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The harmonic measure (or diffusion field) near a critical percolation cluster in two dimensions (2D)
is considered. Its moments, summed over the accessible external hull, exhibit a multifractal (MF)
spectrum, which | calculate exactly. The generalized dimensiogs as well as the MF function
f(a) are derived from generalized conformal invariance, and are shown to be identical to those of the
harmonic measure on 2D random or self-avoiding walks. An application to the impedance of a rough
percolative electrode is given. The numerical checks are excellent. [S0031-9007(99)09126-7]
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Percolation theory, whose tenuous fractal structures, Consider a single, isolated, two-dimensional very large
called incipient clusters, present fascinating propertiesincipient clusteiC, at the percolation threshojgd. Define
has served as an archetypal model for critical phenomend(w) as the probability that a random walker (RW)
[1]. The subject has recently enjoyed renewed interestaunched from infinityfirst hits the outer (accessible)
the scaling (continuum) limit has fundamental propertiespercolation hull H (C) at pointw € H (C). We are
e.g., conformal invariance, which present a mathematicatspecially interested in the momentsHf averaged over
challenge [2-4]. Almost uncharted territory in exactall realizations of RW’'s and”
fractal studies is thbarmonic measurd,e., the diffusion
or electrostatic field near an equipotential fractal boundary, Z, = < > H"(W)>, (1)
whose self-similarity is reflected in multifractal (MF) weH
behavior of the harmonic measure [5]. wheren can be,a priori, a real number. For very large

MF exponents for the harmonic measure of fractals arelustersC and hulls#H (C) of average siz&, one expects
especially important in two contexts: diffusion-limited ag- these moments to scale as
gregation (DLA) and the double layer impedance at a sur- Z, = (a/R)™™, )
o e efyheres s amicroscopccuof, and where the muliactl
related to those of the cluster itself [6]. The double layer caling exponents-(n) encode generalized dimensions

. D(n), 7(n) = (n — 1)D(n), which vary in a nonlinear
impedance at a rough surface between a good conductW;y)nglz [12(_15]_ )Sév)erah priori reysults are known.

Gependence, which has been observed by clectrochemil) IS he Hausdorf dimension of the support of the
P ' y easure. By constructiot{ is a normalized probability

for decades. It was recently proposed that this is at heay easure, so that(1) = 0. Makarov’s theorem [16], here

a multifractal phenomenon, directly linked with the har- applied to the Holder regular curve describing the hull

monic measure of the rough_electrode [7]. In both of th. 7], gives thenontrivial information dimensiory/(1) =
preceding contexts, percolation clusters have been studi (1) = 1. The multifractal formalism [12—15] further

numerically as generic models. involves characterizing subsetd,, of sites of the hullH

in I&ghlgikitéizéésc?ggf e;r:gcgoé?:rtmﬁﬁrecgﬁgf?icﬂﬁStf;Zby a Holder exponent, such that their localf measure in
’ Y Y €3 ball of radiuss scales agi(w € H,) = (a/R)*. The

exact multifractal exponents of their harmonic Measure.s. dimension” f () of the set?,, is given by the
. . ) . «
| use recent advances in conformal invariance (“nkeqsymmetric Legendre transform ofn),

to quantum gravity), which allow for the mathematical

description of random walks interacting with other random a = dr (n), 7(n) + f(a) = an,

fractal structures, such as random walks [8,9], and self- dn

avoiding walks [10]. A difficulty here is the presence 0 = ﬂ(a) 3)
of a subtle fjord structure in the percolation cluster hull, da '

which has only recently been understood [11]. Excellent Because of the ensemble average (1), valugg®f can
agreement with decade-old numerical data is obtainedyecome negative for some domainsaof18].

thereby confirming the relevance of conformal invariance This Letter is organized as follows: | first present in
to multifractality; the exact prediction for the anomalousdetail the findings and their potential physical significance
exponent of a percolative electrode also corroborates itand applications, before proceeding with the more abstract
multifractal nature. mathematical derivation.
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My results for the generalized harmonic dimensions foraccessible perimeter of dimensién This agrees with the

percolation are
1 5

D) = — + —2>
W=t BT its

n € [~ +%),

(4)

valid for all values of moment ordet,n = —ﬁ. The
Legendre transform (3) af(n) = (n — 1)D(n) reads

T dn 2 "2 dn+ 1]
and
_ 25, 1 _ @ 1
f(a)_48(3 2a—1> 2 €@,
(6)

Figure 1 shows the exact cuni®(n) (4) together with

the numerical results fot € {2,...,9} by Meakinet al.
[19], showing fairly good agreement.

original instability phenomenon observed numerically on a
lattice [21].

