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A novel algebra underlying integrable systems is shown to generate and unify a large class of
quantum integrable models with givéhmatrix, through reductions of an ancestor Lax operator and its
different realizations. Along with known discrete and field models a new class of inhomogeneous and
impurity models is obtained. [S0031-9007(99)09121-8]
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The self-dual Yang-Mills equation with possible re- quadratic algebra (QdA), so-called due to the appearance
ductions has given a vivid unifying picture in classical of generators in quadratic form in the defining algebraic
integrable systems in + 1 and0 + 1 dimensions [1]. relations. At the same time it unifies a large class
However, in the quantum case not much has beeof quantum integrable models by generating them in a
achieved in this direction, and there exists a genuinesystematic way through reductions of an ancestor model
need for discovering some scheme which would genwith explicit Lax operator realization. Note that the Lax
erate models of quantum integrable systems (QIS) [2bperator together with the quantuf matrix defines an
along with their Lax operators anff matrix and thus integrable system completely, giving also all conserved
unifying them. quantities including the Hamiltonian of the model.

The significance of algebraic structures in describing The proposed algebra may be given by the simple
physical consequences is well recognized. Like Lierelations
algebras, their quantum deformations [3] are also found [$3,5%] = +§*
to be of immense importance in physical models [4—6]. ’ ’

In fact, the idea of quantum Lie algebra which attracted [s* 7] = [M* sin2aS?) + M~ cog2aS?)] L
enormous interest in recent years [7-9], has stemmed Sina
from the QIS and at the same time has made a profound M*,-]=0, (1)

influence on the QIS itself [L0—16]. N i
Motivated by these facts and our experience [12]’WhereM— are the central elements. We show that (1) is

we find a novel Hopf algebra as a consequence of©t merelyamodification of knowtl,[su2)], buta QdA
the integrability condition, which underlies integrable Underlying an integrable ancestor model, and in effect is
models with2 X 2 Lax operators and the trigonometric dictated by the quantum Yang-Baxter equation (QYBE)
R matrix. This is more general than the well-known [17] RLL = LLR. The associated quantufiA) matrix

quantum Lie algebra and in contrast represents a deformdgthe known' trigonometric solution related to sine Gordon
| (SG) [2], while the Lax operator may be taken as

@ic) o _ [ Eci €S + e e oS 2sine S~ ) — piah
L) < 2sinaS* EoyemiaS 4 gmler eias’ |0 & (2)

with ¢ central to (1) relatingy* = +v/*1(c{ ¢, = tion. The appearance of QdA in a basic integrable system
ci ¢> ). The derivation of algebra (1) follows from QYBE should be rather expected, since the QYBE vtmatrix

by inserting the explicit form (2) and th® matrix and havingc-number elements is itself a QdA. The notion of
matching different powers of the spectral paraméter QdA was introduced first by Sklyanin [19].

Note that (1) is a Hopf algebra [18] and a generalization The ancestor model can be constructed through rep-
of U,[su2)]. However, unlike Lie algebras or their de- resentation of (1) in physical variables (with, p] = i)
formations, due to the presence of multiplicative operatorss [20]

M=, (1) becomes a quantum deformation of a QdA. Since _; i _— ;

these operators have arbitrary eigenvalues including zeros,”> ~ *’ §7=e "), §° = glwe?. (3)
they cannot be removed by scaling and therefore generiFhis gives a novel exactly integrable quantum system
cally (1) is different from the known quantum algebra. generalizing lattice SG modahd associated with the Lax
Moreover different representations df’s generate new operator (2). Itis evident that for Hermitiariu) only one
structure constants leading to a rich variety of deformedjetsS~ = (S*)f. We show below that through various
Lie algebras, which are related to different integrable sysfealizations of the single objegt(x) in (3) the ancestor
tems. This fact becomes important for its present applicamodel generates a whole class of integrable models. Their
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Lax operators are derived from (2), while tRematrices Remarkably, all the descendant models listed above
are simply inherited. The underlying algebras are giverhave the same trigonometrit matrix inherited from the
by the corresponding representations of (1). ancestor model and similarly is true for its rational form,

