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Onset of Particle Rotation in a Ferrofluid Shear Flow

Hanns Walter Müller
Max Planck Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany

and Institut für Theoretische Physik, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Ge
(Received 22 December 1998)

A ferrofluid shear flow subjected to a magnetic field is investigated in the limit where viscous
and magnetic forces prevail over thermal fluctuations. When the viscous torque slightly exceeds the
magnetic hold torque the nanoparticles start to rotate anharmonically. By means of a weak field
modulation, the rotation of the particles can be phase synchronized generating an overproportiona
ac contribution to the magnetization. The investigation is theoretical and based on the Fokker-
Planck equation for a monodisperse ferrofluid of noninteracting spherical rigid dipoles. A resonance
experiment is proposed by which the onset of this coherent particle rotation can be measured.
[S0031-9007(99)09097-3]
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A ferrofluid is a colloidal suspension of ferromagneti
monodomain nanoparticles in a liquid carrier [1]. The flui
behaves like a paramagnetic gas of high permeability. T
magnetic relaxation is dominated by two distinct mech
nisms: The Néel relaxation describes the reorientation
the magnetic moment relative to the atomic lattice. Th
is in contrast to the Brownian process, where the magne
moment is tightly fixed to the crystal orientation (rigid
dipole), and relaxation takes place via rotation of the who
particle relative to the fluid. For sufficiently large par
ticles (magnetic core diameter*10 nm for magnetite) the
Brownian mechanism prevails. One of the most excitin
properties of ferrofluids is related to the coupling of th
microscopic particle rotation to the macroscopic vorticit
of the flow. In a static magnetic field the magnetic torqu
prevents particles from rotating and thus causes an ex
viscous dissipation in the carrier liquid, which leads to a
enhanced effective viscosity [2,3]. This is the so-called r
tational viscosity. On the other hand, an ac magnetic fie
with frequencyv close to the local vorticityV ­ 1

2 = 3 v
can resonate with the particle’s rotation. Depending o
whetherv , V or v . V energy is transferred from the
flow field into the magnetic field or vice versa. In the for
mer case the particle rotation is slowed down and an ex
ac magnetization component transverse to the applied fi
can be detected (magnetovortical resonance) [4,5]. In t
opposite casev . V the ac field speeds up the particle’s
rotation, which leads to a negative viscosity increme
[6–8] associated with the expression “negative viscosity

The above mentioned phenomena are intimately rela
to the presence of suspended particles in the fluid.
weak magnetic fields the particle rotation follows the loca
vorticity of the flow, while in strong fields the dipole orien-
tation is held fixed by the magnetic torque. It is thus a cha
lenging problem to design an experimental arrangeme
by which the onset of particle rotation can be detected. T
idea is that a weak modulation superimposed to a stro
static magnetic field gives rise to an overproportional (no
0031-9007y99y82(19)y3907(4)$15.00
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linearly enhanced) resonance signal as soon as particle
tation has set in. In what follows this question will b
addressed in detail. For simplicity a monodisperse fe
rofluid of noninteracting rigid dipoles (spheres with poin
dipoles at their centers) is considered. Each particle h
a hydrodynamic volumeV (magnetic core plus surfactan
shell) and carries a magnetic momentm ­ me, wheree
is a unit vector. Even though real ferrofluids are poly
disperse, only the larger Brownian particles promote t
desired effect; the smaller Néel particles do not contribu

The system under consideration is a stationary pla
Couette flowvsrd with spatially homogeneous vorticity
Vey ­ 1

2 s= 3 vd (see Fig. 1). The ferrofluid with dy-
namic viscosityh is exposed to a homogeneous magne
field H0 ­ H0ez. Although thermal fluctuations are
crucial for the particle dynamics in ferrofluids, let us firs
consider the deterministic motion as it is useful to outlin

FIG. 1. A stationary plane Couette shear flowvsrd with uni-
form vorticity Vey ­ 1

