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Onset of Particle Rotation in a Ferrofluid Shear Flow
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A ferrofluid shear flow subjected to a magnetic field is investigated in the limit where viscous
and magnetic forces prevail over thermal fluctuations. When the viscous torque slightly exceeds the
magnetic hold torque the nanoparticles start to rotate anharmonically. By means of a weak field
modulation, the rotation of the particles can be phase synchronized generating an overproportional
ac contribution to the magnetization. The investigation is theoretical and based on the Fokker-
Planck equation for a monodisperse ferrofluid of noninteracting spherical rigid dipoles. A resonance
experiment is proposed by which the onset of this coherent particle rotation can be measured.
[S0031-9007(99)09097-3]

PACS numbers: 75.50.Mm, 45.50.Dd, 47.32.—-y

A ferrofluid is a colloidal suspension of ferromagnetic linearly enhanced) resonance signal as soon as particle ro-
monodomain nanoparticles in a liquid carrier [1]. The fluidtation has set in. In what follows this question will be
behaves like a paramagnetic gas of high permeability. Thaddressed in detail. For simplicity a monodisperse fer-
magnetic relaxation is dominated by two distinct mecha+ofluid of noninteracting rigid dipoles (spheres with point
nisms: The Néel relaxation describes the reorientation odlipoles at their centers) is considered. Each particle has
the magnetic moment relative to the atomic lattice. Thisa hydrodynamic volum& (magnetic core plus surfactant
is in contrast to the Brownian process, where the magnetishell) and carries a magnetic moment= me, wheree
moment is tightly fixed to the crystal orientation (rigid is a unit vector. Even though real ferrofluids are poly-
dipole), and relaxation takes place via rotation of the wholealisperse, only the larger Brownian particles promote the
particle relative to the fluid. For sufficiently large par- desired effect; the smaller Néel particles do not contribute.
ticles (magnetic core diameterl0 nm for magnetite) the The system under consideration is a stationary plane
Brownian mechanism prevails. One of the most excitingCouette flowv(r) with spatially homogeneous vorticity
properties of ferrofluids is related to the coupling of theQe, = %(V X v) (see Fig. 1). The ferrofluid with dy-
microscopic particle rotation to the macroscopic vorticity namic viscosityn is exposed to a homogeneous magnetic
of the flow. In a static magnetic field the magnetic torquefield Hy, = Hpe,. Although thermal fluctuations are
prevents particles from rotating and thus causes an extrucial for the particle dynamics in ferrofluids, let us first
viscous dissipation in the carrier liquid, which leads to anconsider the deterministic motion as it is useful to outline
enhanced effective viscosity [2,3]. This is the so-called ro-
tational viscosity. On the other hand, an ac magnetic field

with frequencyw close to the local vorticit§) = %V Xv g v

DA

can resonate with the particle’s rotation. Depending or K
whethero < ) orw > () energy is transferred from the S
flow field into the magnetic field or vice versa. In the for- —
mer case the particle rotation is slowed down and an extr =7 planar Couette flow
ac magnetization component transverse to the applied fiel .
can be detected (magnetovortical resonance) [4,5]. Inth s z
opposite case > () the ac field speeds up the particle’s j
rotation, which leads to a negative viscosity increment e
[6—8] associated with the expression “negative viscosity.’ X
The above mentioned phenomena are intimately relatez = Z|

to the presence of suspended particles in the fluid. I
weak magnetic fields the particle rotation follows the local
vorticity of the flow, while in strong fields the dipole orien-

tation is held fixed by the magnetic torque. lItis thus a chal

lenging problem to design an experimental arrangemen ,

by which the onset of particle rotation can be detected. The|g 1. A stationary plane Couette shear fle¥r) with uni-
idea is that a weak modulation superimposed to a strongm vorticity Qe, = 1(V x v) is exposed to a homogeneous
static magnetic field gives rise to an overproportional (nonmagnetic fieldH = He,.

