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Self-Adaptation in Vibrating Soap Films
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The vibration of a soap film set into motion by a sound wave is studied experimentally
theoretically. In contrast with the well separated resonances of a solid membrane, the mode
liquid film exist in wide ranges of frequencies and the vibration amplitude is large for all forc
frequencies. This is due to the adaptation of the film mass distribution which concentrates a
antinodes as observed by interference fringes in monochromatic light. The theoretical model
into account the variation of surface tension with thickness and explains the experimental re
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In early times, vibrating soap films were considere
as archetypes of vibrating membranes. For instan
Rayleigh [1] reports experiments of this type by Meld
(1876). There are also observations by Taylor [2] an
more recently by Bergman [3] on circular or squar
membranes. Quantitative studies are more recent a
revealed that the vibration of liquid films is more comple
than that of solid films. A linear theory of the propagatio
of waves in soap films was developed by Lucassenet al.
[4]. Experimentally two different types of behavior are
observed when soap films are force into vibration.
the films are thin, strong and rapid recirculations a
generated as reported by Afenchenkoet al. [5] and studied
theoretically by Vegaet al. [6]. In contrast, if the films
are thick, the mass distribution adapts itself so that t
system retains large amplitude oscillations at all forcin
frequencies. This self-adaptation of soap films to th
forcing was first pointed out by Airiau, Couder, and
Rabaud [7]. A similar effect was found in vibrating
smectic films with large forcing by Brazovskaiaet al. [8].
However no complete model for the self-adaptation o
these systems was given. A better understanding of
phenomenon was reached in systems where it results fr
the addition of a discrete mass. This was obtained w
a small ball suspended in a vibrating smectic film [9] o
with a bead sliding on a vibrating string [10]. In this latte
case there is a slow dynamics by which the bead adju
its position so that the system is resonant with the forcin
A theoretical model for this effect is given in [10].

While Refs. [9,10] considered discrete systems, in th
present Letter we are concerned with self-adaptati
in a continuous system. For this purpose we revis
vibrating soap films. As we will show they fundamentally
differ from solid membranes because of the possibili
of thickness variations. The film is formed of a 1%
water solution of commercial soap (“Mir multiusages”
mixed with 7% of glycerol. It has a surface tensio
s ­ 22 mNym and a mean thicknesse ø 5 mm. The
frame is a rectangle of lengthL ­ 16 cm and width
W ­ 2.5 cm. It is placed horizontally and the forcing
0031-9007y99y82(19)y3847(4)$15.00
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is provided by a large loudspeaker located below
film and giving a spatially homogeneous forcing. Usin
a function generator and a hi-fi amplifier the excitatio
frequency can be tuned continuously. The whole syst
is placed in a perspex box to avoid drafts. The fi
is lit with a large monochromatic sodium lamp locate
behind a diffusing screen. Observed in reflection the fi
exhibits equal thickness interference fringes, the thickn
varying by 0.22mm between two neighboring fringes
A video camera placed just above the box is used
record the evolution of the interference patterns. We u
the reflexion of a plane laser sheet of light by the fil
across the middle of its width. The largest deflectio
at the antinodes give a measure of the amplitude of
film vibration. The transverse profile of the film in th
directionz perpendicular to its plane can also be observ
with a stroboscopic light.

If care is taken for the initial stretching of the film
reproducible results are obtained [11]. After it h
been set into vibration, an organized interference patt
appears after approximately 10 sec (Fig. 1). It is due
spatial variations of the thickness related to the vibrat
of the membrane. The fringes form concentric ellips
showing that the film has become thicker at the antinod
By counting the fringes, we estimate the film thickness
vary from about 0.2mm near the frame and at the node
to more than 200mm at antinodes.

If the film behaved as a constant density solid me
brane, the transverse displacementz for the eigenmodes
would be

z ­ A sinfnpsxyL 1 1y2dg sinfmps yyW 1 1y2dg

3 sinsvnmtd ,
where 2Ly2 # x # Ly2, 2Wy2 # y # Wy2. The
complete eigenfrequencies spectrumvnm would be
given by

vnm ­ p

s
2s

rep

s
n2

L2 1
m2

W2 . (1)

