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Long-Range Néel Order in the Triangular Heisenberg Model
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We have studied the Heisenberg model on the triangular lattice using quantum Monte Carlo
techniques (up to 144 sites) and exact diagonalization (up to 36 sites). By studying the spin gap
as a function of the system size we have obtained robust evidence for a gapless spectrum, confirming
the existence of long-range Néel order. Our best estimate is that in the thermodynamic limit the order
parametern® = 0.41 + 0.02 is reduced by abouf9% from its classical value and the ground state
energy per site igg = —0.5458 * 0.0001 in units of the exchange coupling. We have identified the
ground state correlations that are important at short distances. [S0031-9007(99)09099-7]

PACS numbers: 75.10.Jm, 75.40.Mg, 75.30.Ds

Historically the antiferromagnetic spiry2 Heisenberg lgw) = > Q(x) exp(% > - j)Sfo> lx), (2
model on the triangular lattice was the first proposed x i
Hamiltonian for a microscopic realization of a spin liquid

ground state (GS) [1]: where |x) is an Ising spin configuration specified by

assigning the value of; for each site and

IfI=JZSi'Sj, 1) 2
i Qx) = T(x)exp[i e (Z $i— > S?)} (3)

where J is the nearest-neighbor antiferromagnetic ex- i€B i€C

change and the summations are over Spid-operators. represents the three sublattices (say A, B, and C) classical

At the classical level the minimum energy configuration, z : e
: . . Néel state in the lane multiplied by the three
is the well known120° Néel state. The question whether spin term WP P y

the combined effect of frustration and quantum fluctua-
tions favors disordered gapped resonating valence bonds
(RVB) or long-range Néel type order is still under de- T(x) = exp| iB Z %ijfoSi , (4)
bate. In fact, there has been a considerable effort to elu- (i,j k)
cidate the nature of the GS, and the results of numerical
[2—11] and analytical [12—16] works are controversial. Indefined by the coefficienty;; = 0, *1, appropriately
particular, the wide extension of exotic proposed GS likechosen to preserve the symmetries of the classical Néel
spin-nematic [17], chiral [18], and spin liquid of the State, and by an overall fact@ as discussed in Ref. [4].
Kalmayer-Laughlin type [2,9] gives an indication that the Since the Hamiltonian is real and commutes with the
problem has not been theoretically resolved yet. Frongomponent of the total spird,, a better variational WF
the numerical point of view, exact diagonalization (ED),0n a finite size is obtained by taking the real part of
which is limited to small lattice sizes, provides a very Ed. (2) projected onto th&, = 0 subspace.
important feature [6]: the spectra of the lowest energy For the two-body Jastrow potential(r) it is also
levels order with increasing total spin, a reminiscence oPossible to work out an explicit Fourier transform
the Lieb-Mattis theorem [19] for bipartite lattices, and vq, based on the consistency with linear spin wave
are consistent with the symmetry of the classical ordefSW) results and a careful treatment of the singular
parameter [6]. However, other attempts to perform a finitgnodes coming from the SB) symmetry break-
size scaling study of the order parameter indicate a scenariBg assumption [20,21]. This analysis gives, =
close to a critical one or no magnetic order at all [3,8]. 1 —+/1 + 2y,/1 — vy, for ¢ # 0 and 0 otherwise,
The variational quantum Monte Carlo (VMC) allows where vy, = [cos(gy) + 2cos(gx/2)cos(+/3 ¢,/2)]/3
one to extend the numerical calculations to fairly largeand theq momenta are the ones allowed in a finite size
system sizes, at the price to make some approximationsith N sites. For a better control of the finite size effects
which are determined by the quality of the variationalwe have chosen to work with clusters having all the
wave function (WF). Many WF have been proposedspatial symmetries of the infinite system [6].
in the literature [2,4,10] and the lowest GS energy In the square antiferromagnet (AF) the classical part
estimation was obtained with the long-range ordered typeby itself determines exactly the phases (signs) of the GS
In particular, starting from the classical Néel state, Huseén the chosen basis, the so-called Marshall sign. For
and Elser [4] introduced important two and three spinthe triangular case the exact phases are unknown and
correlation factors in the WF, the classical part is not enough to fix them correctly.
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Therefore, one has to introduce the three-body correlationmethod is plagued by the well-known sign problem.
of Eq. (4). Although these do not provide the exactRecently, to alleviate the above mentioned instability,
answer, they allow one to adjust the signs of the WF inthe fixed-node (FN) GFMC scheme [22] was introduced
a nontrivial way without changing the underlying classicalas a variational technique, typically much better than
Néel order. To this respectitis useful to define an averagthe conventional VMC. As shown in Fig. 1, and also
sign of the variational WF relative to the normalized exactpointed out in Ref. [23], for frustrated spin systems,
GS|yy) as this technique does not represent a significative advance
compared to VMC, leading therefore to results biased by
(s) = lyho(0) I sgrigry (x)ho ()], the variational ansatz.
with (x) = (x | 9).

