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Spin Bose-Glass Phase in Bilayer Quantum Hall Systems at = 2
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We develop an effective spin theory to describe magnetic properties of the2 quantum Hall
bilayer systems. In the absence of disorder this theory agrees with the microscopic Hartree-Fock
calculations, and for finite disorder it predicts the existence of a novel spin Bose-glass phase. The
Bose glass is characterized by the presence of domains of canted antiferromagnetic phase with zero
average antiferromagnetic order and short range correlations. It has infinite antiferromagnetic transverse
susceptibility and finite longitudinal spin susceptibility. Transition from the canted antiferromagnetic
phase to the spin Bose-glass phase is characterized by a universal value of the spin conductance.
[S0031-9007(99)09076-6]
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Recently a canted antiferromagnetic phase has been pre-We now introduce a simple lattice model which we
dicted in bilayer quantum Hall (QH) systems at a total fill- use to describe the physics of the bilayer= 2 QH
ing factory = 2 on the basis of microscopic Hartree-Fock system. We consider a bilayer square lattice model shown
calculations and a long wavelength quantum O(3) nonlinin Fig. 1.
ear sigma model [1]. In this Letter we construct an alterna- Sites in each layer may be thought of as labeling dif-
tive effective spin theory that can describe the richness dferent intra-Landau level states. Electrons may tunnel
the phase diagram of a bilayer= 2 quantum Hall system. from one layer to another conserving the in-plane site in-
Our effective spin theory treats the interlayer tunnelingdex (i.e., between the states with the same intra-Landau
nonperturbatively, in contrast to the O(3) nonlinear sigmdevel index). There is a ferromagnetic interaction between
model which includes tunneling perturbatively through annearest-neighbor sites within individual layers and a Zee-
antiferromagnetic exchange. Itis in qualitative agreementnan interaction with the applied magnetic field. We also
with the results of microscopic Hartree-Fock calculationsaccount for the charging energy, i.e., the energy cost of
in [1] and extends the earlier effective field theory by al-creating charge imbalance between the layers through the
lowing us to study quantitatively the effect of a finite gateterm . below. The Hamiltonian of the system may be
voltage between the layers and calculate intersubband ew#itten as
citation energies. Our theory can easily incorporate the

effects of disorder and we predict that for any nonzero H=Hr + H. + H; + Hp,
disorder there is a new = 2 spin Bose-glass quantum 1
Hall phase which may be visualized as domains of canted Hr = Y Asas Z(C;-‘iU-CB[O- + cgi,,cn,,),

antiferromagnetic phase surrounded by domains of fully i

polarized ferromagnetic or spin singlet (SS) phases. In 1 5 5

this system the Bose-glass phase we predict is quite novel, H. = o € Z[(”Ti = D7+ (s = 7] (1)
and we elaborate in this Letter on the origin and the prop- !

erties of this new QH glass phase. Related disorder in- I, = —H S% 4 S5

duced spin phase has been discussed in a different setting in ‘ ¢ 2( n i)

Ref. [2].

In the absence of interlayer interaction each layer of the Hr =—-J Z(STiSTj + SgiSsj),
v = 2 bilayer system would be in a fully spin polarized (ij)
ferromagnetic (FPFy = 1 incompressible QH state with
spins in both layers pointing in the direction of the applied I
magnetic field. Tunneling between the layers favors the -1 S; 5; e
formation of spin singlet states from the pairs of electrons ull c
in the opposite layers and energetically stabilizes the spin f ¢ ‘H T
singlet state. In [1] it was observed that the competition A C
between the two tendencies may lead to a third intermedi- 2
ate phase: a canted antiferromagnetic (CAF) state, where | A B
spins in the two layers have the same component along the ! |
applied field but opposite components in the perpendiculag|G. 1. Effective bilayer lattice model for the = 2 double
2D plane. layer QH system.
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whereT and B label electrons in the top and bottom lay- and the hard core constraint is implied

ers, respectively; is the in-plane site (intra-Landau level) + +

index, ando is the spin index. §¢; = c},»aaf:ﬁcﬂﬁ and Vit Vit + tiptiy = 1. (5)
nri = 2., c}ch,-(, are spin and charge operators, respecy
tively, for layerT', with qnalogous deflnltlons_for Ia_yé?. continuum limit gives the energy functional for a general
Parameterg ande, of this model may be ea_sny estlme_lted family of states with (possibly nonuniform) expecta-
asJ = 32/(16\/2727 €l), wherel = /lic/eB is magnetic tion values |¢(x)|> = <Q|‘1’amisym1(X)Jf‘I’amisymT(X)|Q>.
length, ande, = —Z\E {1 = /(1 = Erfld/(V2)D} o)l = (O W (0) T Womi(x) [Q), and ¢(x)v*(x) =

whered is the distance between the layers &g is the (QI‘P* Wantismi| Q). Here pl creates an
sym é S .