whereep is the effective thickness of the membrane (taki
© 1999 The American Physical Society 3847
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FIG. 1. The interference patterns observed on the soap films at increasing frequencies and the theoretical longitudin
section obtained from the model [Eq. (6)]. The interference fringes are the lines of equal thickness and mass is concentrate
antinodes. For a better visualization of fringes, the films used for the photographs were drained to be thinner than usual.
theoretical cross sections, the thickness is magnified. (a) Mode 1 at 21 Hz and corresponding theoretical shape atvyv1 ­ 0.99.
(b) Mode 2 at 26 Hz and the theoretical profile atvyv1 ­ 2 (note that when the forcing is homogeneous there is only one cen
antinode). (c) Mode 3 at 30 Hz and the theoretical profile atvyv1 ­ 2.99. (d) Mode 4 at 33 Hz and the predicted profile a
vyv1 ­ 4 (with a homogeneous forcing there are two antinodes). (e) Mode 5 at 38 Hz and the theoretical profile atvyv1 ­ 3.99.
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into account the inertia of the air moving with the film)
r is the density of the intersticial fluid, ands is the
surface tension of one side of the film. When forced in
vibration [1], the amplitude of response would be ver
small unless the forcing frequency was close to a natu
frequencyvnm.

Actually, the soap film has a large amplitude of osci
lations for all forcing frequencies except below all natur
frequenciesvnm s f , 15 Hzd where there is hardly any
vibration. The aspect of the soap film at increasing for
ing frequencies is shown in Fig. 1. For16 # f # 23 Hz,
the film organizes and concentric elliptical fringes form
surrounding a single central antinode [Fig. 1(a)]. The sy
tem is in its fundamental mode. For larger frequenci
24 # f # 28 Hz, though there is still one antinode, th
fringes tend to become more circular in the central pa
of the film [Fig. 1(b)], and the extremities do not vibrate
Starting at about 28 Hz there is a flow by which some
the mass is transferred from the central region towards
extremities so that two new sets of elliptical fringes ap
pear symmetrically with respect to the central one. Th
state with three antinodes [Fig. 1(c)] is observed in th
range 28–31 Hz, with more and more mass being tra
3848
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ferred from the central antinode to the lateral ones. Ul
mately, only the two lateral antinodes remain [Fig. 1(d
in the range 32–36 Hz. The process repeats itself wh
new antinodes appear in-between the existing antinod
and between them and the frame, leading to a state w
five antinodes [Fig. 1(e)] in the range 37–39 Hz. Th
evolution continues for frequencies up to about 55 H
where the pattern starts evolving in the transverse dire
tion, leading at about 90 Hz to the formation of a tw
dimensional pattern with staggered antinodes. We w
concentrate on the frequency rangef , 55 Hz where
there is exactly half a wavelength in the frame’s width
So, we will consider from now on that the median regio
of the film width has a 1D dynamics. This is a bold hypo
thesis, but it permits a complete treatment of the proble

The sequence 1, 1, 3, 2, 5, 3, 7,. . . , 2p 2 1, 2py2,
2p 1 1, . . . , for the numbers of antinodes appears
contradiction with the usual situation in 1D vibrating
systems where the number of antinodes is 1, 2,. . . ,
p, p 1 1, . . . . This is due to the specificity of the
homogeneous forcing discussed for strings in Mor
[12]. The usual even eigenmodes have a shape which
antisymmetrical with respect to the middle of the syste
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while the forcing is symmetrical. For this reason they a
not excited. When forced atv ­ 2pf, the shape of the
film is

zsx, td ­ A

√
cosfspvyv1d sxyLdg

cosspvy2v1d
2 1

!
sinvt . (2)

Herez is the vertical displacement of the film at a positio
x (with 2Ly2 , x , Ly2). A is a typical displacement
proportional to the forcing andv1 is the fundamental
frequency. The profiles given by Eq. (2) whenvyv1 is
in the vicinity of an integern are of the type displayed
in Fig. 1 (for vyv1 ­ 0.99, 2, 2.99, 4, and 4.99). When
vyv1 is close to an odd integern there aren antinodes.
When it is close to an even integer there are on
ny2 antinodes. This explains the observed sequence
numbers of antinodes for our system.

In the case discussed by Morse the amplitude
vibration given by (2) diverges in the vicinity of the
odd modes which are the only resonances. For the ot
frequencies, including whenvyv1 is an even integer, the
amplitude is very small. What is observed here with flu
films is different: The amplitude is large in all case
(Fig. 2). The vibration amplitude varies by only abou
a factor 4 (from 0.5 to 2 mm) in a wide frequency rang
(20–55 Hz). A resonancelike behavior remains, howev
for the odd modes. The amplitude versus frequency cu
(Fig. 2) exhibits weak peaks at frequencies located with
the range of observation of each odd mode. A jump
p of the phase of the motion relative to the phase of t
forcing is observed at these peaks. The width of the
phase jumps shows the quality factor to beQ , 20.

