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Condensation of N Bosons and the Laser Phase Transition Analogy
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A simple analytic expression for the ground state of a dilute ga¥ @feal bosons in a 3D harmonic
potential at temperatur is derived from the steady state solutions of nonequilibrium equations of
motion. TheN particle constraint plays the important role of introducing the essential nonlinearity
yielding a Ginzburg-Landau free energy. The present analysis has much in common with the quantum
theory of the laser, and with the laser phase transition analogy. [S0031-9007(99)09008-0]

PACS numbers: 03.75.Fi, 05.30.Jp

Bose-Einstein condensation (BEC) in dilute ultracold We emphasize that the present work provides another
gases has become a laboratory reality, notably the threexample [15] in which steady state (detailed balance) solu-
pioneering experiments reporting BEC in rubidium [1(a)], tions to nonequilibrium equations of motion provide a sup-
lithium [1(b)], and sodium [1(c)] and independent confir- plementary approach to conventional statistical mechanics
mation [2]. Furthermore, BEC experiments on dilute'He (e.g., partition function calculations). This is of interest
in porous media [3], excitons in GO [4], demonstration since, for example, the partition sums in the canonical en-
of interference between condensates [5], and the condegsemble are complicated by the restrictionNoparticles.
sate time development [6] are exciting developments.  Stated differently, the present approach lends itself to dif-

It is important, therefore, to understand the connectiorferent approximations, yielding, among other things, a
between BEC [7] and the ideal Bose gas [8], and th&imple (approximate) analytic expression for the ground
quantum theory of the laser [9,10], etc. In the latterstate density matrix foN trapped bosons [see Eq. (2)].
context, we recall that the saturation nonlinearity in the Thus, we derive a nonequilibrium master equation for
radiation matter interaction is essential for laser coherencghe ground state of an ideal Bose gas in a 3D harmonic trap
[11]. Is the corresponding nonlinearity in BEC due solelycoupled to a thermal reservoir; writing only the diagonal
to atom-atom scattering, or is there a coherence generatiRgements (the off-diagonal elements will be presented
nonlinearity even in an ideal Bose gas? We shall see thaflsewhere), we find
the latter is the case; the laser phase transition analogy [12]

provides insight into such questions. p. — (N + 1 1 1) - 1)

With the above in mind, and stimulated by a recent ar- « *"*™ ¢ o 1) = (o + 1)
ticle [13], we here extend our previous laser-phase tran- TN + Do — n2
sition analogy to the problem of ideal bosons in a ¢ \ o = mo)pns =101
3D harmonic potential coupled to a thermal reservoir. T
This “simple” problem turns out to be surprisingly rich. “\7 Nnopngny = (0 + Dpngsin+11,
For example, we obtain, for the first time, a simple ana- 1

lytic expression for the ground state density matrix for

N ideal bosons in contact with a thermal reservoir [seavhere|no) is the eigenstate of, bosonsx is a rate con-
Eq. (2)]. TheN particle constraint is included naturally stant,N is the total number of bosonE,is the temperature
in the present formulation and introduces the essentiadf the heat bath, anfl. is a transition temperature, the pre-
nonlinearity [14]. cise meaning of which is discussed later.
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The steady state solution for Eq. (1) is states|A) using pu,., = [ d*AP(A)(nolA)(Alng), we
| T 39N —ng N find for T = T., P(A) = exd—BG(A)]/Z, with the
Prome = — [N(—) } — (2)  Ginzburg-Landau-type free energ§(A) = a(T,T,) X

Zv | \Tc (N = no)! AP + b(T,T) Al

The correspondence between the expressionPfdr)
and its laser analog is very close, in accord with Ref. [12].
The bosonic ground state is indeed much “like a laser”; and
SN in this context we note that the off-diagonal generalization
Zy = (1) ] dre " T/T (1 1 N 3) of Eq. (1) yields a finite “phase diffusion” linewidth fak.
0

where theN boson normalization state functiafiy is
an incomplete gamma function which is conveniently
expressed as

T, This will be discussed elsewhere.

