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Identity of the van der Waals Force and the Casimir Effect and the Irrelevance
of These Phenomena to Sonoluminescence
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We show that the Casimir, or zero-point, energy of a dilute dielectric ball, or of a spherical bubble in
a dielectric medium, coincides with the sum of the van der Waals energies between the molecules that
make up the medium. That energy, which is finite and repulsive when self-energy and surface effects
are removed, may be unambiguously calculated by either dimensional continuation or by zeta-function
regularization. This physical interpretation of the Casimir energy seems to be unambiguous evidence
that the bulk self-energy cannot be relevant to sonoluminescence. [S0031-9007(99)09132-2]

PACS numbers: 12.20.Ds, 03.70.+k, 78.60.Mq, 42.50.Lc

The Casimir effect has been recognized as a fundamental The corresponding calculation for a spherical geometry
aspect of quantum field theory for 50 years [1]. Thisis fraught with more difficulty. The sum of van der
phenomenon, first presented as an attractive force betwe&¥aals interactions (1) for a spherical ball has been given
parallel perfectly conducting plates, may be thought of as & Ref. [10]. A sensible procedure for carrying out the
result of changes in the electromagnetic field fluctuationgalculation is dimensional continuation, which has been
induced by the presence of boundaries. Recently, it haadvocated in Ref. [11]. That is, we evaluate the integral
been confirmed to good accuracy by direct measurements

[2,3], although the closely related Lifshitz theory [4] was Eww = — 23 a2N2] dPrdPr!
confirmed experimentally 25 years ago [5]. 87
Actually, the history of the effect goes back a bit farther. X (r? + r? = 2rr' cog) "/ (2)

Casimir and Polder worked out the retarded dispersion ) ) )
force between molecules in 1947 [6], the long range part ofY first regardingd > y so that the integral exists. The
the van der Waals force. Bohr shortly thereafter suggeste'a't(?gral may be done exactly in terms of_gamma functions,
to Casimir that zero-point energy was relevant to the effecf/ich, when evaluated @ = 3, y = 7 yields [10]
[7], and subsequently Casimir presented a derivation of the 23 5
force between molecules, and between a molecule and a Evw = {530 — (e — 1~ 3)
conducting plate, based on such considerations [8]. The
derivation of the force between parallel plates followed[Note that the expression (2) is formally negative or at-
shortly [1]. It was thus clear from the outset that theretractive, while the continued result is positive or repulsive.
was an intimate tie between the van der Waals forces anidurther note that the same result is obtained for a bubble
the Casimir effect. in a dielectric medium, which may be seen by the replace-
Identity of van der Waals and Casimir forcesThe mente — 1 — 1 — €, which is here without effect.]
explicit demonstration of the identity of these two forces Of course, the above calculation in three dimensions is
was given in the case of dilute parallel dielectric slabsdivergent. These divergences are of two kinds: “volume”
where the Lifshitz formula for the Casimir energy may beand “surface.” The volume divergence is a self-energy
easily seen to be equal, if dispersion is neglected, to theffect that would be present if the medium filled all space,
sum of pairwise long range van der Waals energies [4]: and makes no reference to the interface, and therefore is
2ayan _quite _unobser_vable._ _If the divergences are regulated by
Z (1) inserting a point-splitting cutoff, and the divergent terms
dmr are simply omitted, the same result (3) is again obtained.
the Casimir-Polder retarded dispersion potential [6] (see Now we turn to the Casimir effect. For the case of
also Ref. [9]). Here the connection between dielectric conthe dielectric sphere this was first worked out in Ref. [12].
stante and polarizabilitye is e = 1 + 4w Na, N being  That result has been rederived, for the more general case
the number density of molecules. The simple geometrpf a spherical bubble, of radius having permittivity e’
makes this calculation easy and unambiguous. and permeabilityu’, surrounded by an infinite medium of

V=_
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permittivity e and permeabilityw, in Ref. [13]. Here the

the uniform asymptotic approximation [14]:

volume effect, corresponding to the intrinsic self-energy !
of either medium, was explicitly removed; a more detailed ¢, (x)s;(x) ~ Zzt(l N ai(t) N ax (1) n ) (10)

justification of that procedure is given in Ref. [10]. The

general result is rather complicated:

|
dy e™®> (2l + 1)

Fe= - dma ) =1
x{ 40D, + 2[5l )el(x)) — er(a)sl ()
x - InD; x'[s1(x"ej(x er(x")s]'(x")]
— 2x[s](x)ej(x) — ez(JC)Sfl(x)]}, 4)
where

Dy = [s/(x")e)(x) — s)(x")es(x)]?
— Es1(x)ej(x) + s7(x)es(x) T, )
which uses the abbreviation
(g )2 -1
=L ()
(¢ w)l/z + 1
The integration variables are = ./ue|y| and x' =
Ju'e'|yl, and the Ricatti-Bessel functions are

mX

si(x) = <7>l/211+1/2(X),

)
1/2
) = (2) Kinrao).

The formula (4) has been regulated by a time-splittin
parameter,d = 7/a — 0, where 7 is a Euclidean time

separation between field points.

