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We show that a time-dependent particle densgifyr) obtained from a given many-particle system
can, under mild restrictions on the initial state, always be reproduced by an external paténtiain a
many-particle system with different two-particle interactions. Given the initial state of this other many-
particle system, the potential(rz) is unique up to a purely time-dependent function. As a special case
we obtain the well-known Runge-Gross theorem. [S0031-9007(99)09067-5]

PACS numbers: 71.15.Mb, 31.10.+z, 31.15.Ew

In this work we will discuss the relation between the There are, however, some differences between the use
density and potential of time-dependent many-particle sysaf this concept in stationary and time-dependent systems.
tems. We will show that a time-dependent particle densityFor stationary systems a densiiyr) is called noninter-
n(rt) obtained from a given many-particle system can, unactingv representable if this density can be obtained as a
der mild restrictions on the initial state, always be repro-ground statedensity of a noninteracting system. Even
duced by an external potential(r7) in a many-particle for smooth densities this is not always possible. The
system with different two-particle interactions. Given thecounterexamples are provided by densities constructed
initial state of this other many-particle system the potentiafrom degenerate ensembles [7,8]. However, it is gener-
v/(rt) is unique up to a purely time-dependent function. ally believed that smooth (i.e., normalizable and twice

If we specialize to two systems with identical initial differentiable) densities are noninteracting ensemble-
states and identical two-particle interactions this staterepresentable (i.e., densities corresponding to a ground
ment reduces to the well-known Runge-Gross theorerstate ensemble of a noninteracting system). In a time-
[1]. This work therefore represents an extension of thelependent system the situation is different, since in that
theorem by Runge and Gross. Another special case isase we are solving an initial-value problem. The initial
obtained if we take the two-particle interactions of thestate of the noninteracting system need not be an eigen-
second system to be zero. In that case we obtain thstate of the system (and need not even be a Slater deter-
result that the density of an interacting system can beninant wave function). If this initial state has the right
reproduced by a one-body potential in a noninteractingpecified density, then we can ask ourselves the question
system. This result has important consequences for timavhether, in a noninteracting system with this initial state,
dependent density functional theory (TDDFT). a time-dependent one-body potentiglrz) exists that re-

TDDFT [2-5] has turned out to be a successful ap-produces a given smooth densitfrz) at all times. In this
proach to the calculation of time-dependent properties ofvork we will show that this, under mild restrictions on
many-particle systems. The rigorous foundation of thehe initial state, is always possible. We will give a con-
TDDFT approach is based on the Runge-Gross theoremstructive proof of this statement. We furthermore show
[1]. This theorem states that, for a fixed initial many- that, given the initial state, this potential is unique up to a
body state, there is a one-to-one correspondence betwepuarely time-dependent function. This result therefore pro-
the time-dependent external field(rz) and the time- vides rigorous support for the time-dependent Kohn-Sham
dependent densityt(rr). This is made into a practical formalism. The result also elucidates the initial-state de-
scheme by means of the so-called Kohn-Sham equationpendence of the time-dependent density functionals.

In the Kohn-Sham approach one introduces a noninteract- Let us begin by proving the statement announced at the
ing many-particle system with the same densifyr) as  beginning of the introduction. We start from a Hamilton-
the fully interacting system. This noninteracting Kohn-ian 4 of a finite many-particle system

Sham system has a local potential that incorporates all the A =T+ V@) + W, (1)
exchange-correlation effects and is obtained as a densi;%h A L N .
derivative of the action [6]. The fact that the Kohn-ShamWhere' is the kinetic energyy () the external potential,
equations constitute a set of one-particle equations mak dw the_ two-particle Interaction. In second quantization
them of great practical use. However, it has still beerf€ cOnstituent terms are written as usual as

an unproven assumption that such a noninteracting sys- - _1[ 3 41 25

tem, with the same density as the fully interacting system r= 2 OV (), )

at all times, exists. If, for a certain densiifrz), such

a noninteracting system exists then this density is called V() = f Eroe)dt@)d), (3)
noninteractingu-representable.
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We take the external potentialr¢) to be of the form (12)
v(re) = f &3 ,/M, (5) Where the derivative, is with respect to the variabte.
lr — r/| Their expectation values are defined as
whereZ(rt) describes a finite but arbitrarily large charge 4 o -
distribution. The external potential is thus assumed to be Tie(rt) = (Y OITu ¥ (1)), (13)
generated by some finite, and in general time-dependent, Wi(rt) = (W ()W, W (). (14)

charge distribution. This form is chosen to make the inte-
grals in our following discussion well defined. However, Taking the divergence of Eq. (10) and using the continu-
the form is not particularly restrictive as it encompassesty Eq. (6) we find

most cases of physical interest. For instanc&(ifr) is a 2 _v.

delta-function-like distribution of point charges, therr) din(rr) = V- [n(enVo(en)] + q(rr), (15)
describes a molecular framework. The form Eq. (5) exWwith ¢(r¢) defined as

cludes some commonly used external fields, such as the _ R

potential of a spatially homogeneous electric field. How- q(et) = LDl @), (16)
ever, for practical purposes these fields can always be agnd where the operatgi(r) is defined as

proximated to arbitrary accuracy by considering very large . )

but finite charge distributions (which is actually closer to gr) = D 0 Tu(r) + D aeWer).  (17)

the real physical situation). We further assumez:) to ik k

be an analytic function of time, i.e., v(rf) must have a Equation (15) is the central equation of our discussion as
Taylor expansion with finite convergence radius for eachit represents a differential equation which directly relates
time r. the external potential and the electron density.

