earth (for instance/?W, '7*W, and!'7®W) increase
standard (spherical) shell model is almost impossiblejuite steeply with increasing rotational frequency as com-
despite the recent progress in the computer technologypared to the moment of inertia calculated by the axially
The Nilsson model has provided a useful nomenclature fosymmetric PSM approach (see Figs. 14—17 in [7]). This
the observed rotational bands adjusted to the proper shalan be easily understood if one notes that the horizontal
filling of the individual nucleus. The Nilsson or deformed (vertical) line in the backbending plot represents the rota-
state is defined in the intrinsic frame of reference in whichtional (vibrational) limit since the energ§’ as a function
the rotational symmetry has been broken so that, in ordesf spin I behaves proportional t¢*> (). In this sense,
to calculate the observable properties, it is necessary tilie experimental data slant towards the vibrational side
restore the broken rotational symmetry, which can ben comparison with the axial PSM results. On the other
done by using the standard angular momentum projectiohand, the spectrum of a triaxial rotor [14] is known to
operator [2]. This method has been used to project out theary from rotational spectrum to a vibrational one as the
good angular momentum states from the NilssoiBCS  triaxiality parametety increases from Oto 30° and, using
intrinsic state [3—6]; see also the review article [7] andthis model, it has been demonstrated (see Fig. 18 in [7])
references cited therein. In this approach, the angulahat the backbending plot indeed approaches towards the
momentum projection is carried out from a chosen sevibrational limit wheny is made larger. It is therefore ex-
of Nilsson+ BCS states near the Fermi energy. Thepected that the moments of inertia and other properties of
projected states are then used to diagonalize a shell moditle transitional nuclei may be described more accurately
Hamiltonian. This approach, referred to as the projectedby using the triaxial basis in the PSM. As pointed out in
shell model (PSM), follows the basic philosophy of the[7], the major problem here lies rather in the ground state
standard shell model approach. The only difference iband. This part of the spectrum is quite insensitive to
that, in the PSM, the deformed basis is employed rathethe configuration mixing since the spin (and energy) val-
than the spherical one. This makes the truncation ofies are still low(/ < 10), so that an improvement of the
the many-body basis very efficient, so that the shelground band can be done only by allowing some triaxial-
model calculations even for heavier systems can be easilfy. The purpose of the present work is to develop a triax-
performed. ial projected shell model (referred to as TPSM hereafter)

The PSM approach has been used to describe a brodor the description of transitional nuclei. This requires
range of nuclear phenomena such as backbending [8% three-dimensional angular momentum projection which
signature dependence [9,10], superdeformed [11,12], arfias not been so intensively studied till now except for
identical bands [13] with a considerable success. So fatwo investigations in the early eighties [15,16]. We have
the assumption in the PSM approach has been the axitdken up this problem once again from a different point of
symmetry for the deformed system to keep the computaview. The necessity of triaxiality will be demonstrated by
tion simple. In fact, this is a reasonable assumption focomparing the numerical results with experimental data.
well-deformed nuclei. However, for transitional nuclei, The shell model Hamiltonian employed in the present
its validity is questionable. The inadequacy of the axiallywork is the same as the one used in the axially sym-
symmetric basis can be clearly demonstrated by momentaetric PSM approach [7]. This will make the difference
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of the present approach to the earlier (axial) PSM parstrength of the quadrupole pairing is setig = 0.18Gy,
ticularly clear. It consists oD - O + monopole pair- which is the standard value used in the PSM. The
ing + quadrupole pairing forces, (static) pairing correlations are treated by the usual BCS
A A X L L o approximation to establish the Nilssen BCS basis. The
H = Hy — S ZQ;Q,/, - GyP'P - Gy ZP;P,L- three-dimensional angular momentum projection is then
s s carried out on the quasiparticle states obtained in this way.

. (1) The angular momentum projection operator is given by
Here, Hy is the spherical harmonic-oscillator single- s 2 +1 , R
particle Hamiltonian with a propet - s force while the Puk = 1672 f dQ Dyx (Q)R(Q), (7)

operatory) and P are defined as o 5 ; s .
P L with R(Q) = e '@/:e7B)se=17): peing the rotation op-

A — t pt = 1 t.1 erator andD},x(Q) = (vIM|R(Q)|vIK)* its irreducible

Qu ; QpapCaCsp: 2 % Calar @) representaiton, whergvIM)} is a complete set of states

. 1 1 for the specified angular momentum quantum nunibér

P, = 2 Z QuapcaCp> Since the spectral representation of the projection operator
@B Eq. (7) is represented by

where the quadrupole matrix elements are given by

. o Pl =D IvIM)(vIK], (8)
Q,u,aoz' = 6NN/(]\].lrle/.l,ljv.] m ) (3) v .
it is easy to see thath’) = ¢~17/2%:|d), i.e., the state of

Here, @ = {Njm} while a represents the time-reversed the opposite triaxiality to a staté), is projected to give

state ofa. The Hartree-Fock-Bogoliubov (HFB) approxi- A
mation of the shell model Hamiltonian Eq. (1) leads to the P!  |®'y = PL ¢~/ |@) = (=) 7/DKpL D),
quadrupole mean field which is similar to the Nilsson po- Q)

tential. Therefore, instead of performing the HFB vania-p.o rate differs only by a phase factor froft|®)

tional analysis of the Hamiltonian in Eq. (1), the Nllsson and thus represents the same physical state. It therefore