Equati o) i . it of thi ) e th Having presented the master equation, Eg. (1), and
quation (2) is a main resutt of this paper, we note thakq,q of the physics it contains, we sketch its derivation
Pnyny 1S NOt @ Poisson distribution as would be expecte

nd limitations. Our reservoir consists of an ensemble
for a coherent state.

. . of simple harmonic oscillators having a large frequency
Proceeding further to glean the physics from Eqg. (2)’spread S0 as to ensure Markovian dynamics.

we note that it yields the following analytical expressions Defini _ —
' efinin 1= Tr 1oy, wWher =
for the average and the variance [16] of the number O{n] 1 gZ Z“’"“ ) azn{gk}'nk Resd’;"g’({)’f{g’g"{{’ﬁ}e trac:{gf/};er the
. . . ) LI LR €s
bosons in the ground state (see Fig. 1): reservoir, we seek the equation of motion for, ,;, as it

T 3 T 3 , evolves due to interaction with the reservoir [17], which is
(o) =1 1=\ ] [N+ {5 | N2y, (4)  governed by the interaction Hamiltonian,

V(i) =D gixb (Da(t)al () + adj.,  (6)

whereg; ; is the coupling strength between tjid reser-
(5)  voir oscillator and a gas atom being cooled from thie

3
And = (nd) — (no)? = (Tl) NI = (o) + D/Z4],

wherezly = Zy[N(T/T.)*]V. level of the trap into its ground state. The raising operator
In the limit that? — T, we find (by a steepest-descent for the jth reservoir oscillator EH0) = b;r_(()) expliw,1).

approximation) Zj _,\/m; therefore (ng(T,)) = The boson annihilation opgrator is given hy(r) =
AN, andAnd(T,) =~ N — N@/m + J2/N7). a;(0)exp(—ivit), where Ay is the energy of thecth

+o0 .
In developing the laser phase transition analogy th&tate of the 3D trap, ana (¢) is the ground state creation

“touch stone” was the Glauber-Sudarsharistribution. ~ OPerator. _ , ,
Thus, when we expand the density matrix in terms of e proceed via the exact dynamical equation

coherent (i.e., eigenstates of the annihilation operator . !
e e PN == [ S (b bl
% {nh{m}
126 . X [V, IV (), p( ] o, ik A0 ), (7)
N =100 / where|{n;}) = |In1,m2,...,mj,...) is the reservoir state

4/ with 1, quanta in the first oscillatory, in the second,
etc., and the summation excludes the ground state.
Inserting Eq. (6) into Eq. (7), we convert the sum over
reservoir states to an integral, and note that oscillators for
which w; = v, dominate. Hence, slowly varying quan-
tities such as the density of states facWy, matrix ele-
mentsg jx, and Bose factorg; may be evaluated gt= .
The resulting integration ovep; yields a temporal delta
/ \ function, since [ dwjexpi(vy — wj)(t —t') =276(t —
k t"), and the master equation becomes Markovian. We fur-
0 0.2 0.4 0.6 0.8 1 1.2 ther note that the reservoir is only weakly coupled to the
T/T. Bose gas and take the reservoir oscillators and the excited
states of the Bose gas to be populated according to equi-
librium statistical mechanics. Proceeding along these lines

272
80

(nO) [ 136,

FIG. 1. At sufficiently low temperaturesiny) = N[1 —
(T/T.)?] (curve 3) andAny = NY2(T/T.)*? (curve 4). Near