Evidently, fixingM~ =0, M™ =1, (1) leads to the as we will see below. This solves the mystery as to why
well-known quantum algebr&/,[su2)] [21]. Now the a wide range of models are found to share the s&me
simplest representatios = & derives the integrable matrices. ThelL operators and the underlying algebras,
XXZ spin chain[13], while (3) with the corresponding however, become different, being various reductions of
reduction of g(u) [20] yields the lattice sine-Gordon the ancestor Lax operator (2) and the ancestor algebra (1).
model [22] with its Lax operator obtained from (2) with We consider now the undeformed — 0 limit of

all ¢’'s = 1. the proposed algebra (1). It is evident that for the
An asymmetric choice of central elements{, = limits to be finite the central elements must also de
1, ef = & = —ig, ¢ = ¢/, along with the mapping dependent. A consistent procedure leadssto— is™,

ST =cA, S = cAl, §3 = —N, ¢ = (cota)'/? brings
(1) directly to the well-knowny-oscillator algebra [23,24]

Mt — —mT, M~ — —am™, £ > 1 + iaA, giving the
algebraic relations

and simplifiesg?(u) = [—2u], in (3). Therefore using [sT.s7]=2m"s® + m~, [s3,s7] = s (5)
the interbosonic map [25] one gets a bosonic realization N 00 B o 01
for the g oscillator [25]. This realization in turn constructs With m™ = cic; and m™ = cjc3 + cjc; as the new

easily from (2) the Lax operator, which coincides exactlycentral elements. It is again not a Lie but a QdA, since
with the discrete version of the quantuderivative Multiplicative operators:™ cannot be removed in general

nonlinear Schrodinger equatiofQDNLS) [12]. The due to their allowed zero eigenvalues. Equation (5)
QDNLS was shown to be related to the interacting BoséXhibits also a noncocommutative feature [18] unusual for
gas with a derivatives-function potential [26]. Fusing &n undeformed algebra. Equation (2) at this limit reduces

two such models one can further create an integrabl&

massi\_/e Thirringnodel described i_n [2]._ _ _ _ C?(A + ) + C% 5

Having the freedom of choosing trivial eigenvalues L.(A) = et S — 5% — el ) (6)
for the central elements; = ¢; = 0 with otherc¢’s = ) o ,2 ] ) :
1, we obtain another deformed Lie algelig*,s~]=  While therR matrix is converted into its rational form, well
2ias? known for the NLS model [2]. Therefore the integrable

- This can be realized again by (3) with the related
expression forg(u) [20], using which the Lax operator is
obtained from (2). The model that results is no other tha
the discrete quantum Liouvillenodel [27]. Note that the
present casd/* = ++/=1 may be achieved even with
c¢; # 0, giving the same algebra and hence the sam
realization. However, the Lax operator which depend
explicitly on ¢’s gets changed, reducing (2) to another
nontrivial structure. This is an interesting possibility of 3 =5 — N, st = go(N), s” = ¢lgN),
constructing different useful Lax operators for the same 2 o n .
model, in a systematic way. For example, the present Ny =m~ +m"@2s = N),  N=yly. (7)
construction of thesecond Liouville Laxoperator recovers |t can be checked to be an exact realization of (5),
that of [14], invented for its Bethe ansatz solution. associated with the Lax operator (6). This would serve
In a similar way the particular caséf= = 0 can be therefore as an ancestor model of the rational class and
achieved with different sets of choices: with als = 0  represent an integrabigeneralized lattice NL&odel.

systems associated with algebra (5) and generated by the
ancestor model (6) would belong to the rational class, all
r},haring the same ration&l matrix.

It is interesting to find that the bosonic representation
3), using the undeformed limio(x) [20] and the inter-
osonic map [25], reduces into a generalized Holstein-
rimakov transformation (HPT)

except () c; =1, (i) ¢f = =1, (i) ¢/ =1, all of For the choicen™ = 1, m~ = 0, (5) leads clearly to
which lead to the same algebra, the standard su(2) and for spinrepresentation recovers
[St,5"]=0 [$3,5%] = +§°. (4) the XXX spin chain[17]. On the other hand, the general