We can now measure the wavelength as a function
frequency. We define it as the mean distance betwe
two neighboring antinodes for the even modes and
twice this distance in the odd modes. The dispersi

FIG. 2. Experimental amplitude of vibration versus the forc
ing frequency. The dotted lines mark the frequency of tra
sition between two modes. Inset: Theoretical adimension
amplitude versus adimensional frequency. In the two cases
amplitude remains large at most frequencies.
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curve (Fig. 3) shows small steps at frequenciesf ­ 27.5,
31.5, 36.5, 39.5, 44.5, and 49.5 Hz accounting for
local fast variation of the wavelength. These frequenc
are the extremities of the intervals where a given mo
is observed. The vibrating film adapts to the forcin
frequency: As long as the mass distribution can adjust
the forcing, the wavelength changes smoothly. When
mass distribution is too constrained to follow the forcin
there is a jump in the wavelength and a change of mo
This effect is not included in the model presented belo
as we implicitly assume that the mass concentration at
antinode is not too large. In the experiment, a drop m
form at each antinode. We will model this elsewhere [13

We now write the equations for the deflectionzsxd from
equilibrium and for the film thicknessesxd. For the sake
of simplicity, our model is only 1D. The wave equatio
reads

re≠ttz ­ 2≠xss≠xzd 1 F sinsvtd . (3)

F is the forcing. The experiment shows that dampin
is small [14]. We will look for periodic solutions
z ­ Z sinsvtd. We can estimate using Eq. (5)s≠xs≠xzdy
ss≠xxzd , svZyv0Ld2 ø 1, so that ≠xss≠xzd ,
s≠xxz. The wave equation becomes

2rev2Z ­ 2s≠xxZ 1 F . (4)

In the tangent plane, two forces are acting on the fil
The projection of the local acceleration on the tange
s≠ttz≠xzd gives a centrifugal force of temporal mea
rv2eZ≠xZ. It accounts for the mass concentration
antinodes. The restoring force comes from the var
tions of surface tension with thickness. This effect
known as Marangoni or Gibbs elasticity of soap film
[15]. It is due to the thermodynamical equilibrium be
tween soap molecules in the bulk and at the interfa
From Ref. [15], we take the force acting against thickne

FIG. 3. The experimental wavelength versus the forcing fr
quency. At the transition frequencies shown by dotted line
the curve has small steps showing a local faster evolution ofl.
3849
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variations to be≠xs ­ 2E≠xeye, whereE is the elas-
ticity coefficient of the filmsE ø 0.15 Nymd. We obtain
the equation for the equilibrium in the film plane,

2
E
e

≠xe 1 rv2eZ≠xZ ­ 0 . (5)

The set (4)-(5) is integrable analytically. Equation (5
gives the thicknesse ­ EysB 2

1
2 rv2Z2d, where B is

a constant determined through mass conservation. T
general solution reads

x ­ ´
Z r

s

E lns1 2 rv2Z2y2Bd 2 FZ 1 A
dZ . (6)

The constantś ­ sgns≠xZd andA result from the bound-
ary conditionsZs2Ly2d ­ Zsly2d ­ 0. Using the ex-
perimental valueF ø 0.15 Nym2, we recover both a
thickness and an amplitude frequency dependence si
lar to the experimental ones. The mass concentrates
the antinodes (Fig. 1) and adjusts with the forcing fre
quency. This adaptation allows the amplitude to rema
large (Fig. 2, inset) in a wide range of frequencies. Th
theoretical curve of the Fig. 2 inset also exhibits wea
peaks with phase jumps corresponding to resonances.
qualitative agreement shows that the self-adaptive beh
ior can be explained only by the spatial variations o
thickness. In the experiment, the first and second pea
are weaker than expected, probably because of damp
by air friction.

As a conclusion, we have shown that the fluidity o
soap films gives them a behavior very different from
solid membranes. The liquid film can adapt its mas
distribution to the forcing frequency. This adaptatio
is smooth within the interval of a mode existence an
fast at the interval extremities. These transitions, as w
as the phase jumps at the resonance, occur through
coupling between the vibration and Marangoni wave
These waves were already shown to be important in t
vorticity generation [5,6]. The study of this coupling
3850
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is beyond the scope of the present Letter and will b
developed elsewhere [13].
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