We now specify an initial stat¢W,) at r = #, and We now ask ourselves the central question: Can the
evolve the wave function with the Hamiltoniaf ().  same density:(rz) be reproduced by an external potential
From this wave function we can subsequently calculate/(rz) in a system with a given two-particle interaction
the densityn(rs). In the following, we consider two w/(lr — r/[)? We will answer this question affirmatively
continuity equations. f¥(z)) is the state evolving from by means of a constructive procedure for the potential
| Wy) under the influence of Hamiltoniati(z) we have the v/(rz). The only further constraint we will put on the
usual continuity equation potential v/(rt) is that is vanishes at infinity, as does

dn(re) = —i(W ()| [a), HO]IP () = =V - j(rt), potentialv(rs) of Eq. (5). We further notice that if such a

(©) v’(rt} exists then_also the potentml(rt_) + C(_t), where
C(r) is a purely time-dependent function, will reproduce
where the current operator is defined as the required density. This is because the funciit(n)
R Y R AN only changes the phase of the wave function and does
i) = 2—i{l/l OV () — [V} (1) not affect the density. We will show that this is the
only ambiguity that can arise, i.ey’(rt) is uniquely
. . determined modul@(z).
jre) = U@Ojo)[ ¥ (). (8) We now consider a second system with Hamiltonian
We can further consider an analogous continuity equation rIeN A Yy s
for the current itself. We have . H(1) A_ T+ Vi) + W (18)
: - ) 7 The termsV/(r) and W' represent again the one- and two-
91 (re) (@I ), HOI V(). ®) body potentials. We denote the initial state fy,) at
t = to and time-evolved statgd bid(r)). The form of

. _ _ _ W' is assumed to be such thit, (r¢) and its derivatives
Oujilrt) = —nlrt)ov(rs) Zl.:a"T”‘(”) Wil are finite. For the most important case of interest, i.e.,
(10) W' = AW with0 = A = 1, this is automatically satisfied.

e will discuss some special cases of this type later on.
or the system described by Hamiltoni&f we have an

and has expectation value

If we work out this equation in more detail, we find

Here we defined the momentum-stress tensor (part of th

energy-momentum tensor) as . .
9y ) analogous equation to Eq. (15). Assuming that the other

Tu(r) = %{&J,T(r)ak@(r) + 0t ()0 d(r) system has identical density, i.e/(rz) = n(rz), we have
! A A ?n(rr) =V - [n(e)Vo'(rt)] + ¢'(rr),  (19)
5 aiak[klff(r)lﬂ(r)]} (11)  whereq/(rt) is the expectation value
and the quantity¥, as q'(rt) = (D (1)|g(r)|D(2)). (20)
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By subtracting Egs. (15) and (19), we find is, when taking into account the boundary condition,
) o a unique solutionw(rzy). This means that we have
V- [neVarn] = (1), (21) determinedv’(rzg) = v(rzg) — w(rzy). In the next step
where w(rt) = v(rt) — v/(rt) and /(rt) = ¢'(rt) — we take the time derivative of Eq. (21) at= 7, and
g(rt). Equation (21) is the equation we will use to obtain
constructv’(rt). First we need to discuss some initial ) ) )
and boundary conditions. As a necessary condition for? ~ L*(Ff)Ve ()] = £7(r) = V- [ (n)Vae rno)],

the potentialv’ to exist, we must obviously require that (26)
;[jheenslirtlltléilles'[atesl‘l’o> and &) yield the same initial oo e introduced the following notation for tti¢h
Y, 1.€., time derivative at = ¢:
(Dola(r)| Do) = (Wolia(r)|Wo). (22)

fO@) = ok Fen)li—, . (27)

Rlow all quantities on the right-hand side of Eq. (26) are
Ifnown, sincen(rt) is known at all times ana (rzy) was
already determined from Eq. (25). The quangty)(r) is
calculated from the commutators:

We now note that the basic equation, Eq. (15), we use
is a second-order differential equation in time fgir?).
This means that we still need the additional requiremen
of 9,n'(rt) = 9,n(rt) at t = to. With the help of the
continuity equation (6) this yields the condition

@IV - §O)|Bo) = (TolV - oI, (23) {0 = 8,40l

This constraint also implies the weaker requirement that i(Wol [4(r), H(t0)] | ¥o)

the !n!t!al state|®,) must be chosen in such a way that — (Dol [4(r), H'(56)] | Do), (28)

the initial momentaP(zy) of both systems are the same. .