In order to overcome this difficulty we have used a
recently developed technique: GFMC with stochastic
We have compared the variational calculation withreconfiguration (SR) [23], which allows us to release
the exact GS obtained by ED on thé = 36 cluster. the FN approximation, in a controlled but approximate
For completeness we have considered the more genenahy, yielding, as shown in Fig. 1, a much more accurate
Hamiltonian with exchange easy-plane anisotropy energy forN = 36. Furthermore, the agreement with the
ranging from theXY case & = 0) to the standard expected size scaling [16] indicates no sizable loss of
spin isotropic casea( = 1). As shown in Table I, in accuracy with increasing size. In the appropriate limit
the variational approach the most important parametef23] of a large number of walkers and high frequency of
particularly fora — 1, is B, the one controlling the triplet SR, the residual bias introduced by the SR depends only
correlations. Though the overlap of our best variationalbn the numbep of operators used to constrain the GFMC
WF with the exact GS is rather poor, the average ¢ign Markov process. These constraints, analogously to the
is in general very much improved by the triplet term. OurFN one, allow simulations without numerical instabilities.
interpretation is that short-range many body correlationgn principle, the exact answer can be obtained, within
are very important to reproduce the relative phases of thetatistical errors, providegp equals the huge Hilbert
GS on each Ising configuration. The optimal parameterspace dimension. Practically, it is necessary to work
for our initial guessyy of the GSy, are expected to Wwith small p, and an accurate selection of physically
be very weakly size dependent but they are very difficultrelevant operators is crucial. As can be easily expected,
to determine accurately for large sizes. kor= 1 and  the short-range correlation functiod$S; and (5;"S; +
N = 36, where ED is still possible, our best guess forSi’Sj-*) contained in the Hamiltonian give a sizable
the GS WF—with the maximum overlap and averageimprovement of the FN GS energy when they are put
sign—is slightly different from the one determined with in the SR procedure. In order to be systematic we
the optimization of the energy. Since the forthcominghave included in the SR the short-range correlations
calculations, which significantly improve the VMC, are generated byi/> (see Fig. 2), averaged over all spatial
more sensitive to the accuracy of the WF rather than t@ymmetries commuting with the Hamiltonian. These local
the one of the GS energy, henceforth we have chosen torrelations are particularly important to obtain quite
work with g8 = 0.23 for all the system sizes. accurate and reliable estimates not only of the GS energy
One way to get more accurate GS properties is to use
the Green function MC technique (GFMC). As in the

(5)

fermionic case, for frustrated spin systems this numerical - T~ T T T ]
-0.82 - —
TABLE I. Average sign, overlap, GS energy, and its per- CAa .
centage error obtained with the variational WF of Eq. (2) for - - -e: ---------------------------------- q
N =36 and some values of the easy-plane anisotrepy N —0.54 ‘—\ﬁ':::;-;-;..,. e A =
The calculations were performed by summing exactly over all © (oo B - T i
the configurations. T -~ T
~0.56 - B, G
@ B (s) (o | v )? Eo/J % - = ]
0.00 0.0 0.9942 0.8610  —14.5406 1.7 i il
0.09  0.9952 0.9303 —14.6813 0.8 058 T RSN ST
050 00 09100 05274 164229 4.0 0 o002 .00 0.006
0.14  0.9597 0.6650 -16.7016 2.4 N
B FIG. 1. GS energy per sitey, = Ey/N, in units of J, as a
0.75 0.0 0.8200 03712 17.5459 55 function of the system size, obtained with VMC (full triangles),
0.17  0.9183 0.5353 —17.9630 3.2 ; -
i i : : : FN (empty dots), and SR witlp = 7 (full dots) techniques.
1.00 0.0 0.7331 0.3157 —18.5275 8.2 SW size scaling [16] is assumed and short-dashed lines are
019 09323 05743  —19.4400 3.6 linear fits againstl/N*2. The long-dashed line is the SW
023 09372 0.6070 —194239 3.7  Prediction, the empty triangle is thé = 36 ED result, and the
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empty squares are data taken from Ref. [10].
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but also of themixed averageg24] of the total spin N-1