In the present work, we use the triaxial Nilsson potential%roves that the result of the angular momentum projection

specified by the deformation parameterand ¢’ should be independent of the sign &f We have used
P y P ' this property to check the programming since it is a

v = Fo — Eﬁw €O + € 012+ 0, 4) nontrivial relation. Note that this justifies the above-
N 0 0 V2 ’ mentioned restrictiore’ = 0. Details of the projection

to generate the deformed single-particle wave functionsﬁgpn[i?q]ue and algorithm are discussed in Appendix A of

The ¢ - O coupling constant is adjusted such that the In the present work, we have diagonalized the Hamil-

input deformation parametes should be equal to the ) B &R
one resulting from the HFB calculation [7]. It can be tonian Eq. (1) within the space spanned k| )}
where|®) is the (triaxial) quasiparticle vacuum state. The

i i ator(™/2):
easily seen that the rotation operator transforms ) eigenvalue equation with the eigenvaliefor a
the Nilsson HamiltoniarHy into the opposite triaxiality . .
given spin/ thus becomes

(e’ — —¢€’) leaving the eigenvalues unchanged. It will be
shown later that the projected energy is independent of the Z(H;(K, — E'Nkg)FL =0, (10)
sign of ¢’ so that it is sufficient to consider only the non- K’

negativee’. The volume conservation also restricts thewhere the matrix elements are defined by

range ofe ande’ values to A R
g 3 Hkyr = (P|HPL | D), Nk = (®|Phi D).
3<e< > le'] < \/§<1 + %) (5) (11)

This TPSM equation has been solved for several nuclei
The triaxial Nilsson potential has been solved for the rarein the rare-earth region up tb= 10, below which the
earth region with three major sheNs = 4,5,6(3,4,5) for ~ 2- and higher-quasiparticle bands would be less important.
neutrons (protons). The results of a selected few are presented in Figs. 1

In the next step, the monopole pairing Hamiltonian isand 2.
treated based on the triaxial Nilsson basis. We use the The deformation parametere used in Fig. 1 are
standard strengths for the pairing interaction of the form exactly the same as those used in the earlier calculations
N—7\1 with the axially symmetric basis [7], i.e.e = 0.20,

2 )X’ (6)  0.20, and 0.225 fot*°Er, 18Yb, and "W, respectively.
Therefore, the results wite’ = 0.0 in Fig. 1 correspond
where — (+) is the neutrons (protons) whil6; andG,  to the earlier axially symmetric calculations. Note that the
are chosen, respectively, as 21.24 and 13.86 MeV. Thexperimental moments of inertia (represented by circles

Gy = (G] * Gy
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FIG. 1. The experimental and the calculated moments of inéftjaare plotted as a function of the rotational frequefi@y for
136y, 18YD, and!"W. It is clearly seen that the experimental moments of inertia are reproduced with the triaxiadity.15 for
all three cases.

in the figures) increase quite steeply. The calculationén Fig. 1 slightly increases, in particular, f&W, at the
with €’ = 0.0, on the other hand, depict a very slow higher end, whereas the theoretical moment of inertia
increase and is typical of an axially deformed rotationalshows a drop. This increase in the observed moment
band. The moments of inertia in Fig. 1 become steepeof inertia can be explained by the fact that, at around
with the increasing value ot¢’ and the value close to spin/ = 12, a 2-quasiparticle band (i.e., theband)

€' = 0.15 reproduces the experimental data. Roughlywill cross with the ground band and the energy of the
speaking, thig’ value corresponds tp = 35°. It should higher spin states will thus be depressed, so that the
be noted that the experimental moment of inertia showmoment of inertia will effectively increase. In the present
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FIG. 2. The experimental and the calculated moments of inéftjaare plotted as a function of the rotational frequefi@y for
1840s, 1860s, and'®0s. For'#*0s, the experimental moment of inertia is very well reproduced witk 0.15. For '*0Os and
1880s, it can be described witdf between 0.10 and 0.15.
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calculations, the projection has been carried out only fromHamiltonian such as the present ofe { Q + monopole

the ground (i.e., the 0-quasiparticle) band and this effegpairing + quadrapole pairing force model) can correctly
is not taken into account. The projection from 2- anddescribe the problem associated with the absolute (ground
higher-quasipatrticle states requires further work and willstate) energy. In contrast to this, the relative (excitation)
be reported elsewhere. energies are insensitive to details of the Hamiltonian and

In a similar fashion, Fig. 2 shows the moments ofcan thus be described rather reliably as proved in Appen-
inertia for some Os isotopes. It is known that thesedix B of Ref. [7]. At the moment, we are working on the
isotopes arey soft with very low-lying v bands. A electromagnetic properties to study the effect of triaxiality
study of they bands will be reported elsewhere. It is on the transitions. This will be reported elsewhere.
clear from Fig. 2 that, fot®*Os, the moment of inertia is
well reproduced withe’ = 0.15. For '80s and'®0s, the
experimental moment of inertia can be explained veth
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