2 s= 3 vd is exposed to a homogeneou
magnetic fieldH ­ Hez.
© 1999 The American Physical Society 3907
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the idea. Ignoring inertial effects, the dipole orientatio
estd ­ ssinu cosf, sinu sinf, cosud obeys an evolution
equation given by Ref. [9]. To simplify the discussio
we discuss here the two-dimensional rotation in thex-z
plane (i.e.,f ­ 0) governed by

1
V

du

dt
­

1
k

sinu 1 1 . (1)

Equation (1) reflects the angular momentum balance b
tween the magnetic body couplem 3 H0 and the viscous
friction 6hVVey . The latter one is the classical hydrody
namic expression for the viscous torque of a macrosco
sphere floating in a carrier fluid [10]. Equation (1) (or it
3D generalization) can be integrated analytically [9]. Th
character of the solution depends on the nondimensio
shear ratek ­

6hVV

mH0
. For jkj , 1 the solution relaxes to

a stationary state with sinu ­ k andf ­ 0. On the other
hand, forjkj . 1 the azimuthal anglef again relaxes to
0 but ustd becomes oscillatory indicating that particle ro
tation has set in. Forjkj close above unity the rotation is
extremely anharmonic but becomes increasingly unifor
asjkj rises (Fig. 2). The particle’s rotation frequencyvP

is independent of the initial orientation [9] and given by

vP ­ V

s
1 2

1
k2 . (2)

Clearly, the outlined deterministic one-particle dynamic
is not appropriate for the description of the many bod
system ferrofluid. To obtain a macroscopic magnetizati

FIG. 2. The longitudinal component cosu of the orientational
unit vectorestd as a function of time. The curves are calcu
lated by numerical integration of Eq. (1) with a dimensionles
shear ratek ­ 1.1 (a) andk ­ 5 (b). Within the depicted time
interval initial transients have died out and a steady state ro
tion has been established. Fork ! 11 the rotation becomes
increasingly anharmonic, simultaneously the oscillation peri
vP diverges.
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signal, two principal difficulties are to be overcome: (i) th
rotation of all particles must be phase synchronized su
that different dipole fields interfere constructively, an
(ii) the Brownian motion, which destroys any kind o
coherent particle motion, must be limited to a minimum
amount.

Problem (i) can be solved by weakly modulating th
applied magnetic field with a frequencyv close to the par-
ticle rotation frequencyvP . By replacing the static mag-
netic field H0 by Hstd ­ H0s1 1 ´ cosvtd with ´ ø 1,
the weak ac modulation acts like a clock generator. A
particle that does not perform an in-phase rotation expe
ences a small restoring force until it follows the prescribe
phase. This technique of phase locking has been chec
by numerical integration of Eq. (1): Several runs with dis
tinct initial dipole orientations lead always to the same lon
time phase behavior. Even ifv deviates from the optimum
valuevP by 20%, a modulation amplitude of́ ­ 0.1 suf-
fices to make the phase synchronization work. Obvious
the effect of this tiny modulation is enormous: Under st
tionary conditions (́ ­ 0) all particles rotate out of phase
as they start from random initial conditions. Since the
rotation is anharmonic, a finite butstationarymagnetiza-
tion remains. With the modulation switched on, the phas
synchronized dipole rotation generates an overproportio
ac contributionto the magnetization, which can be macro
scopically detected.

