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Mapping from Densities to Potentials in Time-Dependent Density-Functional Theory
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We show that a time-dependent particle densitynsrtd obtained from a given many-particle system
can, under mild restrictions on the initial state, always be reproduced by an external potentialy0srtd in a
many-particle system with different two-particle interactions. Given the initial state of this other many-
particle system, the potentialy0srtd is unique up to a purely time-dependent function. As a special case
we obtain the well-known Runge-Gross theorem. [S0031-9007(99)09067-5]
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In this work we will discuss the relation between the
density and potential of time-dependent many-particle sy
tems. We will show that a time-dependent particle densi
nsrtd obtained from a given many-particle system can, un
der mild restrictions on the initial state, always be repro
duced by an external potentialy0srtd in a many-particle
system with different two-particle interactions. Given the
initial state of this other many-particle system the potentia
y0srtd is unique up to a purely time-dependent function.

If we specialize to two systems with identical initial
states and identical two-particle interactions this stat
ment reduces to the well-known Runge-Gross theore
[1]. This work therefore represents an extension of th
theorem by Runge and Gross. Another special case
obtained if we take the two-particle interactions of the
second system to be zero. In that case we obtain t
result that the density of an interacting system can b
reproduced by a one-body potential in a noninteractin
system. This result has important consequences for tim
dependent density functional theory (TDDFT).

TDDFT [2–5] has turned out to be a successful ap
proach to the calculation of time-dependent properties
many-particle systems. The rigorous foundation of th
TDDFT approach is based on the Runge-Gross theore
[1]. This theorem states that, for a fixed initial many
body state, there is a one-to-one correspondence betw
the time-dependent external fieldysrtd and the time-
dependent densitynsrtd. This is made into a practical
scheme by means of the so-called Kohn-Sham equatio
In the Kohn-Sham approach one introduces a nonintera
ing many-particle system with the same densitynsrtd as
the fully interacting system. This noninteracting Kohn
Sham system has a local potential that incorporates all t
exchange-correlation effects and is obtained as a dens
derivative of the action [6]. The fact that the Kohn-Sham
equations constitute a set of one-particle equations mak
them of great practical use. However, it has still bee
an unproven assumption that such a noninteracting sy
tem, with the same density as the fully interacting syste
at all times, exists. If, for a certain densitynsrtd, such
a noninteracting system exists then this density is calle
noninteractingy-representable.
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There are, however, some differences between the
of this concept in stationary and time-dependent system
For stationary systems a densitynsrd is called noninter-
actingy representable if this density can be obtained as
ground statedensity of a noninteracting system. Eve
for smooth densities this is not always possible. Th
counterexamples are provided by densities construc
from degenerate ensembles [7,8]. However, it is gen
ally believed that smooth (i.e., normalizable and twic
differentiable) densities are noninteracting ensemble-y-
representable (i.e., densities corresponding to a grou
state ensemble of a noninteracting system). In a tim
dependent system the situation is different, since in th
case we are solving an initial-value problem. The initi
state of the noninteracting system need not be an eig
state of the system (and need not even be a Slater de
minant wave function). If this initial state has the righ
specified density, then we can ask ourselves the ques
whether, in a noninteracting system with this initial stat
a time-dependent one-body potentialyssrtd exists that re-
produces a given smooth densitynsrtd at all times. In this
work we will show that this, under mild restrictions on
the initial state, is always possible. We will give a con
structive proof of this statement. We furthermore sho
that, given the initial state, this potential is unique up to
purely time-dependent function. This result therefore pr
vides rigorous support for the time-dependent Kohn-Sha
formalism. The result also elucidates the initial-state d
pendence of the time-dependent density functionals.

Let us begin by proving the statement announced at
beginning of the introduction. We start from a Hamilton
ian Ĥ of a finite many-particle system

Ĥstd ­ T̂ 1 V̂ std 1 Ŵ , (1)

whereT̂ is the kinetic energy,̂V std the external potential,
andŴ the two-particle interaction. In second quantizatio
the constituent terms are written as usual as

T̂ ­ 2
1
2

Z
d3rĉysrd=2ĉsrd , (2)

V̂ std ­
Z

d3rysrtdĉysrdĉsrd , (3)
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d3rd3r 0wsjr 2 r0jdĉysrdĉysr0dĉsr0dĉsrd . (4)

