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Spin Bose-Glass Phase in Bilayer Quantum Hall Systems atn 5 2
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We develop an effective spin theory to describe magnetic properties of then ­ 2 quantum Hall
bilayer systems. In the absence of disorder this theory agrees with the microscopic Hartree-F
calculations, and for finite disorder it predicts the existence of a novel spin Bose-glass phase.
Bose glass is characterized by the presence of domains of canted antiferromagnetic phase with
average antiferromagnetic order and short range correlations. It has infinite antiferromagnetic trans
susceptibility and finite longitudinal spin susceptibility. Transition from the canted antiferromagne
phase to the spin Bose-glass phase is characterized by a universal value of the spin conduc
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Recently a canted antiferromagnetic phase has been
dicted in bilayer quantum Hall (QH) systems at a total fil
ing factorn ­ 2 on the basis of microscopic Hartree-Foc
calculations and a long wavelength quantum O(3) nonli
ear sigma model [1]. In this Letter we construct an altern
tive effective spin theory that can describe the richness
the phase diagram of a bilayern ­ 2 quantum Hall system.
Our effective spin theory treats the interlayer tunnelin
nonperturbatively, in contrast to the O(3) nonlinear sigm
model which includes tunneling perturbatively through a
antiferromagnetic exchange. It is in qualitative agreeme
with the results of microscopic Hartree-Fock calculation
in [1] and extends the earlier effective field theory by a
lowing us to study quantitatively the effect of a finite gat
voltage between the layers and calculate intersubband
citation energies. Our theory can easily incorporate t
effects of disorder and we predict that for any nonze
disorder there is a newn ­ 2 spin Bose-glass quantum
Hall phase which may be visualized as domains of cant
antiferromagnetic phase surrounded by domains of fu
polarized ferromagnetic or spin singlet (SS) phases.
this system the Bose-glass phase we predict is quite no
and we elaborate in this Letter on the origin and the pro
erties of this new QH glass phase. Related disorder
duced spin phase has been discussed in a different settin
Ref. [2].

In the absence of interlayer interaction each layer of t
n ­ 2 bilayer system would be in a fully spin polarized
ferromagnetic (FPF)n ­ 1 incompressible QH state with
spins in both layers pointing in the direction of the applie
magnetic field. Tunneling between the layers favors t
formation of spin singlet states from the pairs of electro
in the opposite layers and energetically stabilizes the s
singlet state. In [1] it was observed that the competitio
between the two tendencies may lead to a third interme
ate phase: a canted antiferromagnetic (CAF) state, wh
spins in the two layers have the same component along
applied field but opposite components in the perpendicu
2D plane.
0031-9007y99y82(19)y3895(4)$15.00
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We now introduce a simple lattice model which we
use to describe the physics of the bilayern ­ 2 QH
system. We consider a bilayer square lattice model show
in Fig. 1.

Sites in each layer may be thought of as labeling di
ferent intra-Landau level states. Electrons may tunn
from one layer to another conserving the in-plane site i
dex (i.e., between the states with the same intra-Land
level index). There is a ferromagnetic interaction betwee
nearest-neighbor sites within individual layers and a Ze
man interaction with the applied magnetic field. We als
account for the charging energy, i.e., the energy cost
creating charge imbalance between the layers through
term Hc below. The Hamiltonian of the system may be
written as

H ­ HT 1 Hc 1 HZ 1 HF ,

HT ­ 2
1
2

DSAS

X
i

scy
TiscBis 1 c

y
BiscTisd ,

Hc ­
1
2

ec

X
i

fsnTi 2 1d2 1 snBi 2 1d2g , (1)

HZ ­ 2Hz

X
i

sSz
Ti 1 Sz

Bid ,

HF ­ 2J
X
kijl

sSTiSTj 1 SBiSBjd ,

FIG. 1. Effective bilayer lattice model for then ­ 2 double
layer QH system.
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whereT andB label electrons in the top and bottom lay
ers, respectively,i is the in-plane site (intra-Landau level
index, ands is the spin index. Sa

Ti ­ c
y
Tiasa

abcTib and

nTi ­
P

s c
y
TiscTis are spin and charge operators, respe

tively, for layerT , with analogous definitions for layerB.
ParametersJ andec of this model may be easily estimate
as J ­ e2ys16

p
2p eld, wherel ­

p
h̄cyeB is magnetic

length, andec ­
e2

el

q
p

2 h1 2 ed2yl2s1 2 Erffdysl
p

2 dgdj,
whered is the distance between the layers andErf is the
error function [3].