. sym /antisym o
error function [3]. , _ , _electron of given symmetry with respect to layer inter-
Each individual rung, i.e., two sites with the same in-

L ) changes and spir, and |Q)) is a ground state of the
plane site index on the opposite layers, must be populated,ciem.

by two electrons.. Therefore, we have six p_ossi_ble states’ The mean-field analysis of (4) may be done by consider-
for each rung, which are conveniently classified into threqng states with simultaneously condensednd bosons.
states that are spin triplets They correspond to the variational wave functions of the
114y = 1110y = cheliloy, form |®) = expla >, vy + B, 1.}10), where|0) is a
vacuum state [4]. The energy of stdte) is given by

nother interpretation of Hamiltonian (4) is that its

t IR tot
ty) = t9|10) = —= (cricp + cricp) |0, 2
|O> 0| > \/E( T1¢Bl il BT)l > ( ) E0=Ev|a|2 +Et|B|2
li=) = 1110y = cfehil0), — J(co® + singlal?BI> — JIBI%,  (6)
and three states that are spin singlets and statdd) obeys constraint (5) on the average provided

I72) = 7110y = cfretyl0). that

lal> + B> = 1. 7
7o) = 710 = &5 (chely = chelploy, @) p "
+ P Values ofa and 8 that minimize (6) under the condition
|7-) = 7110) = cpyepl0). (7) are given by

Operatorst and = satisfy bosonic commutation relations . B :

[4], and the constraint} 7, + !z, = 1 projects into the lal =1 181 =0 if tnin <0,

physical Hilbert space. lal = tmin 1Bl =+1 =2 if0<tmn<1, (8)
In Hamiltonian (1) all the terms except{» act within =0 1Bl =1 if t>1

a single rung. It is therefore natural as a first step to '“' — Bl =11 tmin ’

d.|agonaI|ze5-["— }.[T + H, + H; on one ung. A \here tmin = 0.5[J(co®® + sind)? — E, + E,]/[J X

simple calculation gives for the lowest energy e|genstatef;cos9 + sing)? — J].

/.
of A" ith _ The first and the last cases correspond to the FPF and
g:g:glu)wn energyk, = —H.. SS phases, respectively, and an intermediate phase with
both|«| and| 8| finite describes the canted antiferromag-
lus) = w(hﬁ + 7)) — @Lﬁm&ﬂ) 7o), netic phase of [1] with direction of the Néel ordering
given by the phase between the and v, condensates
with energy E, = % — ./AgAS + €2/4. Here ta® = tan‘lNy/Nx = argla”B) (the Néel order parameter is de-
€./(2Asas + /AL, s + €2/4). fined asN = >, Sy; — >, Sp,;). In Fig. 2 we show the

State|v. ) is a spin singlet state whose energy is loweredPhase diagram obtained from Egs. (8). .
by interlayer tunneling, andr;) is a spin triplet state ~ This phase diagram is in general agreement with the one
favored by Zeeman interaction. We rewrite Hamiltonianobtained from the Hartree-Fock calculations in Ref. [1];

(1) keeping On|y the lowest energy State&) andlti+>: however, the bosonic theory prEdiCtS a smaller width of
the CAF region. This is hardly surprising since Hartree-

J ; k -field calculations commonly overestimate the

H =St +E > vivii — = (cog + sing)?  Fock mean-fie ulatl y ov :
’Z pri Ty Z Uy ( ) stability of the ordered phase, whereas the bosonic model
goes beyond mean-field approach by taking into account

X Z(IIT+UI+U}+tj+ + ,;f+vj+v;f+,l.+) the effect of charge fluctuations between the layers (see,
() for example, the expression for the energy of a singlet
J stateE,). We can also use our bosonic model to calculate
iy Zt;r+t,»+t}+tj+ , (4) the phase diagram in the presence of an interlayer charge
(if) imbalance, and these results will be reported elsewhere [3].
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the presence of impurities. For our effective spin model
the major effects of disorder will be randomness in the
value of tunnelingAsas and the appearance of a random
local gate voltage, in both cases leading to random local
fluctuations in the energy of the; boson. Then if
we are close to the CAFSS transition we may have a
situation induced by disorder whefe — E™ — 2] < 0
andE, — E™" — 27 > 0. So for some regions creating
nonlocal ¢ triplets will lower the energy of the system
and for some regions it will lead to an energy increase.
In this case the system breaks into domains, with each
domain being locally a CAF phase or a SS phase (region |l

0 0.1 0.2 0.3 0.4

A ) ; i
SAS in Fig. 4). Each CAF domain may be thought of as
FIG. 2. Phase diagram for disorder-free system dor= 1.  being in a quantum disordered state with an undefined
All energies are in units of*/el. direction of the Néel order but finite-magnetization [2].