An even more striking fact is the complete identity of
Egs. (4)—(6) to the corresponding resuitsth for random
walks and for self-avoiding walks (SAW's) [10]. In
particular, D(0) = % is the Hausdorff dimension of a
SAW, common to thexternal frontierof a percolation hull
and of a Brownian motion [8,9]. Seen from outside, these
three fractal curves are not distinguished by the harmonic
measure. As we shall see, this factis linked to the presence
of a universal underlying conformal field theory with a
vanishing central charge = 0. In other respects, a 2D
polymer at the® point is known to obey exactly the
statistics of a percolation hull [22], and the MF results (4)—
(6) therefore applalsoto that case.

The minimal value ofr (= %) is due to the strongest sin-
gularity of the harmonic measure, i.e., near a needle. The

The first striking observation is that the dimension oflinear asymptote of th¢(a) curve fora — +, f(a) ~

the support of the measur@(0) # Dy, where Dy =

7 is the Hausdorff dimension of the standard hull, i.e.,spectrum of dimensions.

— 52, corresponds to the lowest part—> n* = —ﬁ of the
Its linear shape is quite remi-

the outer boundary of critical percolating clusters [20].niscent of the case of a 2D DLA cluster [23]. Define
In fact, the valueDgp = D(0) = + corresponds to the N (H) as the number of sites having a probabilifyto

3

accessible external perimeté21], the other hull sites be hit. Using the MF formalism to change from vari-
being located in deep fiords, which are not probed by thé@ble H to « (at fixed value ofa/R) shows thatN (H)
harmonic measure. This structure and the exact value éfeys, forH — 0, a power law behavior with an exponent
Dgp are elucidated in terms of path-crossing statistics i = 1 + lim,— 4o %f(a) =1 + »n*. Thus we predict

Aizenmanet al.[11]. In thescaling continuousegime,
the fjords do close, yielding asmoother(self-avoiding)
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FIG. 1(color). Universal harmonic multifractal dimensions

D(n), and spectruny(a) of a 2D incipient percolation cluster,

compared to numerical results by Mealghal. [19] (in red).

. 23
- (7)

This 7* = 0.95833... compares very well with the nu-

merical resultr* = 0.951 = 0.030, obtained forl0™> <

H = 1074 [19].

Let us consider for a moment the different, but related,
problem of thedouble layer impedancef a rough elec-
trode. In some range of frequencies the impedance
contains an anomalous “constant phase angle” (CPA) term
(iw)”#,whereg < 1. From a natural RW representation
of the impedance, a scaling law was recently proposed:
B = % (here in 2D), wherd®(2) andD(0) are the multi-
fractal dimensions of thH measure on the rough electrode
[7]. In the case of a 2D porous percolative electrode,
our results (4) giveD(2) = 13, D(0) = %, whenceB =
% = 0.6875. This compares very well with a numerical
RW algorithm result [24], which yields an effective CPA
exponentB = 0.69, nicely vindicating the multifractal
description [7].

Let me now give the main lines of the derivation of
exponent® (n) by generalizeg¢onformal invariance.We
focus on site percolation on the 2D triangular lattice; by
universality the results are expected to apply to other 2D
(e.g., bond) percolation models. The boundary lines of
the percolation clusters, i.e., of connected sets of occupied
hexagons, form self-avoiding lines on the dual hexagonal
lattice.

By the very definition of théd measuren independent
RW'’s diffusing away from the hull give a geometric
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representation of theth momentH”, for n integer. The  RW'’s after the scaling limit is taken, because their (white)

values so derived fot € N will be enough, by convexity exit path becomes a strait pinched by other parts of the

arguments, to obtain the analytic continuation for arbitrary(light blue) occupied cluster.

n's. Figure 2 depicts: independent random walks, in a  Let us introduce the notatiot A B for two setsA and

bunch first hitting the external hull of a percolation cluster B, of random paths, conditioned to beutually avoiding,

at a sitew = (e). andA Vv B for two independenthus possibly intersecting,
The bunch of independent RW’s avoids the occupiedsets [10]. Now consider independent RW's, or Brownian

cluster, and defines its own envelope as a set of twpathsB in the scaling limit, in a bunch notetvB)",

boundarylines separating it from the occupied part of avoidinga setS, = (AP) of ¢ nonintersectingand self-

the lattice. The site(e), to belong to theaccessible avoiding crossing paths in the percolation system. They

hull, thus remains, in theontinuous scaling limitthe originate from the same hull site, and each passes only

source of at leasthree nonintersecting crossing paths through occupied sites, or only through empiydl) ones

noted Ss, reaching to a (large) distande [11]. These [11]. The probability that the Brownian and percolation