The preceding discussion is based on the determinis
evolution equation (1). To investigate whether the c
herent dipole rotation persists under the influence of t
thermal motion [problem (ii)] the investigation must b
based on a stochastic approach. The probability distrib
tion function (PDF)Pse, td for the dipole orientatione is
governed by the Fokker-Planck equation

2tB
dP
dt

­ h2aR ? fPRse ? ezdg

2 2tBVey ? sRPdj 1 R2P . (3)

Equation (3) describes rotary diffusion with additiona
contributions from magnetic and viscous torques [11–1
Here tB ­ 3hVyskBTd denotes the Brownian relaxation
time, kB is the Boltzmann constant, andT is the tempera-
ture. FurthermoreR ­ e 3 ≠y≠e is the angular momen-
tum operator andastd ­ mHstdyskBT d is the Langevin
parameter. Since the focus of this paper is on a determin
tic effect, the magnetic energy must dominate over therm
fluctuations, i.e.,a0 ­ mH0yskBT d ¿ 1. Furthermore,
since the particle rotation starts atjkj ­ 1, the condition
2tBV ­ 6hVVyskBT d ­ a0k ¿ 1 is necessary as well.
Because of the smallness of the Brownian relaxation tim
the last requirement is not easy to fulfill. Indeed, most fe
rofluid experiments are done in the limittBV ø 1. Nev-
ertheless, by the use of high viscosity carrier fluids (e.
pure glycerol as in Refs. [4,5]) Brownian relaxation time
up to 10 ms can be achieved. The conditiontBV ¿ 1
prevents Eq. (3) from being solved by a Taylor expansi
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in this quantity as previously done in Ref. [7]. Neithe
is a linearization around the equilibrium magnetization a
propriate since deviations are large by virtue of the stron
shear rate. Accordingly direct integration of Eq. (3) wil
be applied here. The decomposition of the PDF in
spherical harmonics

Pse, td ­ Psu, f, td ­
X̀
l­0

1lX
m­2l

al,mstdYm
l su, fd (4)

transforms Eq. (3) to an infinite set of coupled ordinar
differential equations, which can be numerically treate
by an appropriate cutoff atl # lmax, say.

The physical observable of the system is the macr
scopic magnetizationMstd related to the mean dipole ori-
entation by [14]

m0Mstd ­ mNkel . (5)

Here m0 is the vacuum permeability,N is the number
of particles per volume, andk. . .l denotes the statistical
average evaluated with the time dependent PDFPse, td.
In terms of the expansion coefficientsal,m one has for the
longitudinal componentMkstd ­ Mstd ? ez

kcosul ­

s
4p

3
a1,0 . (6)

In what follows results of a “numerical resonance ex
periment” with Eqs. (3) and (4) are presented. The da
are obtained on the basis of the following protocol: A
modulated magnetic field is imposed withastd ­ 10 3

s1 1 0.1 cosvtd. The shear ratek is varied between0
and 2.5 to pass over the onset of the particle rotation
k ­ 1. On keepingk fixed the modulation frequency is
scanned fromv ­ 0 to v ­ 2V to detect the resonance
maximum, which is expected atv ­ vP. On starting
from random initial conditions for theal,m the evolution
equations are solved by a Runge-Kutta procedure. For
runs the cutofflmax ­ 10 has been used. After the de
cay of initial transients the periodic time signal ofa1,0std
(longitudinal component of the magnetization) is decom
posed into Fourier amplitudesjAnj related to the frequency
channelsnv, wheren ­ 0, 1, 2, . . . . The static contribu-
tion jA0j is rather insensitive to variations ofv, while
the fundamental modejA1j exhibits a pronounced maxi-
mum atv ­ vmaxskd (see Fig. 3). This resonance, which
occurs atk $ 1, clearly reflects the onset of particle rota
tion. As v approachesvmax the phase locking mecha-
nism becomes increasingly effective, a growing numb
of particles rotates coherently, generating a modulation
tio jA1svmaxdjyjA0svmaxdj which can easily exceed100%.
Recall that the modulation ratio of the excitation signa
Hstd is only ´ ­ 10%. The square symbols in Fig. 4
demonstrate that thek dependence of the resonance fre
quencyvmax agrees fairly well with the deterministic re-
lation vPskd (solid line). Obviously, under the influence
of the thermal fluctuations the onset of particle rotation
shifted towards smallerk.
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FIG. 3. The modulation ratiojA1svdjyjA0svdj of the mag-
netizationMkstd as a function of the excitation frequencyv.
Dimensionless shear ratek as indicated. Resonance maxim
appear, providedk * 1 (onset of particle rotation).