T,, corrections are appreciable (of ordgv); see curves 1 We_ find

and 2. Inset: time evolution of average number given by p, ., = — Ku,(no + 1)pngny + Kng—110Pne—1,n0—1
integration of Eq. (12) truncated according to Ref. [20] (see _

text). Parameters ar&y = 1600, T/T. = 0.94, vertical axis Hynopngny + Hug1(n0 + Dpng+1mg+1 -
{(no), horizontal axis time in units ok ~"'. (8)
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The cooling and heating coefficients,, and H,, are  Equation (11) is plotted for a 3D oscillator trap in Fig. 2,
given by K,, = >, 2aWig{me + 1){(nx)n, and H,, =  as is the distribution from the (1997) papers of Wilkens,
S 2mWigh(mi) (e + 1), where(n;) is the average Weiss, Grossmann, and Holthaus (WWGH) [8]. We con-
occupation number of théth heat bath oscillator as in clude that the simple analytic (but approximate) expres-
Eq. (11), andny),, is the average number of atoms in the sion (11) describes the ground state quite well even for
kth excited state, given, atoms in the condensate. We N = 100. Numerical analysis shows that, for = 10,
evaluatek,, and H,, in varying degrees of rigor. One Pu,n, @Ndp,, », given by Egs. (2) and (11) converge; for
of the most illuminating is to note that for the bulk of N = 10?, their peaks differ by some 10%.
the excited states the factofs, + 1) and(n; + 1), as For smallN, the critical temperature should now be re-
they appear inH,, and K,,,, can be replaced by unity. defined by modifying Eq. (10) so that3) (ksT/iQ)’ —

For simplicity, we take27W;gi = «; in later work k  JH, and then the modified critical temperatufe is de-

dependence wiII_be prese_nted. _ fined by _’7—[(%0) = > {[expiQ) (€ + m + n)/kgT.] —
Then the heating term is approximately 1}-! = N, in agreement with Ketterle and van Druten [19].
| We remark in closing that, as for the laser, Eqg. (1)
H, = KZ(??(Gk)) =k Z T —— 3 .  implies a coupled hierarchy of moment eguatiqns which
k €m,n are useful in analysis of the time evolution; we find
In the weak trap limitH = k(kgT/hQ)3(3), where 4 =y , [Ty
£(3) is the Riemann zeta function, ard is the trap E<”g> = Z<l> (niTHeN| 1 — (—1)¢! l(T—>
frequency. i=0 ¢
Likewise, the cooling term in Eq. (8) is governed by ; 4 i1
the total number of excited state bosons, ()N = kl(np"™) + (gD
(12)
Kny = & D Anihny = k(N = no). 9)
k Equation (12) can be solved numerically when a proper

runcation scheme is devised. This has been carried out in
ef. [20]. See the inset of Fig. 1 for the present problem.
When truncating the third moment, onlyi) and (i3)
are involved (i.e.M = 2 in the inset of Fig. 1); and the
X truncation prescription i&3) = [2(n2)!/2 — (ny)]*.
. kgT \ The present paper is largely devoted to equilibrium
(g) = K[N<”0> = (ng) = £0) (ﬁ—Q> <"0>} (10) " guestions, and such results are relatively insensitive to the
details of the model. For example, Eq. (2) should describe

The preceding suggests new ways to motivate th
critical temperature for smaly. By writing the equation
of motion for (ny) from Eq. (8), usingZ{ in the weak
trap limit, and (9) fork,,, we find

We may obtairT, in two ways.
Proceeding dynamically, we note that, néar (ng) <

N, and we may negleatnd) compared taN{(no). Then *° ; - 30
Eq. (10) becomesing) = k[N — {(3) (ksT /1) {no). 100 N=1000
We now define the critical temperature (in analogy | tre-oss | T/Tc=0.58

with the laser threshold) such that cooling (gain) equals
heating (loss) andny) = 0 at T = T; this yieldsT, =
[7Q /ks) (N/{(3)]'/3. =1

Alternatively, from a statistical mechanical point of ° | |
view, we may defind’. as the temperature at which)
vanishes when neglecting fluctuations. That is, replacing
(nd)y = (no)* in EQq. (10), the steady state solution is *
N — {(ng) = £(3) (kgT/hQ)?; and (ny) vanishes when
T = [Q/kg) (N/£(3)]V3.