form (7) simplies to standard HPT and (6) reproduces the
However, they may generate different Lax operators fromattice NLSmodel [22].
(2), which might even correspond to different models, The complementary choica* = 0, m~ = 1 reduces
though with the same underlying algebra. In particular(5) to a nonsemisimple algebra and givegN) = 1.
case (i) leads to thiéght-cone SGmodel, while (i) and This induces a direct realization through oscillator alge-
(iii) give two different Lax operators found in [28] and bra,s™ = ¢, s~ = ¢T, s = s — N, and corresponds to
[29] for the same relativistic Toda chain. Since hereanothersimple lattice NLSmodel [30]. Remarkably, a
we getg(u) = const, interchanging — —ip, p — —iu, further trivial choicem™ = 0 gives again algebra (4) and
(3) vyields simply §° = —ip, ST = ae™, generating therefore the same realization found before for the rela-
discrete time or a relativistic quantum Toda chain. tivistic case can be used, but now for thenrelativistic
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Toda chain2]. The associated Lax operator should how- Another way of constructing inhomogeneous models
ever be obtained from (6) along with the ratioRamatrix.  is to use different realizations of the general QdA (1) or
It should be noted that a bosonic realization of genera{5) at different lattice sites, depending on the typeRof
Lax operators like (2) and (6) can be found also in someanatrix. This may even lead to different underlying alge-
earlier works [10,31]. Apart from the discrete modelsbras and hence different Lax operators at differing sites
obtained above, one can construct a family of quantunopening up possibilities of building various exotic inho-
field models starting from their Iattice versions. Scalingmogeneous integrable models. Thus, in a simple example
first the operators such as, u;, c;, andy;, consistently  of impurity XXX spin chain, if we replace its standard

by lattice spacing\ and taking the continuum limih —  Lax operator at a single impurity site by a compatible

0, one gety; — p(x), ¢y; — ¥(x), etc. The Lax operator L,, = (A + ¢)ol, the Hamiltonian of the model is
L (x, A) for the continuum model is then obtained from modified to H = —(Zﬁm!m,l GiTjr1 + hp—imt1),

its discrete counterpart ab;(A) — I + iAL (x). The Where hp—tmi1 = =00 (Omi1 + Tmo1ohi1) +
associated® matrix however remains the same since itg) ;o2 . It gives an integrable quantum spin chain
does not contaih. Thusintegrable field modelbke sine  with a defect,where the coupling constant has changed
Gordon, Liouville, NLS, or the derivative NLS models are sign at the impurity site. If an attempt is made to restore
obtained from their discrete variants constructed above. the sign it appears in the boundary condition.

It is possible to further build a new class of models that Thus we have prescribed a unifying scheme for quan-
may be considered as the inhomogeneous versions of them integrable systems, where the models can be gen-
above integrable models. The idea of such constructiosrated systematically from a single ancestor model with
is to take locally different representations for the centraunderlying algebra (1). The Lax operators of the de-
elements, i.e., instead of taking their fixed eigenvaluesscendant models are constructed from (2) orgits> 1
one should consider them to be site dependent functionimit (6), while the variety of their concrete represen-
This simply means that in the expressionsgt#;) [20]  tations is obtained from the same general form (3) at

M= should be replaced b)Mj , and consequently in different realizations. The corresponding underlying al-
Lax operator (2) allc’s should be changed te;'s.  gebraic structures are the allowed reductions of (1). The
Thus in lattice models the values of central elementsassociated guanturR matrix however remains the same
may vary arbitrarily at different lattice pointsincluding  trigonometric or the rational form as inherited from the
zeros. This would naturally lead to inhomogeneous latticeancestor model. This fact also reveals a universal charac-
models. However since the algebra remains the same thegr for solving the models through algebraic Bethe ansatz
answer to the same quantu®nmatrices. Physically such (ABA) [2,34]. The characteristic eigenvalue equation for
inhomogeneities may be interpreted as impurities, varyinghe ABA is given byA,,(A) = a(W)[T/Z; f(A; — A) +
external fields, incommensuration, etc. B(A) 1f(/\ Aj), where the coefﬁmentsa(/\) and

Notice that in the sine-Gordon model, unlike its cou-g(A) are the only model-dependent elements; as being
pling constant, the mass parameter enters through theigenvalues of the pseudovacuum they depend on the con-
Casimir operator of the underlying algebra. Thereforecrete form of the Lax operator. The main bulk of the
taking M = —(Am;)?, one can construct a variable expressmn however is given through functions such as
mass dlscrete SG model without spoiling its integrabil-£()\) = —j i.e., as the ratio of two elements of tie
ity. In the continuum field limit it would generate a novel matrix and hence is universal for all models belonging to
sine-Gordon model with variable mass(x) in an exter-  the same class. Therefore all integrable models solvable
nal gauge field(x). In the simplest case the Hamiltonian through ABA can be given by almost a universal equation

of such a model would beH = [dx{m(x)(u,)> + based on a general model.
m~(x) (uy)* + 8[my — m(x)cod2au)]}. Similar mod- The author thanks Professor Y. Ng for his kind hos-
eIS may arise also in physical situations [32]. pitality and encouragement at North Carolina University,
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