We take the external potentialysrtd to be of the form

ysrtd ­
Z

d3r 0 Zsr0td
jr 2 r0j

, (5)

whereZsrtd describes a finite but arbitrarily large charg
distribution. The external potential is thus assumed to
generated by some finite, and in general time-depend
charge distribution. This form is chosen to make the int
grals in our following discussion well defined. Howeve
the form is not particularly restrictive as it encompass
most cases of physical interest. For instance, ifZsrtd is a
delta-function-like distribution of point charges, thenysrtd
describes a molecular framework. The form Eq. (5) e
cludes some commonly used external fields, such as
potential of a spatially homogeneous electric field. How
ever, for practical purposes these fields can always be
proximated to arbitrary accuracy by considering very lar
but finite charge distributions (which is actually closer
the real physical situation). We further assumeysrtd to
be an analytic function of timet, i.e., ysrtd must have a
Taylor expansion with finite convergence radius for ea
time t.

We now specify an initial statejC0l at t ­ t0 and
evolve the wave function with the Hamiltonian̂Hstd.
From this wave function we can subsequently calcula
the densitynsrtd. In the following, we consider two
continuity equations. IfjCstdl is the state evolving from
jC0l under the influence of Hamiltonian̂Hstd we have the
usual continuity equation

≠tnsrtd ­ 2ikCstdj fn̂srd, Ĥstdg jCstdl ­ 2= ? jsrtd ,

(6)

where the current operator is defined as

ĵsrd ­
1
2i

hĉysrd=ĉsrd 2 f=ĉysrdgĉsrdj (7)

and has expectation value

jsrtd ­ kCstdjĵsrdjCstdl . (8)

We can further consider an analogous continuity equat
for the current itself. We have

≠tjsrtd ­ 2ikCstdj fĵsrd, Ĥstdg jCstdl . (9)

If we work out this equation in more detail, we find

≠tjksrtd ­ 2nsrtd≠kysrtd 2
X

i

≠iTiksrtd 2 Wksrtd .

(10)

Here we defined the momentum-stress tensor (part of
energy-momentum tensor) as

T̂iksrd ­
1
2

Ω
≠iĉ

ysrd≠kĉsrd 1 ≠kĉysrd≠iĉsrd

2
1
2

≠i≠kfĉysrdĉsrdg
æ

(11)

and the quantityŴk as
3864
e
be
ent,
e-
r,
es

x-
the
-

ap-
ge
to

ch

te

ion

the

Ŵksrd ­
Z

d3r 0ĉysrdĉysr0d≠kwsjr 2 r0jdĉsr0dĉsrd ,

(12)

where the derivative≠k is with respect to the variabler.
Their expectation values are defined as

Tiksrtd ­ kCstdjT̂ikjCstdl , (13)

Wksrtd ­ kCstdjŴkjCstdl . (14)

Taking the divergence of Eq. (10) and using the continu
ity Eq. (6) we find

≠2
t nsrtd ­ = ? fnsrtd=ysrtdg 1 qsrtd , (15)

with qsrtd defined as

qsrtd ­ kCstdjq̂srdjCstdl , (16)

and where the operatorq̂srd is defined as

q̂srd ­
X
i,k

≠i≠kT̂iksrd 1
X

k

≠kŴksrd . (17)

Equation (15) is the central equation of our discussion
it represents a differential equation which directly relate
the external potential and the electron density.

We now ask ourselves the central question: Can t
same densitynsrtd be reproduced by an external potentia
y0srtd in a system with a given two-particle interaction
w0sjr 2 r0jd? We will answer this question affirmatively
by means of a constructive procedure for the potenti
y0srtd. The only further constraint we will put on the
potential y0srtd is that is vanishes at infinity, as does
potentialysrtd of Eq. (5). We further notice that if such a
y0srtd exists then also the potentialy0srtd 1 Cstd, where
Cstd is a purely time-dependent function, will reproduce
the required density. This is because the functionCstd
only changes the phase of the wave function and do
not affect the density. We will show that this is the
only ambiguity that can arise, i.e.,y0srtd is uniquely
determined moduloCstd.