2 12 :
squareS;, and of the order parameter™ (defined as FIG. 3. Size scaling of the spin gap to tlfe= 3 excitation

in Ref. [6]). The_se gquantities are easi!y estimated within,,i-ined with VMC, FN, and SR = 7) techniques. The
the GFMC technique and compared with the exact valuegng-dashed line is the linear SW prediction, and the solid line

computed by ED fotv = 36 in Table Il. In particular, it is the weighted linear fit of the SR data far = 36.
is interesting that, starting from a variational WF with no
definite spin, the GS singlet is systematically recovered
by means of the SR technique. Furthermore, as it isattice sizes for which a comparison with ED data is
shown in Fig. 1, the quality of our results is similar to the possible, the spin gap estimated with the SR technique
variational one obtained by Sindzinget al. [10], using is nearly exact. The importance to extend the numerical
a long-range ordered RVB wave function. The latterinvestigation to clusters large enough to allow a more
approach is almost exact for small lattices, but the sigmeliable extrapolation is particularly evident in the same
problem is already present at the variational level, andigure in which theN = 12 and 36 exact data extrapolate
the calculation has not been extended to high statisticdinearly to a large finite value. This behavior is certainly
accuracy or tav > 48. a finite size effect, and it is corrected by the SR data
Having obtained an estimate for the GS energy, afor N = 48, suggesting, strongly, a gapless excitation
least an order of magnitude more accurate than our bespectrum (E; — Ey)/J = 0.002 = 0.01].
variational guess, it appears possible to obtain physical As we have seen, GFMC allows one to obtain a
features, such as a gap in the spin spectrum, that arery high statistical accuracy on the GS energy, but
not present at the variational level. For instance, in thaloes not allow one to compute directly GS expectation
frustrated/,-J, spin model, with the same technique andvalues (|0|o) [24]. A straightforward way is to
a similar accuracy, a gap in the spin spectrum was foungerturb the Hamiltonian with a term A0, calculate the
in the thermodynamic limit, starting with a similar ordered energy E(A) in the presence of the perturbation, and,
and therefore gapless variational WF [23]. by Hellmann-Feynman theorem, estimaigy|O|) =
In the isotropic triangular AF, the gap to the first spin —dE (A)/d A| ,—o with few computations at differersimall
excitation is rather small. Furthermore, for the particularA’s. A further complication for nonexact calculations
choice of the guiding WF (2), the translational symmetrylike the FN or SR is that, if the off-diagonal matrix
of the Hamiltonian is preserved only if projected ontoelementsO, . of the operatorO (in the chosen basis)
subspaces with total¢,, multiple of three. Suchasi =3  have the opposite sign of the produgty (x')iy(x),
excitation belongs to the low-lying states of enerfy  they cannot be handled exactly within FN because these
and spinS of the ordered quantum AF, behaving asmatrix elements change the nodes %§. A way to
Es — Ey = S(S + 1)/N [6]. IfinsteadEs — E, remains  circumvent this difficulty is to split the operat@ into
finite for § = 3 and N — o, this implies a disordered three contributions:0 =D + O + O, where O+
GS. For all of the above reasons we have studiedO ) is the operator with the same off-diagonal matrix
the gap to the spirf = 3 excitation as a function of elements of0 when they have the same (opposite) signs
the system size. As it is shown in Fig. 3, for the of ¢v(x")¢v(x), and zero otherwise, whereds is the

TABLE Il. Variational estimate (VMC) and mixed averages [24] (FN, SR, and Exact) of the GS energy per site, of the total
spin square, and of the AF order parameterNor= 36. SR data are obtained using the first two € 2), four (p = 4), and all
(p = 7) the correlation functions shown in Fig. 2.

VMC FN SR(p = 2) SR(p = 4) SR(p = 7) Exact
eo/J —0.5396 —0.5469(1) —0.5534(1) —0.5546(1) —0.5581(1) —0.5604
S2, 1.71 1.20(1) 0.65(1) 0.46(1) 0.02(1) 0.00
mt? 0.7791 0.7701(4) 0.7659(2) 0.7546(3) 0.7512(3) 0.7394
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I LA e i e e o o o o the variational calculation they are important to determine
the correct relative phases of the GS WF, whereas in the
latter more accurate approach these correlations allow one
to obtain very accurate results for the energy and the spin
gap and to restore the spin rotational invariance of the finite
size GS.
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