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Quantum Effect of the Aharonov-Bohm Type for Particles with an Electric Dipole Moment
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In the effects of the Aharonov-Bohm type the topological properties of the phase shift are directly
related to those of the linear and angular momentum of the electromagnetic fields. This interpretation
leads to the formulation of a nonlocal topological effect for particles possessing an electric dipole mo-
ment. The experimental observation of this effect is within reach of atom or molecular interferometry.
[S0031-9007(99)09141-3]
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The electromagnetic (em) interaction is an importa
feature of several quantum effects such as the Aharon
Bohm (AB) [1] effect for charged particles and the
Aharonov-Casher (AC) [2] effect for magnetic dipoles
Recently, effects for electric dipoles have been propos
by Wilkens [3], Weiet al. [4], and Spavieri [5]. Differ-
ently from the AB effect, in the effects for magnetic an
electric dipoles the particles move in the presence of e
ternal em fields.

All these effects foresee an observable displaceme
of the interference pattern related to the phase shiftDf

of the wave function of the system. Most of them hav
either been already tested [6] or are within the possibili
of experimental verification. Effects for quadrupoles o
higher orders are unfeasible because they either requ
that the particle move in a medium or field strengths we
beyond experimental reach [7].

One of the aims of this Letter is to provide a unitar
description of the topological properties of the em inte
action involved in these effects. The main purpose is
formulate, using this description, a nonlocal, topologic
effect for electric dipoles where, as in the AB effect, n
fields act on the particle.

The interaction carries em energy, linear and angu
momentum which all add to that of the matter waves an
by modifying the phase of the wave function, generate t
phase shift. A general expression for the phase of the
and other effects readsf ­ h̄21

R
U dt where the term

U represents the em interaction energy. This express
has the inconvenience of not evidencing the topologic
(or geometrical) properties of the effects for which th
interaction energy has the formU ­ Q ? v ­ 2V , where
Q ­ ≠Uy≠v is the canonical momentum due to interactio
and V the potential energy. By means of the relatio
dx ­ vdt valid on the path of the particle,f is usually
expressed as a path integral, which in the AB effect rea
c21q

R
A ? vdt ­ c21q

R
A?dx, whereAsxd is the vector

potential of a solenoid. Placing the solenoid along th
z axis,A ­ 2ms2îy 1 ĵxdyr2 wherer2 ­ x2 1 y2 and
m is the magnetic dipole moment linear density. Th
topological properties become apparent by writingA ­
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2m=u for r fi 0, where u is the multivalued function
usxd ­ tan21sxyyd. Because of the singularity atr ! 0,
= 3 A ­ B ­ k̂2mdsrdyr and the AB phase shift takes
on the usual form

DfAB ­
1
h̄

I
Q?dx ­

q
h̄c

I
A?dx ­

q2m

h̄c

I
du

­
q
h̄c

I
B?dS ­

qF

h̄c
dn , (1)

where F ­ BS ­ 4pm is the magnetic flux of the so-
lenoid anddn is the difference between the topologic
winding numbersn of the Feynman paths encircling th
singularity.

This interpretation of the AB effect in terms ofF,
points out its topological properties but still does n
recognize the physical meaning of the quantityQ and the
constant quantityL ­ qFy2pc which gives the angular
rate of change of the phase shiftdsDfABdydu ­ Lyh̄ in
units of h̄. Furthermore, the interpretation in terms o
F does not apply to the other effects for magnetic a
electric dipoles.

In order to make apparent the topological properties
the em interaction and its intrinsic physical meaning,
is convenient to introduce the classical linear moment
of the em fieldsQem and the corresponding angula
momentumLem. Except for the sign, the momentumQ
and its angular momentumL ­ r 3 Q, are given by

Q ­ 6Qem ­ 6
1

4pc

Z
sE 3 Bdd3x0,

L ­ 6Lem ­ 6
1

4pc

Z
fx03sE 3 B dgd3x0,

(2)

where the minus sign applies to the AC effect andx0 is
the polar vector with origin at the position of the charg
For all the mentioned topological effects

L ­ k̂L ­ const, = ? Qsxd ­ 0 ,

and = 3 Q ­ L
dsrd

r
. (3)
© 1999 The American Physical Society
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It follows that the vector fieldQsxd is the curl of the
vector potentialTsxd:

Qsxd ­ = 3 Tsxd ,

with

Tsxd ­ s1y4pd
Z L

R
dsr0d

r 0
d3x0 ­ L lnsx2 1 y2d ,

whereR ­ fsx 2 x0d2 1 s y 2 y0d2 1 sz 2 z0d2g1y2 and
= 3 Q ­ = 3 = 3 Tsxd ­ =2Tsxd. Since Qsxd ­
Ls2îy 1 ĵxdyr2, the em momentum may be expresse
also as the gradient of the multivalued functionu, i.e.,
Qsxd ­ L=u, for r fi 0.