We now consider a second system with Hamiltonian

Ĥ 0std ­ T̂ 1 V̂ 0std 1 Ŵ 0. (18)

The termsV̂ 0std andŴ 0 represent again the one- and two
body potentials. We denote the initial state byjF0l at
t ­ t0 and time-evolved state byjFstdl. The form of
Ŵ 0 is assumed to be such thatŴ 0

ksrtd and its derivatives
are finite. For the most important case of interest, i.e
Ŵ 0 ­ lŴ with 0 # l # 1, this is automatically satisfied.
We will discuss some special cases of this type later o
For the system described by HamiltonianĤ 0 we have an
analogous equation to Eq. (15). Assuming that the oth
system has identical density, i.e.,n0srtd ­ nsrtd, we have

≠2
t nsrtd ­ = ? fnsrtd=y0srtdg 1 q0srtd , (19)

whereq0srtd is the expectation value

q0srtd ­ kFstdjq̂srdjFstdl . (20)
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By subtracting Eqs. (15) and (19), we find

= ? fnsrtd=vsrtdg ­ z srtd , (21)

where vsrtd ­ ysrtd 2 y0srtd and z srtd ­ q0srtd 2

qsrtd. Equation (21) is the equation we will use to
constructy0srtd. First we need to discuss some initia
and boundary conditions. As a necessary condition
the potentialy0 to exist, we must obviously require tha
the initial statesjC0l and jF0l yield the same initial
density, i.e.,

kF0jn̂srdjF0l ­ kC0jn̂srdjC0l . (22)

We now note that the basic equation, Eq. (15), we us
is a second-order differential equation in time fornsrtd.
This means that we still need the additional requireme
of ≠tn0srtd ­ ≠tnsrtd at t ­ t0. With the help of the
continuity equation (6) this yields the condition

kF0j= ? ĵsrdjF0l ­ kC0j= ? ĵsrdjC0l . (23)

This constraint also implies the weaker requirement th
the initial statejF0l must be chosen in such a way tha
the initial momentaPst0d of both systems are the same
This follows directly from the fact that the momentum o
the system is given by

Pstd ­
Z

d3rjsrtd ­
Z

d3rr≠tnsrtd . (24)

The equality of the last two terms in this equation follow
directly from the continuity equation (6) and the fac
that we are dealing with finite systems (i.e., curren
and densities are zero at infinity). This also helps
to understand the physics behind constraint (23). If t
densities of both systems described by HamiltonianĤ and
Ĥ 0 are the same at all times, then the above equation (
implies that also the momenta of both systems are eq
at all times. This clearly cannot be satisfied if the initia
momenta of both systems are different, since it wou
require an infinite force to make them equal fort . t0.

With the initial conditions Eqs. (22) and (23), we now
discuss the solution of Eq. (21). We first notice tha
this equation contains no time derivatives and the tim
variable can therefore be treated as a parameter.
further notice that this equation is of a well-known Sturm
Liouville type, which has a unique solution forvsrtd if
nsrtd and z srtd are given, and we further specify the
boundary condition thatvsrtd approaches zero at infinity.
Imposing the latter boundary condition at infinity als
means that we choose a particular gauge for the poten
y0srtd, i.e., we fix the arbitrary time-dependent functio
Cstd mentioned above. Note that this boundary conditio
at infinity is also satisfied for the potentialysrtd of
Eq. (5). At t ­ t0 we have

= ? fnsrt0d=vsrt0dg ­ z srt0d . (25)

Since nsrtd is known at all times andz srt0d can be
calculated from the initial statesjC0l and jF0l there
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is, when taking into account the boundary conditio
a unique solutionvsrt0d. This means that we hav
determinedy0srt0d ­ ysrt0d 2 vsrt0d. In the next step
we take the time derivative of Eq. (21) att ­ t0 and
obtain

= ? fnsrt0d=vs1dsrdg ­ z s1dsrd 2 = ? fns1dsrd=vsrt0dg ,

(26)

where we introduced the following notation for thekth
time derivative att ­ t0:

f skdsrd ­ ≠k
t fsrtdjt­t0 . (27)

Now all quantities on the right-hand side of Eq. (26) a
known, sincensrtd is known at all times andvsrt0d was
already determined from Eq. (25). The quantityz s1dsrd is
calculated from the commutators:

z s1dsrd ­ ≠tz srtdjt­t0

­ ikC0j fq̂srd, Ĥst0dg jC0l

2 ikF0j fq̂srd, Ĥ 0st0dg jF0l , (28)

whereĤ 0st0d is known from our previous calculation o
y0srt0d. From Eq. (26), which is of the same Sturm
Liouville type as Eq. (25), we can therefore calcula
(with the same boundary condition at infinity as befor
vs1dsrd and hence≠ty