The general expression (4) is rather opaque. Therefor

v2 v

wherer =1 + 1/2,x = vz,andt = (1 + z2)~'/2. The
coefficientsa,(r) are polynomials irv of degree3k. If

we ignore dispersion, and set the time-splitting parameter
6 = 0, we obtain [15] the leading uniform asymptotic
approximation to Eqg. (8),

(e —1)? i[vz 65 927

E -
¢ 64a

+ O(v_4)].
(11)

+ R —
= 128 1638412

The first two terms are formally divergent, but may be
evaluated by the zeta-function definitiod;,”, »™* =

(2 — 1)Z(s) — 2%. [That is, we may replace the overall
21 + 1 factor in Eq. (8) by(2/ + 1)!~7, and continue
fromRen > 3ton = 0.] Note that, if only the leading
term were kept, the result given in Ref. [13] would be
obtained,E; = —(e — 1)*/(256a), while including two
terms reverses the sign and hardly changes the magnitude
[15]: E» = +33(e — 1)?/(8192a). This would seem to
resolve the conundrum found in Ref. [13], the apparent
sign disparity between the Casimir effect and the van der
Waals energy. It is important to recognize that the same
finite result is achieved if the point-split regularization is
retained, as detailed in Ref. [13]. There seems to be no
ambiguity in the procedure [16].

Indeed, let us do the result exactly. (Probably it is
ossible to do the integrals analytically, but we have not
mmediately seen how to do this.) We simply add and

subtract the two leading asymptotic terms from the inte-
rand in Eq. (8), so thakc = E, + Eg, where the re-
ainder is

we consider a dilute dielectric ball, which was already con-

sidered in Ref. [12]. (That is, we considgr= 1 every-
where, and = 1 outside of the ball.) The formula, which

still admits of dispersion, becomes in that case

1 < 1 [~ .
Ec~— — Y2l +1)— dy e™° 1P
= g 2y [Ty 1

X x j—x Fix). ®)

where

2
Fi(x) = x2<1 + l(l;;l)) - i(; em)

2
11+ 1) 1 d?
2
- X |:2<1 + 2 )elsl - 5 —dX2 €1S1:| .

(9)

o]

(6 - ])2 2
E —_ - 7
k daa ; g

o ! /10
N -+ —
fo dz| Fi(v2) 4 8v2

X (1 + 8z% — 5% + 26):|, (12)

According to the third term in Eq. (11), theintegral here
is asymptotic t277/262144v*; we evaluate thé sum
by doing the integral numerically for the first ten terms, and
using the asymptotic approximant thereafter. The result is

Ec = (e — 1)

0.004767
2 200 (13)
a

This agrees precisely with the van der Waals result (3) [18].
[The approximatiorE; is 15% too low, whereas if the first

[The same result evidently holds if we consider a dielectrichree terms in Eq. (11) are kept, the estimate is 1.8% high.]
bubble, the general dilute effect being proportional to Irrelevance to sonoluminesceneeThere has recently
(e — €')2] The integrand here may be approximated bybeen considerable controversy concerning the possible
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relevance of the Casimir effect to sonoluminescence [20}to renormalize phenomenological parameters in the con-
The idea that the “dynamical Casimir effect” might be densed matter system.
relevant to sonoluminescence originated in the work of So, finally, we are left with the finite term, which in the
Schwinger [21]. Recently, a series of papers strongly addilute approximation is given by Eq. (3) or (13). For a
vocated Schwinger's point of view [22,23]. This view bubble of minimum radius-10~* cm, the corresponding
has been criticized elsewhere [10]. However, now that weCasimir energy is onlfc ~ 1073 eV. This is 10 orders
clearly see that the Casimir energy may be identified witrof magnitude too small to be relevant to sonoluminescence,
van der Waals interactions, it seems perfectly plain that thevhere about one million optical photons are emitted per
volume effect they consider, proportionaldo- 1, simply  flash, and again the sign is wrong. (As to the relevance of
cannot be present, because such cannot arise from pairwiaestatic calculation to the dynamical regime of sonolumi-
interactions. (This point was already made in Ref. [12].)nescence, we note that the adiabatic approximation seems
Our interpretation stands vindicated: An effect propor-favorable, since the time scale for the flasio~!! sis far
tional to the volume represents a contribution to the masknger than the time scale for optical photong,0™15 s.)
density of the material, and cannot give rise to observable We are indebted to Gabriel Barton for discussions in
effects. (A discussion of the photon production calcula-Leipzig, and for sharing a draft of his paper with us.
tion of Ref. [23] has appeared elsewhere [24].) We are grateful to H.B.G. Casimir and H. Rechenberg
More subtle is the role of surface divergences [13].for conversations on the history of the Casimir effect.
The zeta-function regularization calculation we presentete thank Michael Bordag for discussions, and for his
above simply discards such terms, but they appear in momerganization of the Fourth Workshop on Quantum Field
physical regularization schemes. For example, if the timeTheory Under the Influence of External Conditions in
splitting parameter in Eq. (4) is retained, we get from theleipzig, which allowed this collaboration to take place.

leading asymptotic expansion the following: This work was supported in part by a grant from the U.S.
— 12 Department of Energy.
(e — 1) 1
Egy = ——— 3, (14)
4a 6

and if a simple model for dispersion is used, with char-
acteristic frequencyn, the same result is obtained with
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