Close to the CAFFPF transition line in the disorder-free

The lowest energy interband transition in the SS phasgystem we may have a disorder induced situation where
will correspond to destroying a, and creating a; bo-  we have CAF domains in the background of domains of
son. The energy for such transitionds. = —J(co® +  the FPF phase (region | in Fig. 4). Finally, we can also
sing)> + E, — E, and vanishes at the $SAF transi- have the phase where we have domains of all three kinds
tion as may be seen from Egs. (8). Analogously, in thgregion Ilin Fig. 4). In Fig. 4 we show the resulting phase
FPF state the lowest energy interband transition will cordiagram for the same values of parameters as in Fig. 2 but
respond to destroying. and creating a+. boson [3]. assuming that\gas may randomly vary by 10% around

Let us now give a simple physical picture that will its average value. Such a variationAr,s is physically
illustrate the formal calculations presented above. Weyuite reasonable even in high quality 2D systems since
consider an SS state which has singlet bosons on all Ag,g depends exponentially on layer thickness. There are
rungs and imagine creating a triplet on one of the rungs. no phase transitions between regions 1, I, and Ill on the
Creating a localized triplet requires enerfly — E,, and  phase diagram in Fig. 4 but only smooth crossovers. The
this energy is unaffected by the ferromagnetic interactionrue quantum phase transitions occur between FPF and I,
since parallel and antiparallel contributions cancel forSS and Ill, and between CAF and one of the I, II, or IlI
triplet interacting with neighboring singlets. However, regions.
Hp also gives rise to a process in which one of the spins The nature of these phase transitions is also easy to un-
of the triplet pair and one spin from the neighboring singletderstand. The SS phase is an insulating phase of zero
pair are flipped simultaneously. This process is shown imlensity ofz;+ bosons, the FPF state is an insulating phase
Fig. 3 and may be interpreted as hopping of the tripletwith densityn = 1, and CAF is a superfluid phase. The
boson to the nearest-neighbor site. Therefore, creatingandomness that we consider acts as a randomness in the
a propagating triplet boson at wave vectorwill give
it an additional kinetic energy(cos, + cos,) due to
Hp. This allows us to have a situation whép — E, >
0 but E, — E, — 2] <0, i.e., when it is energetically
unfavorable to create localized triplets but it is already
favorable to create them at= 0, i.e., to have a condensate
of t+ bosons. This effect is the origin of the CAF state
and allows us to understand this phase as a coherent
superposition of condensed andv; bosons.

In a real system there is always disorder. It may be
due to fluctuations in the distance between the wells or

1S5S,
. A SAS
N NN { R Y W _ _ _
Vi | Y vl LI | V| FIG. 4. Phase diagram for a disordered system. All energies
I l ( \ \ are in units ofe?/el and d = [. Variation in Agys was
Al A i Al i) i i Al assumed to be 10%. Region | corresponds to domains of CAF
\l/ [ \/ \/ \l/ \/ | \l/ and FPF phases, region lll to domains of SS and CAF, and
region Il to domains of all three kinds. There are no phase
FIG. 3. Triplet “hopping” process due to ferromagnetic in- transitions among regions I, I, Ill; they all correspond to the
plane interaction. spin Bose-glass phase.
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chemical potential of these; bosons, so our problem excitations have been verified experimentally [9] via in-
is equivalent to the problem of bosons in a random poelastic light scattering spectroscopy. Since interlayer tun-
tential, the so-called dirty boson problem, considered imeling fluctuations are invariably present in real systems,
Refs. [5,6]. We immediately recognize I, I, and Ill as aitis, in fact, quite possible that the experiments in [9] have
single Bose-glass (SBG) phase of the singlet and tripledlready observed a transition to the Bose-glass phase as
bosons. This observation allows us to draw several imin our Fig. 4. Some evidence supporting this possibility
portant conclusions about the properties of this SBG phaseomes from the fact that the softening of the spin density
In the SS state thé&?(—w)S*(w)) correlation function is  excitations observed in [9] did not lead to the appearance
zero and in the CAF phase it haséafunction peak at of a sharp dispersing Goldstone mode expected in the CAF
zero frequency due to the Goldstone mode of the sporphase but only to some broad zero energy spectral weight
taneous breaking of the U(1) symmetry of spin rotationsconsistent with the Bose-glass phase. Future experiments
around the; axis. Inthe SBG phase this correlation func- in samples with deliberately controlled disorder should be
tion will be finite at small frequencies, which implies finite carried out to conclusively verify our prediction of a QH
longitudinal spin susceptibility and is the analog of finite disordered Bose-glass phase.