It is also instructive to study the degree of anharmon
ity of the rotation. To this end a quantitative measu
can be established byG ­

P5
n­2 jAnjy

P5
n­1 jAnj, which

relates the power in the higher harmonics to the total o
cillation intensity [15]. In the inset of Fig. 4 it is shown
that the anharmonicity goes down with increasing she
rate as predicted from the deterministic particle dynam
shown in Fig. 2.

In what follows a possible experimental setup for th
observation of the coherent particle rotation is propose

FIG. 4. The resonance frequencyvmax as a function of the
shear ratek. Solid line:vPskd according to Eq. (2). Symbols
represent simulation results with the Fokker-Planck equation
for the plane Couette flow (squares) and a circular Poiseu
flow (circles). In the latter casek denotes the shear rate a
the inside of the capillary wall. Inset: By raising the shear ra
k the anharmonicityG goes down, indicating that the particle
rotation becomes increasingly uniform.
3909
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Since a plane Couette flow is inconvenient for an exper
mental realization, a capillary tube flow will be treated
here with an axis parallel magnetic field. Since the she
ratek within a Poiseuille tube flow is nonuniform (k ­ 0
at the center andkmax at the wall), cylindrical shells of
different radii superimpose to the effective magnetizatio
signalMkstd. The resulting Fourier amplitudejAPoiseuille

1 j
is thus a weighted superposition of the form

jAPoiseuille
1 skmax, vdj ­

É
2

k2
max

Z kmax

0
A1sk, vdk dk

É
,

(7)

whereA1sk, vd is taken from the Couette flow as depicted
in Fig. 3. Although this averaging procedure leads to
resonance broadening, the peaks atvmax are still easy to
identify (see Fig. 5). The open circles in Fig. 4 show tha
the shear rate dependence ofvmax for the tube flow is in
favorable agreement with the deterministic resultvPskd.

In order to meet the conditiontBV . 10, a high vis-
cosity ferrofluid (e.g., Ferrofluidics APG 933 withh ­
0.5 Pa s) is recommended. With a capillary diamete
of 2 mm and a length of20 cm the necessary pressure
drop is Dp . 4.8 3 105 Pa generating a through-flow
rate of about2 cm3ys. The associated Reynolds number i
.3, ensuring a laminar Poiseuille flow well below the
turbulence threshold. The magnetic dc-field amplitude
a0 ­ 10, is reached at the moderate field amplitudeH0 ­
21 kAym. The modulation frequencyvys2pd need not be
higher than200 Hz [16].

In summary, the present paper proposes an experim
to detect the onset of particle rotation in a ferrofluid shea
flow. A small ac component of the applied magnetic field

FIG. 5. The same as Fig. 3, but for the circular Poiseuill
flow. The quantitykmax is the maximum shear rate in the
capillary, i.e., at the inside of the tube wall.
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is greatly amplified (nonlinearly in the excitation) as so
as particle rotation has set in. This setup differs from
magnetovortical resonance experiments [4,5], which
operated at a pure ac magnetic drive. To prevent ther
fluctuations from masking the desired collective effe
the static magnetic field amplitude must be high (a0 .
10). Likewise the conditiontBV . 10 is necessary for
particle rotation to set in. This requires high viscos
ferrofluids with large Brownian relaxation times.

The analysis makes use of the idealized assumption
a monodisperse ferrofluid. Real ferrofluids, however, e
hibit a finite size distribution, which implies a distributio
of the individual rotation frequencyvP . This makes the
phase synchronization more difficult, but the phase lo
ing technique used here is probably robust enough to
erate successfully with a polydisperse ferrofluid.

Stimulating discussions with Mechthild Enderle an
Mario Liu are appreciated. This work is supported
the Deutsche Forschungsgemeinschaft (SFB 277).
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