magnetic field H
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the idea. Ignoring inertial effects, the dipole orientationsignal, two principal difficulties are to be overcome: (i) the
e(tr) = (sind cosp, sind sing,coy) obeys an evolution rotation of all particles must be phase synchronized such
equation given by Ref. [9]. To simplify the discussion that different dipole fields interfere constructively, and
we discuss here the two-dimensional rotation in the (i) the Brownian motion, which destroys any kind of

plane (i.e.,¢ = 0) governed by coherent particle motion, must be limited to a minimum
1 46 1 amount.
T sind + 1. 1) Problem (i) can be solved by weakly modulating the
K

applied magnetic field with a frequeneyclose to the par-

Equation (1) reflects the angular momentum balance bdicle rotation frequencyop. By replacing the static mag-
tween the magnetic body coupie X H, and the viscous netic field Hy by H(r) = Ho(1 + ecoswr) with & <1,
friction 67V Qey. The latter one is the classical hydrody- the weak ac modulation acts like a clock generator. Any
namic expression for the viscous torque of a macroscopiparticle that does not perform an in-phase rotation experi-
sphere floating in a carrier fluid [10]. Equation (1) (or its ences a small restoring force until it follows the prescribed
3D generalization) can be integrated analytically [9]. Thephase. This technique of phase locking has been checked

character of the solution depends on the nondimension&ly numerical integration of Eq. (1): Several runs with dis-

shear ratac = 61’1‘20- For|k| < 1 the solution relaxes to tinctinitial dipole orientations lead always to the same long
a stationary sta"[?é With sh= « andé = 0. On the other time phase behavior. Evendf deviates from the optimum

hand, for|x| > 1 the azimuthal angleb again relaxes to Valuewp by 20%, a modulation amplitude of = 0.1 suf-

0 but#(r) becomes oscillatory indicating that particle ro- fices to make the phase synchronization work. Obviously
tation has set in. Fdik| close above unity the rotation is the effect of this tiny modulation is enormous: Under sta-
extremely anharmonic but becomes increasingly unifornfionary conditions £ = 0) all particles rotate out of phase
as|«| rises (Fig. 2). The particle’s rotation frequenoy ~ aS they start from random initial conditions. Since their

is independent of the initial orientation [9] and given by rotation is anharmonic, a finite bstationarymagnetiza-
tion remains. With the modulation switched on, the phase-

1 synchronized dipole rotation generates an overproportional
wp = QVI P (@) ac contributionto the magnetization, which can be macro-
scopically detected.

Clearly, the outlined deterministic one-particle dynamics The preceding discussion is based on the deterministic
is not appropriate for the description of the many bodyevolution equation (1). To investigate whether the co-
system ferrofluid. To obtain a macroscopic magnetizatioerent dipole rotation persists under the influence of the
thermal motion [problem (ii)] the investigation must be
based on a stochastic approach. The probability distribu-
tion function (PDF)P (e, t) for the dipole orientatiore is
governed by the Fokker-Planck equation

1.0

0.5

27p (2—1: = {—aR - [PR(e - e,)]

cos(8)
IS)
o

— 273Q0ey - (RP)} + R?P. (3)

Equation (3) describes rotary diffusion with additional
contributions from magnetic and viscous torques [11-13].
Here g3 = 31V /(kgT) denotes the Brownian relaxation
time, kp is the Boltzmann constant, afdis the tempera-
ture. Furthermor® = e X 9/de is the angular momen-
tum operator andx () = mH(t)/(kgT) is the Langevin
parameter. Since the focus of this paper is on a determinis-
tic effect, the magnetic energy must dominate over thermal
o ‘ fluctuations, i.e.,ag = mHy/(kgT) > 1. Furthermore,
1508 1523 1538 1553 since the particle rotation starts [at| = 1, the condition

time [1/0] 27500 = 6mVQ/(kgT) = agk > 1is necessary as well.
FIG. 2. The longitudinal component ab®f the orientational Because of the smallness of the Brownian relaxation time
unit vectore(z) as a function of time. The curves are calcu- the last requirement is not easy to fulfill. Indeed, most fer-
lated by numerical integration of Eq. (1) with a dimensionlessrofluid experiments are done in the limig) < 1. Nev-