compressibility of the usual charge Bose glass. Our new In conclusion, we predict a new 2D Bose-glass phase
SBG phase does not have antiferromagnetic long range a v = 2 QH bilayer system by introducing an effective
order, i.e.,{Ny(,)) = 0. All the . and v, bosons are spintheory. This phase has the usual properties of a Bose-
localized in this phase; therefore, it will have only shortglass phase [5,6] including a universal spin conductance at
range mean antiferromagnetic correlations. But analogoube transition. While we have specifically considered the
to the infinite superfluid susceptibility of charge Bose glassy = 2 integer QH situation, our arguments should also go
our SBG phase will have an infinite transverse antiferrothrough for allv = 2/(odd integey fractional QH states,
magnetic susceptibility. Another important feature of thefollowing the reasoning of [1], and for the fractional
Bose-glass phase is a finite density of low energy excitafilling there should be an exotic fractional quantum 2D
tions [5,6]. This implies that our SBG phase will have Bose glass in bilayer systems [10].

a specific heat linear in temperature, which provides an- This work is supported by the NSF at ITP and by the
other way to experimentally distinguish it from the CAF US-ONR (S.D.S.). We acknowledge useful discussions
phase whose specific heatli$ or FPF and SS phases that with M. P. A. Fisher, Y. Kim, A. MacDonald, R. Rajara-
have exponentially small specific heat at low temperaturesnan, S. Sachdev, and T. Senthil.

The existence of the SBG phase separating the SS, FPF,

and CAF phases also has important consequences in that it

changes the critical exponents for the corresponding phase

transitions from the one obtained in [1] for the disorder- [1] L. Zhenget al., Phys. Rev. Lett78, 2453 (1997); S. Das
free system. The new critical exponents will be those of =~ Sarmaet al., Phys. Rev. Lett.79, 917 (1997); S. Das
the superconductor-insulator transition in the dirty boson _ Sarmaet al, Phys. Rev. B58, 4672 (1998).

system studied in [5,6]. We would also like to point out [2 T- Senthil and S. Sachdev, Ann. Phys. (N.231 76

1996).
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superconducting films [7] in that it is free of long range (5] m.p. A. Fisher et al., Phys. Rev. B40, 546 (1989);
forces and allows one to vary the density of bosons by vary-- ~ M. p. A. Fisheret al., Phys. Rev. Lett64, 587 (1990).
ing H,. In addition, our predicted QH Bose-glass phase [6] M. Chaet al., Phys. Rev. B44, 6883 (1991); M. Wallin
transition does not have the complication arising from par- et al., Phys. Rev. B49, 12115 (1994).

allel fermionic excitations which may play a role in the [7] A. Hebard and M. Paalanen, Phys. Rev. Ld&#§ 587
superconducting films [8]. We therefore expect, based on  (1990); Y. Liu et al., Phys. Rev. B47, 5931 (1993);
the arguments given in [5,6], that transition from the CAF A Yazdani and A. Kapitulnik, Phys. Rev. Le@l4, 3037
phase to the SBG phase will be characterized by a truly uni- (1995).

versal longitudinal spin conductance, which, in principle, [l K- Hagenblasetal,, Phys. Rev. Lett78, 1779 (1997).

can be measured by measuring the spin susceptibilit an&g] V. Pellegrini et al., Phys. Rev. Lett.79 310 (1997);
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the spin diffusion coefficient.

.[10] Another plausible effect of disorder, which we do not

Before concluding, we remark on the feasible experi-  giscuss in this paper, is the appearance of unmatched spins
m_ental observability of our prqposed QH Bose‘9|355_ Phase- 1/2 leading to the possibility of a random-singlet phase.
First, we remark that the basic= 2 QH phase transition This effect is not important a¥ = 2 but may become

and the associated softening of the relevant spin density relevant for ther = 2/(odd integey fractional QH states.
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