In terms of T., the heating rate is therHd,, =
kN(T/T.)*. Inserting this and (9) fok,, into Eq. (8)
yields Eq. (1). For other potentials [18], the sumJif
changes and the results will be presented elsewhere. %.4 06 0.8 1 %s 0.0

When we do not go to the weak trap limit, but keep the
entire sum inH,,,, we have

10 B

FIG. 2. Equation (11) (solid line) for probability of having

no bosons in ground state of 3D harmonic trap compared

1 N with WWGH (dot-dashed line), for 100 and 1000 atoms with

;;n = [ ¥ it (11) T/T. = 0.58, vertical axis: N X p,,,, and horizontal axis
R/ (N — np)! ny/N for both graphs.
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N atoms in a harmonic trap at steady state reasonably

well.

conceptually different from the present heat bath model.

The
gas

gel would play the role of the heat bath. Nevertheless,
a master equation having the form of Eq. (8) would be
expected for any cooling mechanism, and the structure of
Eqg. (1) has a certain aesthetic appeal.

In

see also A. Rohrl, M. Naraschewski, A. Schenzle, and
H. Wallis, Phys. Rev. Lett78, 4143 (1997). For a dis-
cussion of the “phase” of a Bose condensate, see A. Leg-
gett, inBose Einstein Condensati¢Ref. [4]), p. 452.

6] See especially the time evolution experiments by H.-J.
Miesner, D. Stamper-Kurn, M. Andrews, D. Durfee,
S. Inouye, and W. Ketterle [Sciencr9 1005 (1998)]
and the theoretical work of D. Jaksch, C. Gardiner,
K. Gheri, and P. Zoller [Phys. Rev. A8, 1450 (1998)]
and C. Sackett, H. Stoff, and R. Hulet [Phys. Rev. Lett.
80, 2031 (1998)].

However, the dynamics of evaporative cooling is

present model would be rather closer to the diluté He
in porous gel experiments [3] in which phonons in the |

summary, (i) We derive a master equation for the

cooling of N bosons towards the ground state via energy [7] The classic works in Bose gas physics by Bogolubov,

exchange with a “phonon” heat bath, which incorporates
the N particle constraint in a simple and natural fashion.

In the weak trap limit the master equation takes an aes-
thetically pleasing form. The steady state solution yields a

Huang, Lee, and Yang are well presented by K. Huang
[Statistical Mechanics (Wiley, New York, 1987),
Chap. 19]. See also R. Arnowitt and M. Girardeau,
Phys. Rev.113 745 (1959). For more recent work, see
G. Baym and C. Pethick [Phys. Rev. Lef, 6 (1996)]

simple analytic expression for (ii) th€ boson state func-
tion Zy, (iii) the ground state boson statistips, ,,, and
(iv) a quasiprobability density for the order parameter

and the forthcoming review article by S. Stringari
et al. (http://www.lanl.gov).

in te

the fact that thev particle constraint introduces a nonlinear
effective interaction. (v) Simple analytic expressions are

[8] For fluctuations in a Bose gas, see H. Politzer, Phys. Rev.
A 54, 5048 (1996); S. Grossmann and M. Holthaus, Phys.
Rev. E54, 3495 (1996); C. Herzog and M. Olshanii, Phys.

Rev. A55, 3254 (1997); P. Navez, D. Bitouk, M. Gajda,

rms of a Ginzburg-Landau free energy deriving from

obtained forny) andAn3. (vi) A new “derivation” of the
critical temperature valid for small is developed dynami-

Z. ldziaszek, and K. Rzaaewski, Phys. Rev. Lé&.1789
(1997); M. Wilkens and C. Weiss, J. Mod. Ogy, 1801
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