In the terminology of fluid dynamics (or of Berry’s
phase [8]), we may denote the singularity of= 3 Q ­
Ldsrdyr as thevorticity (or curvature) of the momen-
tum (or connection) Q and its flux through a surface
S,

H
s= 3 Qd?dS ­ 2pL as the vortex (or curvature)

strength. These geometrical properties ofQsxd and L
determine the topology of the phase shift:

Df ­
1
h̄

I
Q?dx ­

jLj

h̄

I
=u?dx

­
1
h̄

I
s= 3 Qd?dS ­

jLj

h̄

I
du ­ 2pn

L
h̄

. (4)

Equation (4) states that the angular rate of change of
phase shift is equal to the classical em angular moment
jLj measured in units of the quantum angular mome
tum h̄, and the phase shift is given by the vortex streng
2pL of the singularity measured in units ofh̄. A quantum
effect characterized by the phase shift (4) is topological
the sense that it depends only upon the topology of t
path with reference to the enclosed singular em vortex.

Since for the configuration of fields of the AB ef-
fect B ­ k̂2mdsrdyr, using Eq. (2) to calculateQ and
L, one findsQsxd ­ Ls2îy 1 ĵxdyr2 ­ sqycdAsxd ­
L=u and L ­ 2qmyc. Obviously, Eqs. (1) coincides
with Eq. (4) of which it is a special case.

In the AC effect a particle possessing a magnetic dipo
momentm moves in the presence of an external electr
field E produced by a line charge of linear densityl. In
this effect, the canonical momentum coincides with th
so-calledhidden momentumof the magnetic dipoleQ ­
Qh ­ m 3 Eyc ­ 2Qem [9]. Because of conservation
of total momentum,Qh 1 Qem ­ 0, and this explains the
minus sign in Eq. (2). For the AC effect,Q andL may
be calculated by writing in Eq. (2)B ­ 2=Fm 1 4pM,
whereFm is the scalar magnetic potential,M the mag-
netization, andm ­

R
Md3x0 the total magnetic moment.

The result isQ ­ Ls2îy 1 ĵxdyr2 ­ m 3 Eyc ­ L=u

andL ­ 2lmyc.
In these effects there is an elementary interaction

volving m andq where the magnetic fieldBq ­ 6v 3 E,
produced byq in relative motion, is experienced bym
in its rest frame. For the discussion about locality (o
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nonlocality), it is useful to derive a general expressi
for U in terms of the magnetic flux linked bym, namely,
U ­ Q ? v ­ 6qA ? vyc ­ 6qsm 3 xdjxj23?vyc ­
7sm 3 Ed?vyc ­ m ? Bq. Sincem ­ IAyc, whereI is
the dipole electric current andA its area, by summing al
the contributions,U ­

P
m ? Bq ­ IFqyc where Fq

is the total magnetic flux linked by the dipole(s). Thu
with v ? =u ­ Ùu, the phase reads

f ­
Z

U dt ­ L
Z

Ùu dt ­
I
c

Z
Fq dt (5)

(Fq is not the flux of the solenoid of the AB effect)
Thus, the phase rate of change isdfydt ­ h̄21U ­
h̄21L Ùu ­ sh̄cd21IFq anddWydt ­ ÙU ­ c21I ÙFq is the
work per unit of time done on the currentI. Equation (5)
is useful in the context of the discussion on the locality
the AC effect [10].

