
VOLUME 82, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 17 MAY 1999

s of
its

and

3936
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A novel algebra underlying integrable systems is shown to generate and unify a large clas
quantum integrable models with givenR matrix, through reductions of an ancestor Lax operator and
different realizations. Along with known discrete and field models a new class of inhomogeneous
impurity models is obtained. [S0031-9007(99)09121-8]

PACS numbers: 03.65.Fd, 02.20.Sv, 05.50.+q, 11.10.Lm
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The self-dual Yang-Mills equation with possible re
ductions has given a vivid unifying picture in classica
integrable systems in1 1 1 and 0 1 1 dimensions [1].
However, in the quantum case not much has be
achieved in this direction, and there exists a genui
need for discovering some scheme which would ge
erate models of quantum integrable systems (QIS)
along with their Lax operators andR matrix and thus
unifying them.

The significance of algebraic structures in describin
physical consequences is well recognized. Like L
algebras, their quantum deformations [3] are also fou
to be of immense importance in physical models [4–6
In fact, the idea of quantum Lie algebra which attracte
enormous interest in recent years [7–9], has stemm
from the QIS and at the same time has made a profou
influence on the QIS itself [10–16].

Motivated by these facts and our experience [12
we find a novel Hopf algebra as a consequence
the integrability condition, which underlies integrabl
models with2 3 2 Lax operators and the trigonometric
R matrix. This is more general than the well-know
quantum Lie algebra and in contrast represents a deform
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quadratic algebra (QdA), so-called due to the appearan
of generators in quadratic form in the defining algebra
relations. At the same time it unifies a large clas
of quantum integrable models by generating them in
systematic way through reductions of an ancestor mod
with explicit Lax operator realization. Note that the Lax
operator together with the quantumR matrix defines an
integrable system completely, giving also all conserve
quantities including the Hamiltonian of the model.

The proposed algebra may be given by the simp
relations

fS3, S6g ­ 6S6,

fS1, S2g ­ fM1 sins2aS3d 1 M2 coss2aS3dg
1

sina
,

fM6, ?g ­ 0 , (1)

whereM6 are the central elements. We show that (1)
not merely a modification of knownUqfsus2dg, but a QdA
underlying an integrable ancestor model, and in effect
dictated by the quantum Yang-Baxter equation (QYBE
[17] RLL̃ ­ L̃LR. The associated quantumRsld matrix
is the known trigonometric solution related to sine Gordo
(SG) [2], while the Lax operator may be taken as
L
sancd
t sjd ­

µ
jc1

1 eiaS3
1 j21c2

1 e2iaS3
2 sinaS2

2 sinaS1 jc1
2 e2iaS3

1 j21c2
2 eiaS3

∂
, j ­ eial, (2)
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with c6
a central to (1) relatingM6 ­ 6

p
61 sc1

1 c2
2 6

c2
1 c1

2 d. The derivation of algebra (1) follows from QYBE
by inserting the explicit form (2) and theR matrix and
matching different powers of the spectral parameterj.

Note that (1) is a Hopf algebra [18] and a generalizati
of Uqfsus2dg. However, unlike Lie algebras or their de
formations, due to the presence of multiplicative operat
M6, (1) becomes a quantum deformation of a QdA. Sin
these operators have arbitrary eigenvalues including ze
they cannot be removed by scaling and therefore gen
cally (1) is different from the known quantum algebr
Moreover different representations ofM’s generate new
structure constants leading to a rich variety of deform
Lie algebras, which are related to different integrable s
tems. This fact becomes important for its present appli
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tion. The appearance of QdA in a basic integrable syste
should be rather expected, since the QYBE withR matrix
havingc-number elements is itself a QdA. The notion o
QdA was introduced first by Sklyanin [19].

The ancestor model can be constructed through re
resentation of (1) in physical variables (withfu, pg ­ i)
as [20]

S3 ­ u, S1 ­ e2ipgsud, S2 ­ gsudeip . (3)

This gives a novel exactly integrable quantum syste
generalizing lattice SG modeland associated with the Lax
operator (2). It is evident that for Hermitiangsud only one
getsS2 ­ sS1dy. We show below that through various
realizations of the single objectgsud in (3) the ancestor
model generates a whole class of integrable models. Th
© 1999 The American Physical Society
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Lax operators are derived from (2), while theR matrices
are simply inherited. The underlying algebras are giv
by the corresponding representations of (1).

Evidently, fixing M2 ­ 0, M1 ­ 1, (1) leads to the
well-known quantum algebraUqfsus2dg [21]. Now the
simplest representation$S ­ $s derives the integrable
XXZ spin chain [13], while (3) with the corresponding
reduction of gsud [20] yields the lattice sine-Gordon
model [22] with its Lax operator obtained from (2) with
all c’s ­ 1.