0srtd at t ­ t0. We can now take
the second time derivative of Eq. (21) and repeat
above procedure to determine≠2

t y0srtd at t ­ t0. In
general, if we take thekth time derivative of Eq. (21),
we obtain

= ? fnsrt0d=vskdsrdg ­ Qskdsrd , (29)

where the inhomogeneityQskdsrd is given by

Qskdsrd ­ z skdsrd 2

k21X
l­0

µ
k
l

∂
= ? fnsk2ldsrd=vsldsrdg .

(30)

The term z skd involves multiple commutators of the
operatorq̂srd with the HamiltoniansĤ and Ĥ 0 and their
time derivatives up to orderk 2 1, sandwiched between
the initial statesjC0l and jF0l. The structure of the
iteration procedure is now clear. The inhomogene
Qskdsrd is completely determined by the densitynsrtd,
the potentialysrtd, the initial statesjC0l, and jF0l, and
the time derivates≠

sld
t y0srtd at t ­ t0 up to orderk 2 1.

Equation (29) therefore allows complete determination
≠k

t y0srtd at t ­ t0 for arbitrary value ofk. We can
therefore constructy0srtd from its Taylor series as

y0srtd ­
X̀
k­0

1
k!

≠k
t y0srtdjt­t0st 2 t0dk . (31)

This determinesy0srtd completely within the convergenc
radius of the Taylor expansion. If this convergence rad
is nonzero but finite, we can propagatejF0l to jFst1dl
3865
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at a finite time t1 . t0 within the convergence radius
and repeat the whole procedure above fromt ­ t0 by
regarding jFst1dl as the initial state. This amounts to
analytic continuation along the whole real time axis an
a complete determination ofy0srtd at all times. There is,
of course, the possibility that the convergence radius
zero. However, this would mean thaty0srtd and hence
nsrtd and ysrtd would be nonanalytic att ­ t0. Since
we consider only analytical densities we disregard th
possibility. We can now make the following statemen
We specify a given densitynsrtd obtained from a many-
particle system with Hamiltonian̂H and initial statejC0l.
If one chooses an initial statejF0l of a many-particle
system with two-particle interaction̂W 0 in such a way
that it yields the correct initial density and initial time
derivative of the density, then, for this system, there is
unique external potentialy0srtd [determined up to a purely
time-dependent functionCstd] that reproduces the given
densitynsrtd.

Let us now specify some special cases. We ta
Ŵ 0 ­ 0. We conclude that for a given initial state
jF0l, having the correct initial density and initial time
derivative of the density, there is a unique potentialyssrtd
[modulo Cstd] in a noninteracting system that produce
the given densitynsrtd at all times. This solves the
noninteractingy-representability problem, provided we
can find an initial state with the required properties.
the many-body system described by HamiltonianĤ is
stationary for timest , t0, the initial statejC0l at t0 leads
to a density with zero time derivative att ­ t0. In that
case a noninteracting state with the required initial dens
and initial time derivative of the density (namely zero) ca
be obtained via the so-called Harriman [8,9] constructio
Therefore for this kind of switch-on processes a Kohn
Sham potential always exists. The additional question
whether this initial state can be chosen as a ground st
of a noninteracting system is equivalent to the current
unresolved noninteractingy-representability question for
stationary systems.

We now takeŴ 0 ­ Ŵ . We therefore consider two
many-body systems with the same two-particle intera
3866
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tion. We find that, for a giveny-representable density
nsrtd [corresponding to initial statejC0l and potential
ysrtd] and a given initial statejF0l (with the same ini-
tial density and initial time derivative of the density as
the statejC0l) there is a unique external potentialy0srtd
[modulo Cstd] that yields this given densitynsrtd. The
casejC0l ­ jF0l (in which the constraints on the initial
statejF0l are trivially satisfied) corresponds to the well
known Runge-Gross theorem.

We can summarize our results as follows: W
have generalized the well-known Runge-Gross theore
of time-dependent density functional theory. This i
achieved through an analysis of the continuity equatio
for the density and the current. Our results furthermo
demonstrate the noninteractingy-representability of the
density of many-particle systems and have elucidated t
density-potential relation and initial-state dependence
time-dependent density functionals.
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