This follows directly from the fact that the momentum of where H'(z) is known from our previous calculation of

the system is given by v'(rrp). From Eq. (26), which is of the same Sturm-
Liouville type as Eq. (25), we can therefore calculate

P(t) = f drij(re) = f d’rron(re). (24) (with the same boundary condition at infinity as before)

»V(r) and hence),v’(rt) atr = 1,. We can now take

The equality of the last two terms in this equation followsthe second time derivative of Eq. (21) and repeat the

directly from the continuity equation (6) and the factabove procedure to determin&v’(rt) at t = 5. In

that we are dealing with finite systems (i.e., currentggeneral, if we take théth time derivative of Eq. (21),

and densities are zero at infinity). This also helps uave obtain

to understand the physics behind constraint (23). If the

densities of both systems described by Hamiltorfiaand V- [n(rg)Vo' )] = 0Wr), (29)

H' are the same at all times, then the above equation (24)here the inhomogeneitg ¥ (r) is given by

implies that also the momenta of both systems are equal 1

at all times. This clearly cannot be satisfied if the initial ~ ®)(y) — 0 () — Z<k>v n* D)V P ()],
momenta of both systems are different, since it would =\

require an infinite force to make them equal for 1. (30)

With the initial conditions Egs. (22) and (23), we now
discuss the solution of Eq. (21). We first notice that
this equation contains no time derivatives and the tim
variable can therefore be treated as a parameter.
further notice that this equation is of a well-known Sturm-

Liouville type, which has a unique solution fas(rz) if 0®(r) is completely determined by the densitgro).

n(rt) and /(rt) are given, and we further specify the . "
boundary condition thab (r¢) approaches zero at infinity. the potentialu (rv), t?e initial stateq/¥o), and|®o), and

. . 1
Imposing the latter boundary condition at infinity also the time derivates: v'(rz) ats = 7o up to orderk — 1.
means that we choose a particular gauge for the potentiégulat'on (29) therefore aII_ows complete determination of
v'(r1), i.e., we fix the arbitrary time-dependent function 9:v'(rz) at ¢ =t for arbitrary value ofk. We can
C(t) mentioned above. Note that this boundary conditiorfherefore construat’(rz) from its Taylor series as

The term ¢® involves multiple commutators of the
operatorg(r) with the Hamiltonians? and A’ and their
ime derivatives up to ordet — 1, sandwiched between
the initial states|¥) and |®y). The structure of the
iteration procedure is now clear. The inhomogeneity

at infinity is also satisfied for the potential(rs) of , =1, .
Eq. (5). Atr = r, we have v'(rt) = ]Zo oY (ct)|i=(t — 0)".  (31)
V - [n(rto) Vo (rty)] = {(rto). (25)

This determine®’(rt) completely within the convergence
Since n(rr) is known at all times and/(rzy) can be radius of the Taylor expansion. If this convergence radius
calculated from the initial statef¥,) and |®,) there is nonzero but finite, we can propagdtk,) to |® (7))
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at a finite timer; > r, within the convergence radius tion. We find that, for a giverv-representable density

and repeat the whole procedure above from 1o by  n(rr) [corresponding to initial staté¥,) and potential

regarding|®(z;)) as the initial state. This amounts to v(rs)] and a given initial statéd,) (with the same ini-

analytic continuation along the whole real time axis andial density and initial time derivative of the density as

a complete determination af (rz) at all times. There is, the state¥,)) there is a unique external potential(rz)

of course, the possibility that the convergence radius ifmodulo C(¢)] that yields this given density(rz). The

zero. However, this would mean that(rr) and hence case|V,) = |®y) (in which the constraints on the initial

n(rt) and v(rz) would be nonanalytic at = ¢y. Since state|d,) are trivially satisfied) corresponds to the well-

we consider only analytical densities we disregard thiknown Runge-Gross theorem.

possibility. We can now make the following statement: We can summarize our results as follows: We

We specify a given density(rr) obtained from a many- have generalized the well-known Runge-Gross theorem

particle system with Hamiltoniafl and initial statd¥,).  of time-dependent density functional theory. This is

If one chooses an initial statgb,) of a many-particle achieved through an analysis of the continuity equations

system with two-particle interactio#’ in such a way for the density and the current. Our results furthermore

that it yields the correct initial density and initial time demonstrate the noninteractingrepresentability of the

derivative of the density, then, for this system, there is alensity of many-particle systems and have elucidated the

unigue external potential’ (rz) [determined up to a purely density-potential relation and initial-state dependence of

time-dependent functiod’(¢)] that reproduces the given time-dependent density functionals.
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