An asymmetric choice of central elements:c1
1,2 ­

1, c2
1 ­ 1

c2
2

­ 2iq, q ­ eia, along with the mapping
S1 ­ cA, S2 ­ cAy, S3 ­ 2N , c ­ scotad1y2 brings
(1) directly to the well-knownq-oscillator algebra [23,24]
and simplifiesg2sud ­ f22ugq in (3). Therefore using
the interbosonic map [25] one gets a bosonic realizati
for theq oscillator [25]. This realization in turn constructs
easily from (2) the Lax operator, which coincides exact
with the discrete version of the quantumderivative
nonlinear Schrödinger equation(QDNLS) [12]. The
QDNLS was shown to be related to the interacting Bo
gas with a derivatived-function potential [26]. Fusing
two such models one can further create an integra
massive Thirringmodel described in [2].

Having the freedom of choosing trivial eigenvalue
for the central elements,c2

1 ­ c1
2 ­ 0 with otherc’s ­

1, we obtain another deformed Lie algebrafS1, S2g ­
e2iaS3

i sina . This can be realized again by (3) with the relate
expression forgsud [20], using which the Lax operator is
obtained from (2). The model that results is no other th
the discrete quantum Liouvillemodel [27]. Note that the
present caseM6 ­ 6

p
61 may be achieved even with

c2
1 fi 0, giving the same algebra and hence the sam

realization. However, the Lax operator which depen
explicitly on c’s gets changed, reducing (2) to anothe
nontrivial structure. This is an interesting possibility o
constructing different useful Lax operators for the sam
model, in a systematic way. For example, the prese
construction of thesecond Liouville Laxoperator recovers
that of [14], invented for its Bethe ansatz solution.

In a similar way the particular caseM6 ­ 0 can be
achieved with different sets of choices: with allc’s ­ 0
except (i) c1

a ­ 1, (ii) c7
1 ­ 61, (iii) c1

1 ­ 1, all of
which lead to the same algebra,

fS1, S2g ­ 0, fS3, S6g ­ 6S6. (4)

However, they may generate different Lax operators fro
(2), which might even correspond to different model
though with the same underlying algebra. In particula
case (i) leads to thelight-cone SGmodel, while (ii) and
(iii) give two different Lax operators found in [28] and
[29] for the same relativistic Toda chain. Since he
we getgsud ­ const, interchangingu ! 2ip, p ! 2iu,
(3) yields simply S3 ­ 2ip, S6 ­ ae7u, generating
discrete time or a relativistic quantum Toda chain.
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Remarkably, all the descendant models listed abo
have the same trigonometricR matrix inherited from the
ancestor model and similarly is true for its rational form
as we will see below. This solves the mystery as to w
a wide range of models are found to share the sameR
matrices. TheL operators and the underlying algebra
however, become different, being various reductions
the ancestor Lax operator (2) and the ancestor algebra

We consider now the undeformeda ! 0 limit of
the proposed algebra (1). It is evident that for th
limits to be finite the central elements must also bea

dependent. A consistent procedure leads toS6 ! is6,
M1 ! 2m1, M2 ! 2am2, j ! 1 1 ial, giving the
algebraic relations

fs1, s2g ­ 2m1s3 1 m2, fs3, s6g ­ 6s6 (5)

with m1 ­ c0
1c0

2 and m2 ­ c1
1c0

2 1 c0
1c1

2 as the new
central elements. It is again not a Lie but a QdA, sin
multiplicative operatorsm6 cannot be removed in genera
due to their allowed zero eigenvalues. Equation (
exhibits also a noncocommutative feature [18] unusual
an undeformed algebra. Equation (2) at this limit reduc
to

Lr sld ­

µ
c0

1sl 1 s3d 1 c1
1 s2

s1 c0
2sl 2 s3d 2 c1

2

∂
, (6)

while theR matrix is converted into its rational form, wel
known for the NLS model [2]. Therefore the integrab
systems associated with algebra (5) and generated by
ancestor model (6) would belong to the rational class,
sharing the same rationalR matrix.

It is interesting to find that the bosonic representati
(3), using the undeformed limitg0sud [20] and the inter-
bosonic map [25], reduces into a generalized Holste
Primakov transformation (HPT)

s3 ­ s 2 N , s1 ­ g0sNdc , s2 ­ cyg0sNd ,

g2
0sNd ­ m2 1 m1s2s 2 Nd, N ­ cyc . (7)

It can be checked to be an exact realization of (
associated with the Lax operator (6). This would ser
therefore as an ancestor model of the rational class
represent an integrablegeneralized lattice NLSmodel.

For the choicem1 ­ 1, m2 ­ 0, (5) leads clearly to
the standard su(2) and for spin12 representation recovers
the XXX spin chain[17]. On the other hand, the genera
form (7) simplies to standard HPT and (6) reproduces
lattice NLSmodel [22].

The complementary choicem1 ­ 0, m2 ­ 1 reduces
(5) to a nonsemisimple algebra and givesg0sNd ­ 1.
This induces a direct realization through oscillator alg
bra,s1 ­ c, s2 ­ cy, s3 ­ s 2 N , and corresponds to
anothersimple lattice NLSmodel [30]. Remarkably, a
further trivial choicem2 ­ 0 gives again algebra (4) and
therefore the same realization found before for the re
tivistic case can be used, but now for thenonrelativistic
3937
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Toda chain[2]. The associated Lax operator should how
ever be obtained from (6) along with the rationalR matrix.