Each individual rung, i.e., two sites with the same in
plane site index on the opposite layers, must be popula
by two electrons. Therefore, we have six possible sta
for each rung, which are conveniently classified into thr
states that are spin triplets

jt1l ­ t
y
1j0l ­ c

y
T "c

y
B"j0l ,

jt0l ­ t
y
0 j0l ­ 1

p
2

scy
T "c

y
B# 1 c

y
T #c

y
B"d j0l , (2)

jt2l ­ ty
2j0l ­ c

y
T #c

y
B#j0l ,

and three states that are spin singlets

jt1l ­ t
y
1j0l ­ c

y
T "c

y
T #j0l ,

jt0l ­ t
y
0 j0l ­ 1

p
2

scy
T "c

y
B# 2 c

y
T #c

y
B"d j0l , (3)

jt2l ­ ty
2j0l ­ c

y
B"c

y
B#j0l .

Operatorst and t satisfy bosonic commutation relation
[4], and the constraintty

ata 1 ty
ata ­ 1 projects into the

physical Hilbert space.
In Hamiltonian (1) all the terms exceptHF act within

a single rung. It is therefore natural as a first step
diagonalizeH 0 ­ HT 1 Hc 1 HZ on one rung. A
simple calculation gives for the lowest energy eigensta
of H 0:

Statejt1l with energyEt ­ 2Hz.
State

jy1l ­
ssinu2cosud

2 sjt1l 1 jt2ld 2
ssinu1cosud

p
2

jt0l ,

with energy Ey ­
ec

2 2
p

D2
SAS 1 e2

cy4. Here tanu ­
ecys2DSAS 1 2

p
D2

SAS 1 e2
cy4 d.

Statejy1l is a spin singlet state whose energy is lower
by interlayer tunneling, andjt1l is a spin triplet state
favored by Zeeman interaction. We rewrite Hamiltonia
(1) keeping only the lowest energy statesjyi1l andjti1l:

H̃ ­ Et

X
i

t
y
i1ti1 1 Ey

X
i

y
y
i1yi1 2

J
4

scosu 1 sinud2

3
X
kijl

sty
i1yi1y

y
j1tj1 1 t

y
j1yj1y

y
i1ti1d

2
J
2

X
kijl

t
y
i1ti1t

y
j1tj1 , (4)
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and the hard core constraint is implied

y
y
i1yi1 1 t

y
i1ti1 ­ 1 . (5)

Another interpretation of Hamiltonian (4) is that it
continuum limit gives the energy functional for a gener
family of states with (possibly nonuniform) expecta
tion values jtsxdj2 ­ kVjCantisym"sxdyCantisym"sxd jVl,
jysxdj2 ­ kVjCsym#sxdyCsym#sxd jVl, and tsxdypsxd ­

kVjC
y
sym#Cantisym"jVl. Here C

y
symyantisyms creates an

electron of given symmetry with respect to layer inte
changes and spins, and jVl is a ground state of the
system.

The mean-field analysis of (4) may be done by consid
ing states with simultaneously condensedy andt bosons.
They correspond to the variational wave functions of t
form jFl ­ expha

P
i y

y
i1 1 b

P
i t

y
i1j j0l, wherej0l is a

vacuum state [4]. The energy of statejFl is given by

E0 ­ Eyjaj2 1 Etjbj2

2 Jscosu 1 sinud2jaj2jbj2 2 Jjbj4, (6)

and statejFl obeys constraint (5) on the average provid
that

jaj2 1 jbj2 ­ 1 . (7)

Values ofa andb that minimize (6) under the condition
(7) are given by

jaj ­ 1 jbj ­ 0 if tmin , 0 ,

jaj ­ tmin jbj ­
p

1 2 t2
min if 0 , tmin , 1 , (8)

jaj ­ 0 jbj ­ 1 if tmin . 1 ,

where tmin ­ 0.5fJscosu 1 sinud2 2 Et 1 EygyfJ 3

scosu 1 sinud2 2 Jg.
The first and the last cases correspond to the FPF

SS phases, respectively, and an intermediate phase
both jaj andjbj finite describes the canted antiferroma
netic phase of [1] with direction of the Néel orderin
given by the phase between thet1 and y1 condensates
tan21NyyNx ­ argsapbd (the Néel order parameter is de
fined asN ­

P
i STi 2

P
i SBi). In Fig. 2 we show the

phase diagram obtained from Eqs. (8).
This phase diagram is in general agreement with the

obtained from the Hartree-Fock calculations in Ref. [1
however, the bosonic theory predicts a smaller width
the CAF region. This is hardly surprising since Hartre
Fock mean-field calculations commonly overestimate
stability of the ordered phase, whereas the bosonic mo
goes beyond mean-field approach by taking into acco
the effect of charge fluctuations between the layers (s
for example, the expression for the energy of a sing
stateEy). We can also use our bosonic model to calcul
the phase diagram in the presence of an interlayer cha
imbalance, and these results will be reported elsewhere
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FIG. 2. Phase diagram for disorder-free system ford ­ l.
All energies are in units ofe2yel.