Before extending the above considerations to the c
of an electric dipole, it is convenient to recall the gene
expression of its phase [5]. An electric dipole movin
with a nonrelativistic velocityv may be thought of as
being composed of two charges6q separated by the sma
distancer0 ­ x1 2 x2. Let the position of the center o
mass bex and consider the expansionAsxid . Asxd 1

sxi 2 xd?=A. In the dipole approximation,Qsxd ­
sqycdAsx1d 2 sqycdAsx2d . sd ? =dAsxdyc where d ­
qr0 is the electric dipole moment. By means of th
principle of superposition of effects, the phase is the s
of the phases of each charge so thatf ­ h̄21

R
Q?dx ­

sh̄cd21
R

sd ? =dA?dx.
The same result has been obtained in Ref. [5] usin

Lagrangian formulation applied to a nonrelativistic mod
of a dipole (which may be induced by a uniform fieldE0)
where the two charges are held together by internal forc
If d0 is the dipole expectation value, the observable ph
shift reads

Df ­
1
h̄

I
Q?dx ­

1
h̄c

I
sd0?=dA?dx

­
1

h̄c

I
fB3d0 1 =sd0?Adg?dx , (6)

where, by using vector identities, we have made expl
the field-dependent termB 3 d0 related to the Röntgen
interaction [11]. Our result (6) for the phase shift of a
electric dipole differs from that proposed by other a
thors [3] and [4] due to the presence of the extra te
s1yh̄cd

H
f=sd0?Adg?dx. The difference is not trivial be-

cause, if the quantity=sd0?Ad turns out to be proportiona
to the gradient of the multivalued functionusxd, the inte-
gral

H
=sd0?Ad?dx ~

H
=u ? dx ­

H
du does not vanish.

Let us now consider a dipole moving in the presence
a vector potentialA and look for a current distribution tha
generates a phase shiftDf with a topology equivalent to
that of the AB effect. For our purpose, we use here
combination of the magnetic sheet configurations used
3933
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Refs. [3] and [5]. As shown in Fig. 1a, our sheet cove
the y-z semiplane (fromy ­ 0 to y ­ `) and is made of
lines of magnetic dipoles oriented in thez direction. If the
interferometric path has to encircle thez axis, a segment
of the path will have to intersect the magnetic sheet an
hole in the sheet must be left through which the particl
may travel undisturbed. Unless it is surrounded by a ri
of permeable material as discussed below, a small h
leaves potential and field practically unchanged.

If m is the magnetic dipole per unit of volume andt the
thickness of the sheet, then the magnetic field inside
sheet (0 # x # t) is B ­ k̂4pm and the corresponding
vector potential isAB ­ ĵ4pms2ty2 1 xd. Outside the
sheet, the magnetic field is zero. However, to obtain t
total vector potentialAsxd we have to add toAB the con-
tribution Amsxd ­

R
V fm3sx 2 xmdg jx 2 xmj23 d3xm,

due to the lines of magnetic dipoles. Actually, what on
needs are only the derivatives≠Amy≠x and ≠Amy≠y
which turn out to be≠Amy≠x ­ 22mtsîx 1 ĵydyr2,
≠Amy≠y ­ 2mts2îy 1 ĵxdyr2, where = 3 Am ­ 0
and= 3 A ­ =3sAB1Amd ­ B.

FIG. 1. (a) The beam of particles is split on the plane
motion before reaching the magnetic sheet where the fieldB
is confined within the sheet. The path encircles the singular
z and one segment of the interferometric path goes throu
a hole whereB ­ 0 because of the shielding of a ring
made of permeable material. Particles on opposite sides
the singularity acquire opposite phases and the phase of
outcoming beam is shifted by the observable amountDf.
(b) Interferometric path of particles possessing opposite elec
dipole moment6d0. In this case there is no need to split th
beam. Particles with opposite dipole moment acquire oppos
phases and the phase of the beam is shifted by the observ
amountDf.
3934
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The topology of our effect depends on the geometric
properties ofQ ­ c21sd0?=dA and its vorticity= 3 Q,
characterized by Eqs. (2) and (3) regardless of the dis
bution of sources, fields, and potentials. Takingd0 paral-
lel to them 3 v direction (here they direction), one finds
sd0?=dAB ­ d0≠yAB ­ 0 and, forr fi 0,

Q ­ c21sd0?=dAm ­ c21=sd0?Amd

­ c212d0mts2îy 1 ĵxdyr2 ­ L=u . (7)

The same result is obtained by calculatingQ andL using
expression (2) yielding, in agreement with Eq. (3),Q ­
= 3 T and= 3 Q ­ Ldsrdyr ­ k̂c212d0mtdsrdyr.