(self-avoiding) paths arenonochromatic one path runs paths altogether traverse the annulla, R) from the

only through occupied (light blue) sites; the other two,inner boundary circle of radiug to the outer one at

dual lines, run through empty (white) sites, in betweendistancer, i.e., are in a “star” configuratio§, A (VB)"

the accessible cluster and RW'’s frontiers (Fig. 2). TheFig. 2), is expected to scale f&/a — «~ as

fjefinition ofthalta.ndardﬁii‘ll _requires pquthe origination, Pe(S¢ A 1) = (a/R)*SAn), 8)

in the scaling limit, of a “bichromatic” pair of lines,.

Points lacking the second dual line are not accessible tyhere we usedSe A n =S¢ A (vB)" as a shorthand

notation, and where(S; A n) is a new critical exponent
depending off andn. Itis convenient to introduce similar
surface probabilities Pz (S¢ A n) = (a/R)*S™ for the
same star configuration of paths, now crossing through the
half-annulusD (a, R) in the half-plane.

When n — 0, Pz (S¢) (Pr(S¢)) is the probability of
having € simultaneous nonintersecting path crossings of
the annulus in the plane (half-plane), with associated
exponentsyy = x(S¢ A 0) andx, = %(S¢ A 0) [11]. In
terms of probability (8), the harmonic measure moments
(1) and (2) simply scale a&, =~ R>Px(S¢=3 A n) [18],
which leads to

T(n) = x(55 A n) — 2. (9)

Using the fundamental mapping of the conformal field
theory (CFT) in theplaneR?, describing a critical statisti-
cal geometrical system, to the CFT on a fluctuating abstract
random Riemann surface, i.e., in the presencguaintum
gravity[25], | have recently shown that there exist two uni-
versal functionslJ andV, depending only on the central
chargec of the CFT, which suffice to generate all geo-
metrical exponents involvinmutual avoidancef random
star-shapedsets of paths of the critical system [10]. For
¢ = 0, which corresponds to RW’s, SAW'’s, apercola-

tion, these universal functions are
FIG. 2(color). An “active” site(e) on the accessible external _1 _ L2
perimeter for site percolation on the triangular lattice. It Ulx) = 3x(1 + 2x), V(x) = 3 (4" — 1), (10)
is defined by the existence, in thecaling limit, of € =3 with V(x) = U(%( — %))_ Consider now two arbitrary
nonintersecting crossing patfs (dotted lines), one on the 5n40m setgl andB, involving each a collection of paths

incipient (light blue) cluster, the other two on the dual empty. ¢ fi i ith i .
(white) sites. The pointe are entrances of fiords, which close N & Star contiguration, with proper scaling crossing expo-

in the 'scaling limit and will not support the harmonic measure.nentsx(A), x(B), or, in the half-plane, crossing exponents
Point (e) is first hit by three independent RW’s (red, green, ¥(A), ¥(B). If one fuses the star centers and requifes
blue), contributing taH*(e). The hull of the incipient cluster and B to stay mutually avoiding, then the new crossing

(golden line) avoids the outer frontier of the RW's (thick blue -
line). A Riemann map of the latter onto the real liReeveals exponentsy(4 A B) and¥(A A B), obey thestar algebra

the presence of an underlying= 3 path-crossingooundary [8,10]

operator, i.e, a two-cluster boundary operator, with dimension x(A A B) = 2V[U '(®(A)) + U '(®(B))],

in the half-planex,—; = fckczz = 2. Both accessible hull and (11)
Brownian paths have a frontier dimensién #(A A B) = U[U ' (%(4)) + U (%(B))],
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whereU ~!(x) is the inverse function of/ x(535An)=2+ %(n - 1)+ 25—4 (vV24n +1 =5),
- 1
U™l = 3 (V24x + 1 - 1). (12)  fromwhichr(n), Eq. (9), and(n), Eq. (4), follow,QED.
If, on the contrary,A and B are independenend can | thank M. Aizenman, D. Kosower, and T. C. Halsey

overlap, then by trivial factorization of probabilitiesA v for fruitful discussions.

B) = x(A) + x(B), and ¥(4 V B) = %(A) + %(B) [10].

The rules (11), which mix bulk and boundary exponents,
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