The lowest energy interband transition in the SS pha
will correspond to destroying ay1 and creating at1 bo-
son. The energy for such transition isv2 ­ 2Jscosu 1

sinud2 1 Et 2 Ey and vanishes at the SSyCAF transi-
tion as may be seen from Eqs. (8). Analogously, in th
FPF state the lowest energy interband transition will co
respond to destroyingt1 and creating ay1 boson [3].

Let us now give a simple physical picture that wil
illustrate the formal calculations presented above. W
consider an SS state which has singlety1 bosons on all
rungs and imagine creating at1 triplet on one of the rungs.
Creating a localized triplet requires energyEt 2 Ey, and
this energy is unaffected by the ferromagnetic interactio
since parallel and antiparallel contributions cancel fo
triplet interacting with neighboring singlets. However
HF also gives rise to a process in which one of the spi
of the triplet pair and one spin from the neighboring single
pair are flipped simultaneously. This process is shown
Fig. 3 and may be interpreted as hopping of the tripl
boson to the nearest-neighbor site. Therefore, creat
a propagating triplet boson at wave vectork will give
it an additional kinetic energỹJscoskx 1 coskyd due to
HF . This allows us to have a situation whenEt 2 Ey .

0 but Et 2 Ey 2 2J̃ , 0, i.e., when it is energetically
unfavorable to create localized triplets but it is alread
favorable to create them atk ­ 0, i.e., to have a condensate
of t1 bosons. This effect is the origin of the CAF stat
and allows us to understand this phase as a coher
superposition of condensedt1 andy1 bosons.

In a real system there is always disorder. It may b
due to fluctuations in the distance between the wells

FIG. 3. Triplet “hopping” process due to ferromagnetic in
plane interaction.
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the presence of impurities. For our effective spin mod
the major effects of disorder will be randomness in th
value of tunnelingDSAS and the appearance of a random
local gate voltage, in both cases leading to random loc
fluctuations in the energy of they1 boson. Then if
we are close to the CAFySS transition we may have a
situation induced by disorder whereEt 2 Emax

y 2 2J̃ , 0
andEt 2 Emin

y 2 2J̃ . 0. So for some regions creating
nonlocal t1 triplets will lower the energy of the system
and for some regions it will lead to an energy increas
In this case the system breaks into domains, with ea
domain being locally a CAF phase or a SS phase (region
in Fig. 4). Each CAF domain may be thought of a
being in a quantum disordered state with an undefin
direction of the Néel order but finitez-magnetization [2].
Close to the CAFyFPF transition line in the disorder-free
system we may have a disorder induced situation whe
we have CAF domains in the background of domains
the FPF phase (region I in Fig. 4). Finally, we can als
have the phase where we have domains of all three kin
(region II in Fig. 4). In Fig. 4 we show the resulting phas
diagram for the same values of parameters as in Fig. 2 b
assuming thatDSAS may randomly vary by 10% around
its average value. Such a variation inDSAS is physically
quite reasonable even in high quality 2D systems sin
DSAS depends exponentially on layer thickness. There a
no phase transitions between regions I, II, and III on th
phase diagram in Fig. 4 but only smooth crossovers. T
true quantum phase transitions occur between FPF and
SS and III, and between CAF and one of the I, II, or II
regions.

The nature of these phase transitions is also easy to
derstand. The SS phase is an insulating phase of z
density oft1 bosons, the FPF state is an insulating pha
with densityn ­ 1, and CAF is a superfluid phase. The
randomness that we consider acts as a randomness in