It should be noted that a bosonic realization of gene
Lax operators like (2) and (6) can be found also in som
earlier works [10,31]. Apart from the discrete mode
obtained above, one can construct a family of quantu
field models starting from their lattice versions. Scalin
first the operators such aspj , uj, c6

a , andcj , consistently
by lattice spacingD and taking the continuum limitD !
0, one getspj ! psxd, cj ! csxd, etc. The Lax operator
L sx, ld for the continuum model is then obtained from
its discrete counterpart asLjsld ! I 1 iDL sxd. The
associatedR matrix however remains the same since
does not containD. Thusintegrable field modelslike sine
Gordon, Liouville, NLS, or the derivative NLS models ar
obtained from their discrete variants constructed above

It is possible to further build a new class of models th
may be considered as the inhomogeneous versions of
above integrable models. The idea of such construct
is to take locally different representations for the centr
elements, i.e., instead of taking their fixed eigenvalue
one should consider them to be site dependent functio
This simply means that in the expressions ofgsujd [20]
M6 should be replaced byM6

j , and consequently in
Lax operator (2) allc’s should be changed tocj ’s.
Thus in lattice models the values of central elemen
may vary arbitrarily at different lattice pointsj including
zeros. This would naturally lead to inhomogeneous latti
models. However since the algebra remains the same t
answer to the same quantumR matrices. Physically such
inhomogeneities may be interpreted as impurities, varyi
external fields, incommensuration, etc.

Notice that in the sine-Gordon model, unlike its cou
pling constant, the mass parameter enters through
Casimir operator of the underlying algebra. Therefor
taking M1

j ­ 2sDmjd2, one can construct a variable
mass discrete SG model without spoiling its integrab
ity. In the continuum field limit it would generate a nove
sine-Gordon model with variable massmsxd in an exter-
nal gauge fieldusxd. In the simplest case the Hamiltonian
of such a model would beH ­

R
dx hmsxd sutd2 1

m21sxd suxd2 1 8fm0 2 msxd coss2audgj. Similar mod-
els may arise also in physical situations [32].

An inhomogeneous lattice NLSmodel can be obtained
by considering site-dependent values for central e
ments in (6) and in the generalized HPT (7), where tim
dependence can also enter as a parameter. As a po
ble quantum field model it would correspond to equ
tions like cylindrical NLS [33] with explicit coordinate
dependent coefficients. In a similar way inhomogeneo
versions of the Liouville model, relativistic Toda, etc.
can be constructed. For example, takingca

1 ! ca
j in a

nonrelativistic Toda chain we can get a new integrab
quantum Toda chain with inhomogeneityhaving the

HamiltonianH ­
P

jspj 1
c1

j

c0
j
d2 1

1
c0

j c0
j11

euj2uj11 .
3938
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Another way of constructing inhomogeneous mode
is to use different realizations of the general QdA (1)
(5) at different lattice sites, depending on the type ofR
matrix. This may even lead to different underlying alge
bras and hence different Lax operators at differing sit
opening up possibilities of building various exotic inho
mogeneous integrable models. Thus, in a simple exam
of impurity XXX spin chain, if we replace its standar
Lax operator at a single impurity sitem by a compatible
Lam ­ sl 1 c1

mds3
a, the Hamiltonian of the model is

modified to H ­ 2s
P

jfim,m21 $sj $sj11 1 hm21m11d,
where hm21m11 ­ 2ss1

m21s
2
m11 1 s

2
m21s

1
m11d 1

s
3
m21s

3
m11. It gives an integrable quantum spin chai

with a defect,where the coupling constant has chang
sign at the impurity site. If an attempt is made to resto
the sign it appears in the boundary condition.

Thus we have prescribed a unifying scheme for qua
tum integrable systems, where the models can be g
erated systematically from a single ancestor model w
underlying algebra (1). The Lax operators of the d
scendant models are constructed from (2) or itsq ! 1
limit (6), while the variety of their concrete represen
tations is obtained from the same general form (3)
different realizations. The corresponding underlying a
gebraic structures are the allowed reductions of (1). T
associated quantumR matrix however remains the sam
trigonometric or the rational form as inherited from th
ancestor model. This fact also reveals a universal char
ter for solving the models through algebraic Bethe ans
(ABA) [2,34]. The characteristic eigenvalue equation fo
the ABA is given byLmsld ­ asld

Qm
j­1 fslj 2 ld 1

bsld
Qm

j­1 fsl 2 ljd, where the coefficientsasld and
bsld are the only model-dependent elements; as be
eigenvalues of the pseudovacuum they depend on the c
crete form of the Lax operator. The main bulk of th
expression however is given through functions such
fsld ­

asld
bsld , i.e., as the ratio of two elements of theR

matrix and hence is universal for all models belonging
the same class. Therefore all integrable models solva
through ABA can be given by almost a universal equati
based on a general model.
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