shear ratec = 1.1 (a) andx = 5 (b). Within the depicted time ; ; ; ; ;
interval initial transients have died out and a steady state rota(?rtheless' by the use of high viscosity carrier fluids (e.g.,

tion has been established. Fer— 1+ the rotation becomes PU€ glycerol as in Refs. [4,5]) Brownian relaxation times

increasingly anharmonic, simultaneously the oscillation perioddP t0 10 ms can be achieved. The conditiop() > 1
wp diverges. prevents Eg. (3) from being solved by a Taylor expansion
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in this quantity as previously done in Ref. [7]. Neither 10 . — : —
is a linearization around the equilibrium magnetization ap- 8 I k=05 - k=08 |
propriate since deviations are large by virtue of the stron¢ 6 I ]
shear rate. Accordingly direct integration of Eq. (3) will al 1 ]
be applied here. The decomposition of the PDF intcz o F 1 ]
spherical harmonics o ‘ . ‘ ‘ ‘ ‘
= i x=1.0
Ple,t) = PO, ¢,0) = > > an¥'0,¢) (4 3 20t
1=0m=—1 <
transforms Eq. (3) to an infinite set of coupled ordinary% 1or .
differential equations, which can be numerically treatec g 0 }l e
by an appropriate cutoff dt= I, say. B
The physical observable of the system is the macro§ 200 L =z ] i
scopic magnetizatioM(z) related to the mean dipole ori- € ]
entation by [14] 100 | 1 " .
RoM(1) = mN(e). 5) N A
Here uo is the vacuum permeabilityy is the number 00 05 10 15 00 05 10 15 20
of particles per volume, and..) denotes the statistical modulation frequency «/Q

average evaluated With the tirr_1e_ dependent AHI¥E, 7). FIG. 3. The modulation ratidA,(w)l/|4(w)| of the mag-
In terms of the expansion coefficients,, one has for the netizationa (1) as a function of the excitation frequenay.
longitudinal componend|(t) = M(z) - e, Dimensionless shear rate as indicated. Resonance maxima
appear, provided = 1 (onset of particle rotation).
47
(coY) = ? ap . (6)
It is also instructive to study the degree of anharmonic-

In what follows results of a “numerical resonance ex-ity of the rotation. To this end a quantitative measure
periment” with Egs. (3) and (4) are presented. The datgan be established by = 3 _, 4,1/ 37 _, |A,l, which
are obtained on the basis of the following protocol: Arelates the power in the higher harmonics to the total os-
modulated magnetic field is imposed with(z) = 10 X cillation intensity [15]. In the inset of Fig. 4 it is shown
(1 + 0.1cosw?). The shear ratex is varied betweerd  that the anharmonicity goes down with increasing shear
and2.5 to pass over the onset of the particle rotation atate as predicted from the deterministic particle dynamics
k = 1. On keepingx fixed the modulation frequency is Shown in Fig. 2.
scanned fromw = 0 to w = 20 to detect the resonance In what follows a possible experimental setup for the
maximum, which is expected ab = wp. On starting oObservation of the coherent particle rotation is proposed.
from random initial conditions for the;, the evolution
equations are solved by a Runge-Kutta procedure. For all
runs the cutoffl,,, = 10 has been used. After the de- '
cay of initial transients the periodic time signal @fy(z)
(longitudinal component of the magnetization) is decom-
posed into Fourier amplitudé4,, | related to the frequency
channelsiw, wheren = 0,1,2,.... The static contribu-
tion |Ag| is rather insensitive to variations @, while
the fundamental modgd,| exhibits a pronounced maxi-
mum atw = wmax (k) (See Fig. 3). This resonance, which
occurs atk = 1, clearly reflects the onset of particle rota-
tion. As w approachesv,,x the phase locking mecha-
nism becomes increasingly effective, a growing number
of particles rotates coherently, generating a modulation ra:  %%3 o5 70 15 20 25
tio A1 (wmax)|/1Ao(wmax )| Which can easily exceet)0%. shear rate x
Recall that the modulation ratio of the excitation signalr|G. 4. The resonance frequenay..x as a function of the
H(r) is only e = 10%. The square symbols in Fig. 4 shear ratec. Solid line: wp(x) according to Eq. (2). Symbols
demonstrate that the dependence of the resonance fre-represent simulation results with the Fokker-PIa_\nck equayion (3)
quencywm, agrees fairly well with the deterministic re- for the plane Couette flow (squares) and a circular Poiseuille
lation p(x) (solid line). Obviously, under the influence flow (circles). In the latter case dgnotes the shear rate at