Inspection of Eq. (7) shows thatQ is not altered if at the
intersection of the path with the magnetic sheet the fieldB
vanishes. Thus, we may place a ring made of permea
material around the hole in the sheet so that the lines
the field are guided through the ring andB ­ AB ­ 0
in correspondence to the hole [12]. Another way to s
that Q is not affected by the permeable material, is
write, as in the right-hand side of Eq. (6),sd0?=dA ­
B 3 d0 1 =fd0?sAm 1 ABdg where =sd0?ABd ­
îd0y≠xABy ­ 2B 3 d0. Consequently,sd0?=dA ­ B 3

d0 2 B 3 d0 1 =sd0?Amd ­ =sd0?Amd as in (7). In
conclusion, by means of the permeable material, the fie
B and the vector potentialAB may be eliminated at the
intersection without altering the topological properties o
the phase and of the em momentumQ. In this case there
are no fields on the path of the particle andsd0?=dA ­
=sd0?Amd ­ =sd0?Ad so that, from Eqs. (4), (6), and (7),

Df ­
1
h̄

I
Q?dx ­

1
h̄c

I
=sd0?Ad?dx

­
1
h̄

I dsrd
r

L?dS ­
L
h̄

I
du

­
sdnd
h̄c

4pd0mt , (8)

and the phase shift possesses a nonlocal nature an
topology equivalent to that of the AB effect.

The difference between the other effects for electr
dipoles [3–5] and the present, which is a generalization
the AB effect, is apparent from the inspection of Eq. (6
The interpretation given in Refs. [3–5] is that the physic
origin of these effects is due to the Röntgen interactio
term B3d0 while

H
=sd0?Ad?dx ­ 0. In the present

effect, instead,B ­ B 3 d0 ­ 0 while
H

=sd0?Ad?dx fi

0. Thus, the experimental verification of result (8) is als
a test of these two contrasting interpretations.

To measure the phase shift, one needs to prepare a b
of dipoles in the statekdl ­ d0 fi 0, moving with uniform
velocity and withd0 in the direction of the vectorv 3 k̂m,
and employ interferometers in which the incoming bea
of particles (see Fig. 1a) is split into two coherent beam
that pass on opposite sides of the singularity and th
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recombine. Because of the em interaction, particles
opposite sides of the interferometric path acquire oppos
phases and the beam coming out is phase shifted by
amountDf to be measured by the interferometer.

An even simpler configuration consists of a beam o
particles formed by two coherent beams, not spatial
separated, possessingoppositeelectric moments6d0 and
made to pass through thesamevector potential. We do
not know if this arrangement is realizable with presen
technology but it is worth mentioning that, in order to
experimentally detect the AC phase, Sangsteret al. [13]
have developed such an arrangement formagneticdipoles.
In our case, particles with opposite dipole moments ca
be made to pass on one side of the singularity as shown
Fig. 1b. From Eq. (6), particles with6d0 acquire opposite
phase leading once more to the observable phase shift

Concerning the analysis of possible experimental ve
fication of the phase shift, we mention here the relate
relevant aspects considered in Refs. [3–5] The phase s
(8) is conveniently expressed as

Df , 4.0
d0

seaod
t

smmd
B

skGd
,

2aE0tB
h̄

.

These two equivalent expressions forDf are given in
physical and mks units, respectively, and the last term h
a form suitable for induced dipoles. Some atom inte
ferometers can detect phases of0.1 rad [14], and atomic
beam splitters may reach the supermillimeter range [15
Thus, the thicknesst may be of the order of1 mm and
both molecular (d0 , 4eao) or atomic (d0 # eao) inter-
ferometers may be used. For our configuration,B may
reach relatively high values because the solenoids e
tend from z ­ 2` to z ­ ` and, as in the AB effect
with a toroid, need not be open. By using material wit
high permeability or superconducting magnetic sheets, t
field strength may be well above the kG range. For a
kali atomsa , 10 3 1040 Fm2, and with B , 1 T and
E0 , 106 Vycm, it is possible to achieve a phase shif
greater thanpy2. In conclusion, this quantum effect for
electric dipoles may be observed in atom or molecular i
terferometry and its verification is within reach of presen
experimental technique.
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