FIG. 4. Phase diagram for a disordered system. All energi
are in units of e2yel and d ­ l. Variation in DSAS was
assumed to be 10%. Region I corresponds to domains of CA
and FPF phases, region III to domains of SS and CAF, a
region II to domains of all three kinds. There are no phas
transitions among regions I, II, III; they all correspond to th
spin Bose-glass phase.
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chemical potential of theset1 bosons, so our problem
is equivalent to the problem of bosons in a random p
tential, the so-called dirty boson problem, considered
Refs. [5,6]. We immediately recognize I, II, and III as a
single Bose-glass (SBG) phase of the singlet and trip
bosons. This observation allows us to draw several im
portant conclusions about the properties of this SBG pha
In the SS state thekSzs2vdSzsvdl correlation function is
zero and in the CAF phase it has ad-function peak at
zero frequency due to the Goldstone mode of the spo
taneous breaking of the U(1) symmetry of spin rotation
around thez axis. In the SBG phase this correlation func
tion will be finite at small frequencies, which implies finite
longitudinal spin susceptibility and is the analog of finite
compressibility of the usual charge Bose glass. Our ne
SBG phase does not have antiferromagnetic long ran
order, i.e.,kNxs ydl ­ 0. All the t1 and y1 bosons are
localized in this phase; therefore, it will have only shor
range mean antiferromagnetic correlations. But analogo
to the infinite superfluid susceptibility of charge Bose glas
our SBG phase will have an infinite transverse antiferro
magnetic susceptibility. Another important feature of th
Bose-glass phase is a finite density of low energy excit
tions [5,6]. This implies that our SBG phase will have
a specific heat linear in temperature, which provides a
other way to experimentally distinguish it from the CAF
phase whose specific heat isT2 or FPF and SS phases tha
have exponentially small specific heat at low temperature
The existence of the SBG phase separating the SS, F
and CAF phases also has important consequences in th
changes the critical exponents for the corresponding pha
transitions from the one obtained in [1] for the disorder
free system. The new critical exponents will be those o
the superconductor-insulator transition in the dirty boso
system studied in [5,6]. We would also like to point ou
that the SBG system that we suggested may be a be
experimental realization of a 2D superconductor-insulat
transition in a boson system than conventionally used 2
superconducting films [7] in that it is free of long range
forces and allows one to vary the density of bosons by var
ing Hz. In addition, our predicted QH Bose-glass phas
transition does not have the complication arising from pa
allel fermionic excitations which may play a role in the
superconducting films [8]. We therefore expect, based
the arguments given in [5,6], that transition from the CA
phase to the SBG phase will be characterized by a truly u
versal longitudinal spin conductance, which, in principle
can be measured by measuring the spin susceptibility a
the spin diffusion coefficient.

Before concluding, we remark on the feasible exper
mental observability of our proposed QH Bose-glass phas
First, we remark that the basicn ­ 2 QH phase transition
and the associated softening of the relevant spin dens
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excitations have been verified experimentally [9] via in
elastic light scattering spectroscopy. Since interlayer tu
neling fluctuations are invariably present in real system
it is, in fact, quite possible that the experiments in [9] hav
already observed a transition to the Bose-glass phase
in our Fig. 4. Some evidence supporting this possibili
comes from the fact that the softening of the spin dens
excitations observed in [9] did not lead to the appearan
of a sharp dispersing Goldstone mode expected in the C
phase but only to some broad zero energy spectral wei
consistent with the Bose-glass phase. Future experime
in samples with deliberately controlled disorder should b
carried out to conclusively verify our prediction of a QH
disordered Bose-glass phase.

In conclusion, we predict a new 2D Bose-glass pha
in a n ­ 2 QH bilayer system by introducing an effective
spin theory. This phase has the usual properties of a Bo
glass phase [5,6] including a universal spin conductance
the transition. While we have specifically considered th
n ­ 2 integer QH situation, our arguments should also g
through for alln ­ 2ysodd integerd fractional QH states,
following the reasoning of [1], and for the fractiona
filling there should be an exotic fractional quantum 2
Bose glass in bilayer systems [10].

This work is supported by the NSF at ITP and by th
US-ONR (S. D. S.). We acknowledge useful discussio
with M. P. A. Fisher, Y. Kim, A. MacDonald, R. Rajara-
man, S. Sachdev, and T. Senthil.

[1] L. Zheng et al., Phys. Rev. Lett.78, 2453 (1997); S. Das
Sarmaet al., Phys. Rev. Lett.79, 917 (1997); S. Das
Sarmaet al., Phys. Rev. B58, 4672 (1998).

[2] T. Senthil and S. Sachdev, Ann. Phys. (N.Y.)251, 76
(1996).

[3] L. Brey, E. Demler, and S. Das Sarma, cond-ma
9901296.

[4] S. Sachdev and R. Bhatt, Phys. Rev. B41, 9323 (1990).
[5] M. P. A. Fisher et al., Phys. Rev. B40, 546 (1989);

M. P. A. Fisheret al., Phys. Rev. Lett.64, 587 (1990).
[6] M. Cha et al., Phys. Rev. B44, 6883 (1991); M. Wallin

et al., Phys. Rev. B49, 12 115 (1994).
[7] A. Hebard and M. Paalanen, Phys. Rev. Lett.65, 587

(1990); Y. Liu et al., Phys. Rev. B47, 5931 (1993);
A. Yazdani and A. Kapitulnik, Phys. Rev. Lett.74, 3037
(1995).

[8] K. Hagenblastet al., Phys. Rev. Lett.78, 1779 (1997).
[9] V. Pellegrini et al., Phys. Rev. Lett.79, 310 (1997);

V. Pellegriniet al., Science281, 799 (1998).
[10] Another plausible effect of disorder, which we do no

discuss in this paper, is the appearance of unmatched sp
1y2 leading to the possibility of a random-singlet phas
This effect is not important atn ­ 2 but may become
relevant for then ­ 2ysodd integerd fractional QH states.