y : '~ the inside of the capillary wall. Inset: By raising the shear rate

of the thermal fluctuations the onset of particle rotation is, the anharmonicityl” goes down, indicating that the particle
shifted towards smallet. rotation becomes increasingly uniform.

Eq.(2)

o plane Couette flow

o circular Poiseuille flow =
o

'may

I
o
T

resonance frequency o, /Q

0
15 2.0 25

shear rate «
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Since a plane Couette flow is inconvenient for an experiis greatly amplified (nonlinearly in the excitation) as soon
mental realization, a capillary tube flow will be treated as particle rotation has set in. This setup differs from the
here with an axis parallel magnetic field. Since the sheamagnetovortical resonance experiments [4,5], which are
rate k within a Poiseuille tube flow is nonunifornk(= 0  operated at a pure ac magnetic drive. To prevent thermal
at the center and,,, at the wall), cylindrical shells of fluctuations from masking the desired collective effect,

different radii superimpose to the effective magnetizatiorthe static magnetic field amplitude must be high &

Poiseuille |

signalM||(t). The resulting Fourier amplitudd
is thus a weighted superposition of the form

2

2

max

|A1130iseuille(K_max’w)| —

f Al(k,w)k dk
0

>

()

whereA (k, w) is taken from the Couette flow as depicted
in Fig. 3. Although this averaging procedure leads to
resonance broadening, the peaksvgt, are still easy to

identify (see Fig. 5). The open circles in Fig. 4 show that

the shear rate dependencewf. for the tube flow is in

favorable agreement with the deterministic resa(«).
In order to meet the conditiong) = 10, a high vis-

cosity ferrofluid (e.g., Ferrofluidics APG 933 with =

10). Likewise the conditionrg{) = 10 is necessary for
particle rotation to set in. This requires high viscosity
ferrofluids with large Brownian relaxation times.

The analysis makes use of the idealized assumption of
a monodisperse ferrofluid. Real ferrofluids, however, ex-
hibit a finite size distribution, which implies a distribution
of the individual rotation frequencywp. This makes the

hase synchronization more difficult, but the phase lock-
ng technique used here is probably robust enough to op-
erate successfully with a polydisperse ferrofluid.

Stimulating discussions with Mechthild Enderle and
Mario Liu are appreciated. This work is supported by
the Deutsche Forschungsgemeinschaft (SFB 277).

0.5 Pas) is recommended. With a capillary diameter

of 2 mm and a length oR0 cm the necessary pressure
drop is Ap = 4.8 X 10° Pa generating a through-flow

rate of abou® cm®/s. The associated Reynolds number is [1] R.E. RosensweigFerrohydrodynamic§Cambridge Uni-

=3, ensuring a laminar Poiseuille flow well below the
turbulence threshold. The magnetic dc-field amplitude
ag = 10, is reached at the moderate field amplitufie=
21 kA/m. The modulation frequenay/(27) need not be
higher thar200 Hz [16].

In summary, the present paper proposes an experime
to detect the onset of particle rotation in a ferrofluid sheal
flow. A small ac component of the applied magnetic field
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FIG. 5. The same as Fig. 3, but for the circular Poiseuille
flow. The quantity k,.x iS the maximum shear rate in the
capillary, i.e., at the inside of the tube wall.
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